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Solution The parametrization r(f) = (cos#)i + (sin#)j, 0 = t = 2x, traces the circle
counterclockwise exactly once. We can therefore use this parametrization in Equation (4). With,

M =x—y=cost — sint, dy = d(sint) = costdt

N = x = cost, dx = d(cost) = —sint dt,

We find

2w
Flux = fMdy — Ndx = f (cos’t — sintcost + costsint) dt Equation (4
€ 0

27 I . 20
1 + cos2t t in 2¢
=/ cosztdl=/ 1+ coset, [_._+§_L} = i
0 0

The flux of F across the circle is 7. Since the answer is positive, the net flow across the
curve is outward. A net inward flow would have given a negative flux. "

 EXERCISES 16.2

2 2 4

]

Vector and Gradient Fields
Find the gradient fields of the functions in Exercises | 4.

1. flx,y,2) = (x2 + p2 4+ 22712

2. flx,y,2) = InVx? + y 4 22

3 glx,y,2) = € — In(x? + 3?)

4. gle,y,z) =xy +yz + xz

5. Give a formula F = M(x, y)i + Nlx, y)j for the vector field in

the plane that has the property that F points toward the origin with
magnitude inversely proportional to the square of the distance
from (x, y) to the origin. (The field is not defined at (0, 0).)

6. Give a formula F = M(x, y)i + N(x, y)j for the vector field in

the plane that has the properties that F = 0 at (0, 0) and that at
any other point (a, b), F is tangent to the circle x2 4+ },2 =
a® + b? and points in the clockwise direction with magnitude
IF| = Va*+ b2

Work
In Exercises 7-12, find the work done by force F from (0, 0, 0) to
(1, 1, 1) over each of the following paths (Figure 16.21):
a. Thestraight-linepathCiir()) =i+ tj+ 1k, 0=r1<1
b. The curved path Cy: r(t) = ti + rlj +1*'k, 0=t1=1

c. The path C; U Cy consisting of the line segment from (0, 0, 0)
to (1, 1, 0) followed by the segment from (1, 1,0)to (1, 1, 1)

7. F = 3y + 2xj + 4zk 8. F =[1/(x* + ]j
9. F= Vzi — 2xj + Viy)k 10, F = xyi + yzj + xzk
1. F=(3x* - 3x)i+ 3z + k
1Z2.F=(y+zlit+(z+x)j +(x+ yk

(1, 1,0)

FIGURE 16.21 The paths from (0, 0, 0)
to (1, 1, 1).

In Exercises 13-16, find the work done by F over the curve in the
direction of increasing 1.
13. F=xi +yj — yzk
r)=ti+r+tk, 0=1=1
4. F= 25 + 3xj + (x + y)k
r(t) = (cost)i + (sint)j + (t/6)k, 0 =t=2mw
15. F =zi + xj + yk
r(t) = (sint)i + (cost)j +tk, 0<(<2nw
16. F = 6zi + y%j + 12xk
r(1) = (sint)i + (cost)j + (1/6)k, 0 =1=2m

Line Integrals and Vector Fields in the Plane
17. Evaluate f(..r_'.'u{r + (x + y) dy along the curve y = x? from
(—=1,1)to0 (2, 4).

18. Evaluate f(. (x — y)dx + (x + y) dy counterclockwise around
the triangle with vertices (0, 0), (1, 0), and (0, 1).




19. Evaluate /{ F+T ds for the vector field F = x%i — yj along the
curve x = yZ from (4,2) to (1, —1).

20. Evaluate j;.F-Jr for the vector field F = yi — xj counter-
clockwise along the unit circle x> + y* = 1 from (1, 0) to (0, 1).

21. Work Find the work done by the force F = xyi + (y — x)j
over the straight line from (1. 1) to (2, 3).

22, Work  Find the work done by the gradient of f(x, y) = (x + y)°
counterclockwise around the circle x? + v =4 from (2, 0) to
itself.

23. Circulation and flux Find the circulation and flux of the fields

Fi =xi +y} and F; = —yi + xj

around and across each of the following curves.
a. Thecircler(r) = (cost)i + (sins)j, 0=¢=2m
b. Theellipser(r) = (coss)i + (4sine)j, 0 =1=2m

24. Flux across a circle Find the flux of the fields
Fi = xi — 3yj and F; = 2xi +(x — ¥lj
across the circle
r(t) = (acost)i + (asint)j, 0=t=<2m
Circulation and Flux

In Exercises 2528, find the circulation and flux of the field F around
and across the closed semicircular path that consists of the semicircu-
lar arch ry(1) = (acost)i + (asint)j,0 = t = 7, followed by the
line segment ra(f) = i, —a = t = a.

25. F = xi + vj 26. F = x’i + y%j

27. F = —yi + xj 28. F= —y*i + x%j

29. Flow integrals Find the flow of the velocity field F =
(x + i — (% + v along each of the following paths from

(1, 0) to (—1. 0) in the xy-plane.
a. The upper half of the circle x> + 3% = |
b. The line segment from (1, 0) to (—1, 0)

¢. The line segment from (1, 0) to (0, — 1) followed by the line
segment from (0, —1) to (—1,0).

30. Flux across a triangle  Find the flux of the field F in Exercise 29
outward across the triangle with vertices (1, 0), (0, 1), (=1, 0).

Sketching and Finding Fields in the Plane
31. Spin field Draw the spin field
y X
F=-——i+ =
Vx© + p* Vs + yp*

(see Figure 16.14) along with its horizontal and vertical compo-
nents at a representative assortment of points on the circle

1

x5 ‘rl e
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32. Radial field Draw the radial field
= xi + yj

(see Figure 16.13) along with its horizontal and vertical compo-

nents at a representative assortment of points on the circle
3 2

x+y =1

33. A field of tangent vectors

a. Findafield G = Plx, y)i + Q(x,y)j in the xy-plane with the
property that at any point (a, b) # (0,0), G is a vector of

magnitude Va? + b tangent to the circle x? + 2 = a? + b?
and pointing in the counterclockwise direction. (The field is
undefined at (0, 0).)

b. How is G related to the spin field F in Figure 16.14?

34. A field of tangent vectors

a. Findafield G = P(x. y)i + Qlx, y)j in the xy-plane with the
property that at any point (a, b) # (0, 0), G is a unit vector
tangent to the circle x* + y* = a + b* and pointing in the
clockwise direction.

b. How is G related to the spin field F in Figure 16,147

Y
n

. Unit vectors pointing toward the origin Find a field F =
M(x, )i + N(x, y)j in the xy-plane with the property that at each
point (x, y) # (0, 0), F is a unit vector pointing toward the ori-
gin. (The field is undefined at (0, 0).)

36. Two “central” fields Find a field F = M(x, p)i + N(x, y)j in

the xy-plane with the property that at each point (x, y) # (0,0),

F points toward the origin and |F| is (a) the distance from (x, y)

to the origin, (b) inversely proportional to the distance from (x, ¥)

to the origin, (The field is undefined at (0, 0).)

Flow Integrals in Space

In Exercises 37-40, F is the velocity field of a fluid flowing through a
region in space. Find the flow along the given curve in the direction of
increasing /.

37. F = —dxyi + 8j + 2k

) =ti+Fj+k 0=t=<2
38. F = i +yzj + vk
rt) =3t + 4k, 0=t<=1

39. F=(x—12)i +xk
r(r) = (cost)i + (sint)k, 0=r=nx
40. F = —pi + xj + 2k
r(f) = (=2cost)i + (2sinr)j + 2rk, 0=t=27
41. Circulation Find the circulation of F = 2xi + 2zj + 2yk
around the closed path consisting of the following three curves
traversed in the direction of increasing :
Ci: r(t) = (costi + (sint)j + tk, 0=¢=<m/2
G rt)=j+@/2)1 -k, 0=t=1

G r)=ti+(1-pj 0<t=<|
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(0,1, %)

(1,0.0)

42, Zero circulation Let C be the ellipse in which the plane
2x + 3y — z = 0 meets the cylinder x* + y? = 12. Show, with-
out evaluating either line integral directly, that the circulation of
the field F = xi + yj + zk around C in either direction is zero.

43. Flow along a curve The field F = xyi + yj — yzk is the
velocity field of a flow in space. Find the flow from (0, 0, 0) to
(1,1, 1) along the curve of intersection of the cylinder y = x? and

the plane z = x . (Hint: Use t = x as the parameter.)
s=x (L L1
z_'{_ . .,
y=2x?

X
44. Flow of a gradient field Find the flow of the field F = V(xy’z?):
a. Once around the curve C in Exercise 42, clockwise as viewed
from above

b. Along the line segment from (1, 1, 1) to (2, 1, —1),

Theory and Examples

45. Work and area  Suppose that f(¢) is differentiable and positive for
a=t=b.LetCbethepathr(t) =ti + f(t)jja =1 = b, and
F = yi. Is there any relation between the value of the work integral

/ F-dr
Je

16.3

and the area of the region bounded by the -axis, the graph of f,
and the lines 1 = a and t = b? Give reasons for your answer.

46. Work done by a radial force with constant magnitude A par-
ticle moves along the smooth curve y = flx) from (a, f(a)) to
(b, f(b)). The force moving the particle has constant magnitude /
and always points away from the origin. Show that the work done
by the force is

/F'”‘*’ = (b + (SO = (@ + (fla))?].

JC

COMPUTER EXPLORATIONS
Finding Work Numerically

In Exercises 47-52, use a CAS to perform the following steps for
finding the work done by force F over the given path:

a. Find dr for the path r(t) = g(t)i + h(1)j + k(1)k.

b. Evaluate the force F along the path.

¢. Evaluate / F-dr.

Je

47. F = 0% + 3x(xp® + 2)j; r() = (2cosni + (sin?)j,

0=t=2n

3 . 2
I+% 1 +y

O=st=mxw

48. F

;5 rlt) = (cos )i + (sint)j,

49. F = (y + yzcosxyz)i + (x? + xzcosxyz)j +
z + xycosxyz)k; r(t) = (2costi + (3sinf)j + k,
0=t=2nm
50. F = 2 — y%j + ze'k;
l=1=4
51. F = (2y + sinx)i + (2> + (1/3)cosy)j + x*k;
r(r) = (sin¢)i + (cosr)j + (sin2)k, -w/2 =1=m/2
52. F = (xy)i + %_r"j + xyk; r(r) = (cost)i + (sint)j +

Dk, 0=t<2nm

r(1) = —fi + Vij + 3k,

(2sin®t -

Path Independence, Potential Functions, and Conservative Fields

In gravitational and electric fields, the amount of work it takes to move a mass or a charge
from one point to another depends only on the object’s initial and final positions and not
on the path taken in between. This section discusses the notion of path independence of
work integrals and describes the properties of fields in which work integrals are path
independent. Work integrals are often casier to evaluate if they are path independent.
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~ EXERCISES 16.3

Testing for Conservative Fields
Which fields in Exercises 16 are conservative, and which are not?

1. F = yzi + xzj + ok

2. F = (ysinz)i + (xsinz)j + (xycosz)k
L. F=yi+(x+2z)j—yk

4. F = —yi + xj

5 F=(z+ypit+tzj+(y+xk

6. F = (e*cosy)i — (e'siny)j + zk

Finding Potential Functions

In Exercises 7- 12, find a potential function f for the ficld F.
7. F = 2d + 3yj + 4zk

8. F=(y+zit+t(x+2j+(x+yk

9, F =" %(i + xj + 2xk)

10, F = (ysinz)i + (xsinz)j + (xycosz)k

11. F = (Inx + sec’(x + y))i +

(sccz{x +y)+ 3
.‘J

y - z '
12. F = ',-;i+( T == .)j+
| =k ytyr L+xy V1 -7

y !
— > )k
(\«"'Il . " ')
Evaluating Line Integrals

In Exercises 1317, show that the differential forms in the integrals
are exact. Then evaluate the integrals.

(23, -6)
13. / 2vdx + 2ydy + 2z dz
{

JO0.0)

(3,5,0)
14. / yzdx + xzdy + xydz
1

(1,1.2)

{1L23)
15. / 2y dx + (x* = 2 dy — 2z dz
{

WALIRIRY)

33,1
16. / 2xdx — yldy 4 S dz
{

J10.0,0) -+ 2"

(0.1.1)

17. / sinycosxdx + cosysinxdy + dz
JULOY

Although they are not defined on all of space R’, the fields associated

with Exercises 18-22 are simply connected and the Component Test

can be used to show they are conservative. Find a potential function

for each field and evaluate the integrals as in Example 4.

(1,7/2.2) | A |
18. / 2cosydx + (;; - X sin_r) dy + - dz
JU02 1) %

123 2
19. / x“dx + Sdy + 2zlny dz
| ]

LLI)
= ,rz) dy — xydz

(211} IE
20. / (2xIny — yz)dx + (1
(1 g

"
21. / Lax + (l 2 i,) dy — = de
LLY 7 ye z"
2 /”2’] 2x dx + 2ydy + 2., dz
= 1,-1) 24 1'}‘ +

23. Revisiting Example 4 Evaluate the integral

{2.3,-1)
/ ydx + xdy + 4dz
JOLL1)

from Example 4 by finding parametric equations for the line seg-
ment from (1, 1, 1) to (2, 3, —1) and evaluating the line integral
of F = yi + xj + 4k along the segment. Since F is conservative,
the integral is independent of the path.

24. Evaluate
/x}' dx + yzdy + (y*/2) dz
=

along the line segment C joining (0, 0, 0) to (0, 3, 4).

Theory, Applications, and Examples

Independence of path  Show that the values of the integrals in Exer-
cises 25 and 26 do not depend on the path taken from A to B.

B
25. / 22 dx + 2ydy + Uz dz
Ja
- /‘”A‘ dx + ydy + zdz
R VRV p2+ 22

In Exercises 27 and 28, find a potential function for F.

2% I —x2\,
TI+ ':3 ]

(e* Iny)i + (‘T t Sin:)j + (ycosz)k

21. F

28. F

29, Work along different paths Find the work done by F =
(x2 4 )i + (¥ + x)j + ze’k over the following paths from
(1,0,0)to (1,0, 1).

a. Thelinesegmentx = L,y =0,0=z=1

b. The helix r() = (cos )i + (sint)j + (¢/2m)k,0 =1 = 27

¢. The x-axis from (1, 0, 0) to (0, 0, 0) followed by the parabola
z=x%y=0from(0,0,0)t0(1.0,1)

30. Work along different paths Find the work done by F =
ei + (xze’* + zcosy)j + (xve™ + siny)k over the following
paths from (1,0, 1) to (1, @/2, 0).
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a. The linesegmentx = L,y =mt/2,z=1—-10=1t=| 34. Gradient of a line integral Suppose that F = V{ is a conserva-
b. The line segment from (1, 0, 1) to the origin followed by the tive vector field and
line segment from the origin to (1, 7/2, 0) {ry.2)
: - glx,y,z) = F-dr.
¢. The line segment from (1, 0, 1) to (1, 0, 0), followed by the .L_u_m
x-axis from (I, 0, 0) to the origin, followed by the parabola
yo= mx%/2, z = 0 from there to (1, 7/2, 0) Show that Vg = F.

31. Evaluating a work integral two ways Let F = V(x’p?) and let 35. Path of least work You have been asked to find the path along
C be the path in the xy-plane from (—1, 1) to (1, 1) that consists which a force field F will perform the least work in moving a
of the line segment from (~1, 1) to (0, 0) followed by the line particle between two locations. A quick calculation on your part
segment from (0, 0) to (1, 1). Evaluate If(_.F-dr in two ways, shows F to be conservative. How should you respond? Give
a. Find parametrizations for the segments that make up C and reasons for your answer.

evaluate the integral. 36. A revealing experiment By experiment, you find that a force
b. Using f(x, y) = x’»* as a potential function for F. field F performs only half as much Iwork in moving an object
z 3 along path C; from 4 to B as it does in moving the object along

32. Integral along different paths Evaluate ff?.xcosy dx — x

- , path C; from 4 to B. What can you conclude about F? Give
sin y dy along the following paths C in the xy-plane.

reasons for your answer.

a. The parabola y = (x — 1)? from (1, 0) to (0, 1) 37. Work by a constant force Show that the work done by a con-
b. The line segment from (1, 7) to (1, 0) stant force field F = ai + bj + ck in moving a particle along any
¢. The x-axis from (—1,0) to (1, 0) path fromAtoBis W =F -AB.

d. The astroid r{r) = (cos’ 0)i + (sin’ 0j,0 =t =2m, 38. Gravitational field

counterclockwise from (1, 0) back to (1, 0)

a. Find a potential function for the gravitational field
33. a. Exact differential form How are the constants a, b, and ¢

i ing di i ' 9 xi+yj+ 2k
related if the following differential form is exact’ F = —GmM 84| (G. m, and M are constants).

24 .2, 22
(ay? + 2czx) dx + p(bx + e2) dy + (ay® + ex?) dz (" +y"+27)

b. Let P\ and P, be points at distance s and s, from the origin.
Show that the work done by the gravitational field in part (a)
F= (y?‘ + 2ezx)i + y(bx + cz)j + (_y2 + ex?)k in moving a particle from P, to P; is

be a gradient field? GmM(EI; _ SL})

b. Gradient field For what values of b and ¢ will

16.4 Green’s Theorem in the Plane

From Table 16.2 in Section 16.2, we know that every line integral jC M dx + N dy can be

written as a flow integral jﬂb F T ds. If the integral is independent of path, so the field F
is conservative (over a domain satisfying the basic assumptions), we can evaluate the
integral easily from a potential function for the field. In this section we consider how to
evaluate the integral if it is not associated with a conservative vector field, but is a flow or
flux integral across a closed curve in the xy-plane. The means for doing so is a result
known as Green’s Theorem, which converts the line integral into a double integral over the
region enclosed by the path.

We frame our discussion in terms of velocity fields of fluid flows because they are
easy to picture. However, Green’s Theorem applies to any vector field satisfying certain
mathematical conditions. It does not depend for its validity on the field’s having a partic-
ular physical interpretation.
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y which leads to the conclusion that
%(M dx + Ndy) = 2w
&

> x for any such curve K. We can explain this result by changing to polar coordinates. With

X = rcoséf, y = rsiné,
dx = —rsinf df + cos 0 dr, dy = rcosB8df + sinf dr,

we have

i xdy — ydx  r*(cos’f + sin’6) d6

| FIGURE 16.36 The region bounded by Tl ) =.af),
_ the circle Cj, and the curve K, : )
[ and 6 increases by 27 as we traverse K once counterclockwise.
EXERCISES 16.4 _ B
Verifying Green’s Theorem 12. Find the counterclockwise circulation and the outward flux of the
field F = (—sinp)i + (x cos y)j around and over the square cut

[n Exercises 14, verify the conclusion of Green's Theorem by evalu-

ating both sides of Equations (3) and (4) for the field F = Mi + Nj. from the first quadrant by the lines x = m/2and y = /2.

Take the domains of integration in each case to be the disk R: x> + y? = 13. Find the outward flux of the field
a* and its bounding circle C: r = (acos )i + (asint)j, 0 < ¢ = 2. .
- = == . x -1 N
L F=—pi+x 2. F =i T = (3-%‘” T+ yz)’ Ml
3. F = 2di — 3yj 4. F = —xhi + »/j

across the cardioid r = a(l + cos@),a > 0.
Counterclockwise Circulation and Outward Flux 14, Find the counterclockwise circulation of F = (y + ¢*Iny)i +
(e/y)j around the boundary of the region that is bounded above

In Exercises 5—10, use Green's Theorem to find the counterclockwise by the curve y = 3 — x2 and below by the curve y = x* + |

circulation and outward flux for the field F and curve C.
5. F=(x— i+ (y—x)j Work
C: The square bounded by x = 0,x = 1,y = 0,y [n Exercises 15 and 16, find the work done by F in moving a particle
6. F = (x> + 4p)i + (x + y2)j once counterclockwise around the given curve.

e B 2,2
C: The square bounded by x = 0,x = 1, 15. F= 25074 + dx'y'}
T.F=(%—x)i+ (2 + p2)j C: The boundary of the “triangular” region in the first quadrant
' : ’ enclosed by the x-axis, the line x = 1, and the curve y = x*
16. F = (4x — )i + (2x - 4y)j
C: Thecircle (x — 2 + (y — 2)2 = 4

I

|
it
.
I
=
Yt
|
=

C: The triangle bounded by y = 0,x = 3 ,and y
8. F=(x+y)i—-(x* + i
C: The triangle bounded by y = 0,x = 1, and y

Il
=

1]
=

9. F = (x + e*siny)i + (x + e*cosp)j Evaluating Line Integrals in the Plane
C: The right-hand loop of the lemniscate r* = cos 26 Apply Green’s Theorem to evaluate the integrals in Exercises 1720,
10. F = (lan_':;)i + In (x? +_v3_}j b7 %[}'z dx + x"‘d_v)

b

C: The boundary of the region defined by the polar coordinate C: The triangle bounded by x = 0,x + y = 1,y = 0

inequalities | = r =2, 0=0 =7

I1. Find the counterclockwise circulation and outward flux of the 18. f{lvdx + 2x dy)
field F = xyi + y% around and over the boundary of the region &
enclosed by the curves y = x® and y = x in the first quadrant, C: The boundary of 0 = x = 7,0 = y = sinx
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19. % (6y + x)dx + (y + 2x) dy

E.

C: Thecircle (x — 2> + (y — 3)* =4
20. f (2x + y¥) dx + (2xy + 3y) dy

C: Any simple closed curve in the plane for which Green’s Theorem
holds

Calculating Area with Green’s Theorem

If a simple closed curve C in the plane and the region R it encloses
satisfy the hypotheses of Green’s Theorem, the area of R is given by

Green’s Theorem Area Formula

Areaof R = 3 jg xdy — ydx (13)
C

The reason is that by Equation (3), run backward,

= AR e
ffd}-dx = /f(l + 2)(1} dx
R K
f ;1 dy — %y dx .

&

Area of R

Use the Green’s Theorem area formula (Equation 13) to find the
areas of the regions enclosed by the curves in Exercises 21-24.

21. Thecircler(t) = (acost)i + (asint)j, 0=1=27w
22. Theellipser(t) = (acost)i + (bsint)j,
23. The astroid r(f) = (cos’ 1)i + (sin’ 1)j,

24. The curve r(1) = 4 + ((¢£*/3) — 1)},
accompanying figure).

0=t=2n
0=t=<17
-V3 =1t=V3(see

1+ t>0

Theory and Examples

25. Let C be the boundary of a region on which Green’s Theorem
holds. Use Green’s Theorem to calculate

a, % flx)dx + gly) dy
¢

b. % ky dx + hx dy (kand h constants).
Z

26. Integral dependent only on area Show that the value of

%xy2 dx + (x% + 2x) dy

é
around any square depends only on the area of the square and not
on its location in the plane.

27. What is special about the integral

% 4’y dx + x* dy?
E—.
Give reasons for your answer.

28. What is special about the integral

% - _1-"1' dy + x2 dx?

Give reasons for your answer.

29, Area as a line integral Show that if R is a region in the plane
bounded by a piecewise-smooth simple closed curve C, then

Areaof R = %xdy = —f}'dx.
¢ &

30. Definite integral as a line integral Suppose that a nonnegative
function y = f(x) has a continuous first derivative on [a, b]. Let
C be the boundary of the region in the xy-plane that is bounded
below by the x-axis, above by the graph of f, and on the sides by

the lines x = a and x = b. Show that
b

flx)dx = —f y dx.
%

o

31. Area and the centroid Let A be the area and x the x-coordinate
of the centroid of a region R that is bounded by a piecewise-
smooth simple closed curve C in the xy-plane, Show that

1 2, R | AR
> .fx dy = fx_m dx = 3 fx dy — xydx = Ax.
i ¢

&

32. Moment of inertia Let /, be the moment of inertia about the
y-axis of the region in Exercise 31. Show that

-I.J,- %1"‘ dy = —fxly dx = % f dy — x*ydx = I,.
(‘.\ 4 {..

C




33. Green’s Theorem and Laplace’s equation Assuming that all
the necessary derivatives exist and are continuous, show that if
J(x, y) satisfies the Laplace equation

’*f 9
—{ + —); =0,
dx*  dy

then

af af
f a—vdx - ﬂ?dy =0
2
for all closed curves C to which Green’s Theorem applies. (The

B converse is also true: If the line integral is always zero, then f sat-
isfies the Laplace equation.)

34. Maximizing work Among all smooth simple closed curves in
the plane, oriented counterclockwise, find the one along which
the work done by

F = (%xz_v + %yl)i + _'Cj

is greatest. (Hint: Where is (curl F) « k positive?)

Regions with many holes Green's Theorem holds for a region
R with any finite number of holes as long as the bounding curves
are smooth, simple, and closed and we integrate over each com-
ponent of the boundary in the direction that keeps R on our imme-
diate left as we go along (Figure 16.37).

35

FIGURE 16,37 Green’s
Theorem holds for
regions with more than
one hole (Exercise 35).

a. Let f(x,y) = In (x* + »*) and let C be the circle
x* + y* = o Evaluate the flux integral

fo-nds.

&
b. Let K be an arbitrary smooth simple closed curve in the plane

1181
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that does not pass through (0, 0). Use Green’s Theorem to

show that
%V fends
K

has two possible values, depending on whether (0, 0) lies
inside K or outside K.

36. Bendixson’s criterion The streamlines of a planar fluid flow
are the smooth curves traced by the fluid’s individual particles.
The vectors F = M(x, y)i + M(x, y)j of the flow’s velocity field
are the tangent vectors of the streamlines. Show that if the flow
takes place over a simply connected region R (no holes or miss-
ing points) and that if M, + N, # 0 throughout R, then none of
the streamlines in R is closed. In other words, no particle of fluid
ever has a closed trajectory in R. The criterion M.+ N, #0is
called Bendixson’s criterion for the nonexistence of closed
trajectories.

37. Establish Equation (7) to finish the proof of the special case of
Green’s Theorem.

38. Establish Equation (10) to complete the argument for the exten-

sion of Green's Theorem.

39. Curl component of conservative fields Can anything be said
about the curl component of a conservative two-dimensional vec-
tor field? Give reasons for your answer.

40. Circulation of conservative fields Does Green’s Theorem give
any information about the circulation of a conservative field?
Does this agree with anything else you know? Give reasons for
YOur answer,

COMPUTER EXPLORATIONS
Finding Circulation

In Exercises 41 -44, use a CAS and Green's Theorem to find the coun-
terclockwise circulation of the field F around the simple closed curve
C. Perform the following CAS steps.

a. Plot Cin the xy-plane.

b. Determine the integrand (IN/ax) — (aM/ay) for the curl
form of Green’s Theorem.

¢. Determine the (double integral) limits of integration from
your plot in part (a) and evaluate the curl integral for the
circulation.
4L F = (2x — p)i + (x + 3p)j, C: Theellipse x? + 4y> = 4
2

2
9. F =27 = )i+ &2 +y, C Theellipse +2 = |

3. F=x""¢i+ (¢'Inx + 2x)j,

C: The boundary of the region defined by y = | + x* (below)
and y = 2 (above)

44. F = xe’i + 4x*Inyj,

C: The triangle with vertices (0, 0), (2,0), and (0, 4)
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Then
M, = f]zﬁda = 8[/z§dfi = BaffdA = Sa(mwd®) = éwa’
3 "R R
— M, - ma’d _a
T M 2ma?s 2
The shell’s center of mass is the point (0, 0, a/2). o

e W o K R

»

T SR

Surface Area

1. Find the area of the surface cut from the paraboloid x* + y* — z =
0 by the plane z = 2.

2. Find the area of the band cut from the paraboloid x* + y* — z =
0 by the planes z = 2and z = 6.

3. Find the area of the region cut from the plane x + 2y + 2z = 35
by the cylinder whose walls are x = yandx = 2 - y

4. Find the area of the portion of the surface x* — 2z = 0 that lies
above the triangle bounded by the lines x = \/3-,y = 0, and
y = x in the xy-plane.

5. Find the area of the surface x> — 2y — 2z = (0 that lies above the
triangle bounded by the lines x = 2,y = 0,and y = 3x in the xy-
plane.

6. Find the area of the cap cut from the sphere x> + y? + z* = 2by
thecone z = Vx? + y2

7. Find the area of the ellipse cut from the plane z = cx (c a con-
stant) by the cylinder x* + y* = 1.

8. Find the area of the upper portion of the cylinder x* + 2% = 1

that lies between the planes x = +1/2and y = +1/2.

Find the area of the portion of the paraboloid x = 4 — y* — z

that lies above thering 1 = y+ 22 < 4 in the yz-plane.

10. Find the area of the surface cut from the paraboloid x* + y + 27 =
2 by the plane y = 0.

11. Find the area of the surface x> — 2Inx + \/Ey — z = 0 above
thesquare R: 1 = x < 2,0 =y =< l,inthe xy-plane.

Find the area of the surface 2x*? + 2y»? — 3z = 0 above the
square R: 0 = x = 1,0 = y = |, in the xy-plane.

9 2

12,

Surface Integrals

13. Integrate g(x,y,z) = x + y + z over the surface of the cube cut
from the first octant by the planes x = a,y = a,z = a.

. Integrate g(x,y,z) = y + z over the surface of the wedge in the
first octant bounded by the coordinate planes and the planes
x=2andy+z=1

. Integrate g(x, y, z) = xyz over the surface of the rectangular solid
cut from the first octant by the planes x = a,y = b,andz = ¢.

Integrate g(x, y, z) = xyz over the surface of the rectangular solid
bounded by the planes x = *a,y = +b,and z = *c.

16.

17. Integrate g(x,y,z) = x +y + z over the portion of the plane

2x + 2y + z = 2 that lies in the first octant.

Integrate g(x,y,z) = xV y% + 4 over the surface cut from the
parabolic cylinder y% + 4z = 16 by the planes x = 0,x = 1,
andz = 0.

18.

Flux Across a Surface

In Exercises 19 and 20, find the flux of the field F across the portion
of the given surface in the specified direction.

19. F(x,y,2z) = =i + 2j + 3k

S: rectangularsurface z=10, 0=x=2 0=y= X
direction k
20. F(x,y,2) = yxii — 2j + xzk
S: rectangularsurface y =0, -l1<x=2 2s:z= 1,

direction —j

In Exercises 2126, find the flux of the field F across the portion of
the sphere x> + y? + z? = a” in the first octant in the direction away
from the origin.

21. F(x,y,z) = zk

23. Flx,y,z) =yi—xj+ k
25. Flx,y.z) = xi +yj + zk
o xit yj + 2k

Vi + _112 + 2

22. Flx,y,z) = —yi + xj
24. Flx,y,z) = zxi + zyj + 7k

—

26. F(x, 3,z




27. Find the flux of the field F(x,»,z) = 2% + xj — 3zk outward
through the surface cut from the parabolic cylinder z = 4 — y?
by the planes x = 0,x = 1,and z = 0.

28. Find the flux of the field F(x, ¥.z) = 4xi + 4yj + 2k outward
(away from the z-axis) through the surface cut from the bottom of
the paraboloid z = x? + y? by the plane z = 1.

29. Let § be the portion of the cylinder y = &* in the first octant that
projects parallel to the x-axis onto the rectangle R,: 1 = y < 2,
0=z = | in the yz-plane (see the accompanying figure). Let n
be the unit vector normal to S that points away from the yz-plane.
Find the flux of the field F(x,y,z) = —2i + 2yj + zk across §

in the direction of n.

30. Let S be the portion of the cylinder Yy = Inx in the first octant
whose projection parallel to the y-axis onto the xz-plane is the rec-
tangle R: | s x <el=<z;<|. Let n be the unit vector nor-
mal to S that points away from the xz-plane. Find the flux of
F = 2yj + zk through § in the direction of n,

31. Find the outward flux of the field F = Zoi + 2yzj + 2xzk
across the surface of the cube cut from the first octant by the
planesx = a,y = g,z = q.

32. Find the outward flux of the field F = xzi + yzj + k across the
surface of the upper cap cut from the solid sphere
2 +yr 2= by the plane z = 3.

Moments and Masses

33. Centroid Find the centroid of the portion of the sphere
x* + y? + 22 = g2 thatlies in the first octant,

Centroid Find the centroid of the surface cut from the cylinder

V+z22=922, by the planes x = 0 and x = 3 (resembles
the surface in Example 4),

34

35. Thin shell of constant density Find the center of mass and the
moment of inertia and radius of gyration about the z-axis of a thin
shell of constant density & cut from the cone 2 + yi-22=9
by the planes z = | and z = 2,

36

Conical surface of constant density Find the moment of iner-
tia about the z-axis of a thin shell of constant density & cut from
the cone 4x? + 4y? — 22 = ,; > by the circular cylinder
x? 4 p? = 2x(see the accompanying figure).

16.5 Surface Area and Surface Integrals 1 191

y

o ¥ =2
or
r=2cos#

37. Spherical shells

a. Find the moment of inertia about a diameter of a thin
spherical shell of radius a and constant density & . (Work with
a hemispherical shell and double the result.)

b. Use the Parallel Axis Theorem (Exercises 15.5) and the result
in part (a) to find the moment of inertia about a line tangent
to the shell.

38. a. Cones with and without ice cream  Find the centroid of the
lateral surface of a solid cone of base radius a and height A
(cone surface minus the base),

b. Use Pappus’s formula (Exercises 15 -5) and the result in part
(a) to find the centroid of the complete surface of a solid cone
(side plus base),

¢. A cone of radius @ and height 4 is joined to a hemisphere of
radius a to make a surface S that resembles an ice cream
cone. Use Pappus’s formula and the results in part (a) and
Example 5 to find the centroid of S. How high does the cone
have to be to place the centroid in the plane shared by the
bases of the hemisphere and cone?

Special Formulas for Surface Area

If §' is the surface defined by a function z = f(x, ) that has continu-
ous first partial derivatives throughout a region R,, in the xy-plane
(Figure 16.49), then S is also the level surface Fl(x, y,z) = 0 of the
function F(x, y, z) = f(x,y) = z. Taking the unit normal to R, to be
P = k then gives

IVFI = 1fd+ i -kl = VEZ+ ;74 1
IVEpl = (fd + fyi = 0K = |~1] =1

and

[ [T Tas
R R,
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Similarly, the area of a smooth surface x = f(y, z) over aregion R,. in

the yz-plane is
= // \.-"F 3 2+ ldvde, (12)
‘s

and the area of a smooth v = f(x, z) over a region R,. in the xz-plane
1s
A= // Vi2+ f2 4+ ldvde (13)
&

Use Equations (11)—(13) to find the area of the surfaces in Exercises

39-44.

39. The surface cut from the bottom of the paraboloid z = x4+ y?
by the plane z = 3

40. The surface cut from the “nose” of the paraboloid x = 1 — y* = z
by the yz-plane

41. The portion of the cone z = Vil + y
between the circle x2 + y?

Surface z = fix, y)

FIGURE 16.49 For a surface
z = f(x, y), the surface area
formula in Equation (3) takes

the form
2 that lies over the region ' —
= 1 and the ellipse 9x> + 4p? = 36 =; //'\/f_l-” + f,° + ldxdy.
in the xy-plane. (Hint: Use formulas from geometry to find the "R

area of the region.)

42. The triangle cut from the plane 2x + 6y + 3z = 6 by the bound-
ing planes of the first octant. Calculate the area three ways, once
with each area formula

43. The surface in the first octant cut from the cylinder y = (2/3)
by the planes x = 1 and y = 16/3
44, The portion of the plane y + z = 4 that lics above the region

L p

cut

from the first quadrant of the xz-plane by the parabola

x=4— z*

m Parametrized Surfaces

We have defined curves in the plane in three different ways:

Explicit form;

Implicit form:

y = f(x)
F(x,y) =10

Parametric vector form:  r(¢) = f(n)i + g(1)j, a=1=0b.
We have analogous definitions of surfaces in space:

z= flx,y)

Flx,y,z) = 0.

Explicit form:
Implicit form:

There is also a parametric form that gives the position of a point on the surface as a vector

function of two variables. The present section extends the investigation of surface area and
surface integrals to surfaces described parametrically.

Parametrizations of Surfaces

Let
riu.v) = flu v)i + glu, v)j + hlu, v)k 89

be a continuous vector function that is defined on a region R in the uv-plane and one-to-
one on the interior of R (Figure 16.50). We call the range of r the surface S defined or
traced by r. I:quatmn (l} together with the domain R constitute a parametrization of
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