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Finding Parametrizations for Surfaces

In Exercises 1-16, find a parametrization of the surface. (There are
many correct ways to do these, so your answers may not be the same
as those in the back of the book.)

1.

6

10.

12

13

14.

The paraboloid z = x* + y?,z = 4

2

. The paraboloidz = 9 — x? — yz=0

. Cone frustum The first-octant portion of lhe cone z =

3 2
Vx* + y°/2 between the planes z = Oandz = 3

. Cone frustum The portion of the cone z = = 2V x? +1

between the planes z = 2andz = 4

. Spherical cap The cap cut from the sphere x* + y*> + z2 =9

by the cone z = Vx? + y?

Spherical cap The portion of the sphere x* + y* + 2 = 4 in
the first octant between the xy-plane and the cone z = Vit + y?

. Spherical band The portion of the sphere x* + y? + z? = 3

between the planes z = \/I3/2 andz = —\/3/2

4 bpherlcal cap The upper portion cut from the sphere

2+ y? + 2 = 8 by the planez = —2

. Parabolic cylinder between planes The surface cut from the

parabolic cylinder z = 4 — 2 by the planes x = 0,x = 2, and

Parabolic cylinder between planes The surface cut from the
parabolic cylinder y = x? by the planes z = 0,z = 3and y = 2
2

Circular cylinder band The portion of the cylinder y* + 2% = 9
between the planes x = Oand x = 3

|
4=

Circular cylinder band  The portion of the cylinder x* + 2% =
above the xy-plane between the planes y = —2and y = 2
Tilted plane inside cylinder The portion of the plane x + y +

z=1

I

a. Inside the cylinder x? + y?

f

b. Inside the cylinder y* + 2% = 9

Tilted plane inside cylinder The portion of the plane
x—y+2=2

a. Inside the cylinder x* + z2 = 3
b. Inside the cylinder y* + z° = 2

. Circular cylinder band The portion of the cylinder (x — 2)* +

2% = 4 between the planes y = O and y = 3

Circular cylinder band The portion of the cylinder y* +
(z — 5)* = 25 between the planes x = O and x = 10

Areas of Parametrized Surfaces

In Exercises 1726, use a parametrization to express the area of the
surface as a double integral. Then evaluate the integral. (There are

many correct ways to set up the integrals, so your integrals may not be
the same as those in the back of the book. They should have the same
values, however.)

17. Titled plane inside cylinder The portion of the plane
v + 2z = 2 inside the cylinder x> + y? = 1

18. Plane inside cvlinder The portion of the plane z = —x inside
the cylinder x> + 2 =

19. Cone frustum The portion of the cone z = 2Vx? + 2
between the planes z = 2andz = 6

20. Cone frustum The portion of the cone z = Vx + /3
between the planes z = | and z = 4/3

21. Circular cylinder band The portion of the cylinder x* + y® = |
between the planesz = | andz = 4

22

.

Circular cylinder band The portion of the cylinder x* + 2° =
10 between the planes y = —land y = |

23. Parabolic cap The cap cut from the paraboloid z = 2 — x? — 2

by the cone z = Vx? + y?

24. Parabolic band The portion of the paraboloid z = x? + ,?
between the planes z = landz = 4

25. Sawed-nﬂ' sphere The lower portion cut from the sphere
x*+y*+z'=2bytheconez = Vi + y?
26. Spherical band The portion of the sphere x* + y? + 22 = 4

between the planes z = —1 and z = V3

Integrals Over Parametrized Surfaces

In Exercises 27-34, integrate the given function over the given sur-

face.

27. Parahollc cylinder G(x, y,z) = x, over the parabolic cylinder
y=x0=x=20=:=<3

28. Circular cylinder G(x, y,z) = z, over the cylindrical surface
V+zl=4z=201=<x<4

29. Sphere G(x,y,z) = x? over the unit sphere x> + y2 + 22 = |

30. Hemisphere Gf(x, y,z) = z%, over the hemisphere x* + y2 +
2=qg2z20

31. Portion of plane F(x,y,z) = z, over the portion of the plane
r*+y+tz=4 that lies above the square 0=y s |,
0 =y = 1, in the xy-plane

32. Cone Fl(x,y,z) =z —x, over the cone z= Vi’ + 2
0=z=1

33. Parabolic dome Hix,y,z

) = x2V/5 — 4z, over the parabolic
domez=1-x*—-yl:=

< |l

34. bpherlcal cap H(x,y,z) = yz, over the part ut the sphere
x* + p* + 22 = 4 that lies above the cone z = = Vil + oy
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Flux Across Parametrized Surfaces _

In Exercises 35-44, use a parametrization to find the flux j]sF ‘ndo

across the surface in the given direction.

35. Parabolic cylinder F = z%i + xj — 3zk outward (normal away
from the x-axis) through the surface cut from the parabolic cylinder
z=4— y*bytheplanesx = 0,x = 1, andz = 0

36. Parabolic cylinder F = x’j — xzk outward (normal away
from the yz-plane) through the surface cut from the parabolic
cylinder y = x%, =1 =x < 1,bytheplanesz = Oandz = 2

37. Sphere F = zk across the portion of the sphere x* + y? +
22 = ” in the first octant in the direction away from the origin

38. Sphere F = xi + yj + zkacross the sphere x* + y? + z2 = @2

in the direction away from the origin

Plane F = 2xyi + 2yzj + 2xzk upward across the portion of

the plane x +y+ z=2 that lies above the square

0=x=a0=y=a,inthe xy-plane

39

40. Cylinder F = xi + yj + zk outward through the portion of the
cylinder x*> + y? = 1 cut by the planes z = Oand z = a

41. Cone F = xyi — zk outward (normal away from the z-axis)
through the conez = Vx? + 33 0=z =< |

42. Cone F = y% + xzj — k outward (normal away from the z-
axis) through the cone z = 2Vx? + y2, 0 =z < 2

43. Cone frustum F = —xi — yj + z°k outward (normal away
from the z-axis) through the portion of the cone z = V? + )2
between the planesz = landz = 2

44. Paraboloid F = 4xi + 4yj + 2k outward (normal way from
the z-axis) through the surface cut from the bottom of the parabo-
loid z = x? + 2 by the plane z = |

Moments and Masses

45. Find the centroid of the portion of the sphere x> + y? + 22 = 4
that lies in the first octant.

=

46. Find the center of mass and the moment of inertia and radius of
gyration about the z-axis of a thin shell of constant density § cut
from the cone x* + y? — 22 = O by the planesz = 1 and z = 2.

47. Find the moment of inertia about the z-axis of a thin spherical
shell x* + y? + 22 = 4? of constant density 5.
48. Find the moment of inertia about the z-axis of a thin conical shell

=

z=Vx?+ %0 = z = |, of constant density 8.

Planes Tangent to Parametrized Surfaces

The tangent plane at a point Pyl f(uq, vo), glug, vy), hlug, vg)) on a
parametrized surface r(u, v) = f(u, v)i + glu, v)j + h(u, v)k is the
plane through Py normal to the vector r,(ug, vg) X ry(ug, vg), the
cross product of the tangent vectors r,(ug, vg) and ry(ug, vo) at Py. In
Exercises 4952, find an equation for the plane tangent to the surface
at Py. Then find a Cartesian equation for the surface and sketch the
surface and tangent plane together.

49. Cone The cone r(r,8) = (rcos@)i + (rsinf)j + rk,r = 0,
0 =46 =27 at the point Pn( V2, \/52) corresponding to
(r,0) = (2,7/4)

50. Hemisphere The hemisphere surface r(¢h, ) = (4 sin ¢ cos 8)i
+ (4singsinb)j + (4cosp)k, 0 = ¢ = 7/2,0 = 0 = 27, at
the point P[](\/i. V2, 2\/3) corresponding to (¢, 0) =
(w/6,m/4)

51, Circular cylinder The circular cylinder r(6, z) = (3 sin20)i +
(6sin*6)j + zk,0 < 6 =< 7, at the point Po(3V/3/2,9/2,0)
corresponding to (6, z) = (m/3, 0) (See Example 3.)

52. Parabolic cylinder The parabolic cylinder surface r(x, y) =
xi+yj — x’k, —00 < x < 00,-00 < y < 00, at the point
Py(1, 2, —1) corresponding to (x, y) = (1, 2)

Further Examples of Parametrizations

53. a. A torus of revolution (doughnut) is obtained by rotating a circle
Cin the xz-plane about the z-axis in space. (See the accompa-
nying figure.) If C has radius » > 0 and center (R, 0, 0), show
that a parametrization of the torus is

r(u,v) = ((R + rcosu)cos v)i

+ ((R + rcosu)sinv)j + (rsinu)k,

where 0 = u = 27 and 0 = v = 27 are the angles in the
figure.

b. Show that the surface area of the torus is 4 = 47Rr-




54. Parametrization of a surface of revolution Suppose that the
parametrized curve C: (f(u), g(w)) is revolved about the x-axis,
where g(u) > Ofora=u<=0».

a. Show that

r(u,v) = f(u)i + (g(u)cos v)j + (glu)sin v)k

is a parametrization of the resulting surface of revolution,
where 0 = v < 277 is the angle from the xy-plane to the point
r(u, v) on the surface. (See the accompanying figure.) Notice
that f(u) measures distance along the axis of revolution and
g(1) measures distance from the axis of revolution.
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b. Find a parametrization for the surface obtained by revolving
the curve x = y%,y = 0, about the x-axis.

. a. Parametrization of an ellipsoid Recall the parametrization

x = acosf,y = bsin6, 0 = 6 = 2 for the ellipse
(x*/a®) + (7/b?) = 1 (Section 3.5, Example 13). Using the
angles § and ¢ in spherical coordinates, show that

r(8. &) = (acos@cos )i + (bsinfcosd)j + (csing)k

is a parametrization of the ellipsoid (x?/a?) + (y*/b?) +
(z¥/c?) = 1.

b. Write an integral for the surface area of the ellipsoid, but do

not evaluate the integral.

¥

56. Hyperboloid of one sheet

a. Find a parametrization for the hyperboloid of one sheet
(flu), gu), 0) x? 4+ p? = z% = | in terms of the angle 6 associated with
W the circle x2 + y* = r? and the hyperbolic parameter u
associated with the hyperbolic function r? =z = 1. (See
Section 7.8, Exercise 84.)

b. Generalize the result in part (a) to the hyperboloid
(F/a?) + (/) - (Z/) = 1.
57. (Continuation of Exercise 56.) Find a Cartesian equation for the

x plane tangent to the hyperboloid x* + y* — z* = 25 at the point
(x0, yo, 0), where Xt + ynz = 25.
s 58. Hyperboloid of two sheets Find a parametrization of the

hyperboloid of two sheets (2/c?) — (Z/a®) = (#/b?) = L.

Stokes’ Theorem

16.7

As we saw in Section 16.4, the circulation density or curl component of a two-dimensional
field F = Mi + Nj at a point (x, y) is described by the scalar quantity (IN/dx — aM/ay).
In three dimensions, the circulation around a point P in a plane is described with a vector.
This vector is normal to the plane of the circulation (Figure 16.59) and points in the
direction that gives it a right-hand relation to the circulation line. The length of the vector
gives the rate of the fluid’s rotation, which usually varies as the circulation plane is tilted
about P. It turns out that the vector of greatest circulation in a flow with velocity field
F = Mi + Nj + Pk s the curl vector

_ (P _aN\. , (aM _aP). , (N _aM
b= (LW (WP, (-2 0
We get this information from Stokes’ Theorem, the generalization of the circulation-curl
form of Green’s Theorem to space.

Notice that (curl F)<k = (dN/ax — dM/dy) is consistent with our definition in

Section 16.4 when F = M(x, )i + N(x, y)j. The formula for curl F in Equation (1) is
often written using the symbolic operator

Curl F
)

FIGURE 16.59 The circulation vector at
a point P in a plane in a three-dimensional
fluid flow. Notice its right-hand relation to
the circulation line.

T R )
V_lax+]6y+k (2)

dz'
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FIGURE 16.68 In a simply connected
open region in space, differentiable curves
that cross themselves can be divided into
loops to which Stokes’ Theorem applies.
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A ooy every differentiable simple closed curve C in a simply connected open region D is the
A boundary of a smooth two-sided surface S that also lies in D. Hence, by Stokes’ Theorem,

¢ Fe-dr = //V X Frndo = 0.
{'_., ':5,

The second step is for curves that cross themselves, like the one in Figure 16.68. The
idea is to break these into simple loops spanned by orientable surfaces, apply Stokes’
Theorem one loop at a time, and add the results. =

The following diagram summarizes the results for conservative fields defined on

connected, simply connected open regions.

Theorem |,
Section 16.3

F conservative

onD
Theorem 2,
Section 13.3
yg Fedr=20 <
C

over any closed
path in D

<—> F=VfonD

Vector identity (Eq. 8)
(continuous second
partial derivatives)

V X F = 0 throughout D

Theorem 6

Domain's simple
connectivity and
Stokes' theorem

Using Stokes’ Theorem to Calculate Circulation
In Exercises 1-6, use the surface integral in Stokes’ Theorem to
calculate the circulation of the field F around the curve C in the
indicated direction.
LF=x%+2j+2%
C: The ellipse 4x* + y* = 4 in the xy-plane, counterclockwise
when viewed from above
2 F=2i+3j-2%
C: The circle x* + y* = 9 in the xy-plane, counterclockwise
when viewed from above
3. F=yi+xj+xk
C: The boundary of the triangle cut from the planex + y + z = 1
by the first octant, counterclockwise when viewed from above
4L F=0"+29+ 2 +29 + (2 + y)k
C: The boundary of the triangle cut from the plane

x +y+z=1 by the first octant, counterclockwise when
viewed from above

S. F=(p +20i+ (2 + pHj + (x* + y))k
C: The square bounded by the lines x = +1 and y = +1 in the
xy-plane, counterclockwise when viewed from above

6. F=x%% +j+ zk

C: The intersection of the cylinder x> + y?> =4 and the
hemisphere x* + y* + 22 = 16,z = 0, counterclockwise
when viewed from above.

Flux of the Curl

7. Let n be the outer unit normal of the elliptical shell

S: 4x® + 9y + 3622 = 36, z=0,

and let

F=yi+x+ &+ y) sineV”k

[/VX F-ndo,

5

Find the value of

(Hint; One parametrization of the ellipse at the base of the shell is
x =3cost,y=2sint,0 =t = 27.)

8. Let n be the outer unit normal (normal away from the origin) of
the parabolic shell

S 4xl+y+2t=4, v =0,
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10.

1L

12,
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and let

([ 1. Lo 1
l*—(z+2+x)|+{tan ".)J+(X+4+z)k'

Find the value of
// V X F'ndo.

. Let § be the cylinder x* + y? = a%,0 = z < h, together with its

top, x> + y? = a*.z = h.LetF = —yi + xj + x’k. Use Stokes’
Theorem to find the flux of V X F outward through S.

Evaluate
//v X (yi)*ndor,
s

q

where § is the hemisphere x> + y? + z2 = 1,z = 0.

Flux of curl F Show that

f V X Fndo

5
has the same value for all oriented surfaces § that span C and that
induce the same positive direction on C,

Let F be a differentiable vector field defined on a region containing
a smooth closed oriented surface S and its interior. Let n be the unit
normal vector field on S. Suppose that S is the union of two
surfaces S) and S, joined along a smooth simple closed curve C.
Can anything be said about

f/v X F-ndo?
s

Give reasons for your answer.

Stokes’ Theorem for Parametrized Surfaces

In Exercises 1318, use the surface integral in Stokes’ Theorem to
calculate the flux of the curl of the field F across the surface S in the
direction of the outward unit normal n.

13.

14,

15.

16.

F =2z + 3xj + 5k
S: r(r,08) = (rcos@)i + (rsin®)j + (4 — ri)k,
O0=r=2 0=0=27

F=@(-zli+(z—x)j+ (x+2z)k

8. r(r,0) = (rcosB)i + (rsinf)j + (9 = r)k,
O0=sr=3 0=0=2r

F = x%i + 2)°zj + 3zk

St r(r,0) = (rcosB)i + (rsin@)j + rk,
0=r=1l, 0=0=27w
F=x—pyi+(y—2)j+z—xk

S r(r,0) = (rcos@)i + (rsin@)j + (5 — rlk,
0=sr=5 0=6=<2r7

17.

18.

F=3yi+(5—22))+ (2 -2k

S: r(d,8) = (\/gsimflcosﬁ)i + (\/Gsinqbsinﬁ]j +
(V3cosd)k, 0<d=m/2, 0<6<2n
F=)%+25+axk

S: r(¢,0) = (2sindpcosB)i + (2singsinB)j + (2 cos p)k,
0=¢=x/2, 0=0=2nm

Theory and Examples

19.

20.

21.

22,
23,

Zero circulation Use the identity V X Vf = 0 (Equation (8) in
the text) and Stokes’ Theorem to show that the circulations of the
following fields around the boundary of any smooth orientable
surface in space are zero.

a. F =2+ 2yj + 22k

b. F = V(xy’?)

¢. F=YV X (xi +yj+ zk)

d F=Vf

Zero circulation Let f(x,y,z) = (x> + y> + z%) "2 Show

that the clockwise circulation of the field F = Vf around the
circle x2 + y*> = a” in the xy-plane is zero

a. bytakingr = (acos?)i + (asin¢)j, 0 = ¢ = 27, and
integrating F - dr over the circle.

b. by applying Stokes’ Theorem.

Let C be a simple closed smooth curve in the planc
2¢ + 2y + z = 2, oriented as shown here. Show that

nydx+ 3zdy — xdz
&

2x+2y+ 2=

depends only on the area of the region enclosed by C and not on
the position or shape of C.

Show that if F = xi + yj + zk,then V X F = 0.

Find a vector field with twice-differentiable components whose
curl is xi + yj + zKk or prove that no such field exists.

24. Does Stokes’ Theorem say anything special about circulation in 2

field whose curl is zero? Give reasons for your answer.

25. Let R be a region in the xy-plane that is bounded by a piecewis¢”

smooth simple closed curve C and suppose that the moments of
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inertia of R about the x- and y-axes are known to be /, and /.. is zero but that
Evaluate the integral
jg F-dr
% V(r*)-nds, 2
¢ ' = ) 1 ‘) .
—_—— i1s not zero if C is the circle x* + y* = 1 in the xy-plane. (Theo-
where r = Vx* + y% in terms of /; and ,. rem 6 does not apply here because the domain of F is not simply
26. Zero curl, yet field not conservative Show that the curl of connected. The field F is not defined along the z-axis so there is
no way to contract C to a point without leaving the domain of F.)
25y .
F=—"—i+—"—j+zk
R L

16.8 The Divergence Theorem and a Unified Theory

The divergence form of Green’s Theorem in the plane states that the net outward flux of a
vector field across a simple closed curve can be calculated by integrating the divergence of
the field over the region enclosed by the curve. The corresponding theorem in three
dimensions, called the Divergence Theorem, states that the net outward flux of a vector field
across a closed surface in space can be calculated by integrating the divergence of the field
1 over the region enclosed by the surface. In this section, we prove the Divergence Theorem
i and show how it simplifies the calculation of flux. We also derive Gauss’s law for flux in an
electric field and the continuity equation of hydrodynamics. Finally, we unify the chapter’s
f vector integral theorems into a single fundamental theorem.

A.’

Divergence in Three Dimensions

{ The divergence of a vector field F = M(x, y, 2)i + N(x, y,z)j + P(x, ¥, z)k is the scalar

15 function
ivF=V.F=M_ 0N _ 0oP
! divF =V F_&x+6{v a7 (1)
The symbol “div F” is read as “divergence of F” or “div F.” The notation V - F is read “del
dot F.”
3 Div F has the same physical interpretation in three dimensions that it does in two. If F

is the velocity field of a fluid flow, the value of div F at a point (x, y, z) is the rate at which
fluid is being piped in or drained away at (x, y, z). The divergence is the flux per unit volume
| or flux density at the point.

EXAMPLE 1  Finding Divergence

Find the divergence of F = 2xzi — xyj — zk.
! Solution  The divergence of F is

i BBl e Befiacmibas Bl e
VF—&r(Zx..)+ay( xy]+az( 2)=2z—x—1, [
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The Fundamental Theorem of Calculus, the normal form of Green’s Theorem, and the Di-
vergence Theorem all say that the integral of the differential operator V- operating on a
field F over a region equals the sum of the normal field components over the boundary of
the region. (Here we are interpreting the line integral in Green’s Theorem and the surface
integral in the Divergence Theorem as “sums” over the boundary.)

Stokes’ Theorem and the tangential form of Green’s Theorem say that, when things
are properly oriented, the integral of the normal component of the curl operating on a field
equals the sum of the tangential field components on the boundary of the surface,

The beauty of these interpretations is the observance of a single unifying principle,
which we might state as follows.

region.

The integral of a differential operator acting on a field over a region equals the
sum of the field components appropriate to the operator over the boundary of the

 EXERCISES 16.8

Calculating Divergence
In Exercises 1—4, find the divergence of the field.
1. The spin field in Figure 16.14.
2. The radial field in Figure 16.13.
3. The gravitational field in Figure 16.9.
4. The velocity field in Figure 16.12.

Using the Divergence Theorem to Calculate
Outward Flux

In Exercises 5-16, use the Divergence Theorem to find the outward
flux of F across the boundary of the region D.

5. Cube

F=(-xi+z-pjit+(-xk
D: The cube bounded by the planes x = +1,y = +1, and
z = +1

6. F=x%+ % + 2%

a. Cube D: The cube cut from the first octant by the planes
xr=Ly=1l,andz =1
b. Cube D: The cube bounded by the planes x = +1,
y==l,andz = +1
¢, Cylindrical can D: The region cut from the solid cylinder
x% + y? < 4 by the planes z = 0 and

= 1

7. Cylinder and paraboloid F = yi + xyj — zk

D: The region inside the solid cylinder x* + »* = 4 between the
plane z = 0 and the paraboloid z = x? + y?

10.

11,

12.

13.

14.

15.

16.

. Sphere F = x% + xzj + 3zk

D: The solid sphere x2 + y? + 22 < 4

. Portion of sphere F = x%i — 2xf + 3xzk

D: The region cut from the first octant by the sphere x? + y? +
2
z-=4

Cylindrical can F = (6x? + 2xy)i + (2y + x%2)j + 4x%°k

D: The region cut from the first octant by the cylinder x* + y* =
4 and the plane z = 3

Wedge F = 2uzi — xyj — 2%k

D: The wedge cut from the first octant by the plane y +z = 4
and the elliptical cylinder 4x? + y? = 16

Sphere F = x%i + y%j + 2’k

D: The solid sphere x* + y* + z* < a*

Thick sphere F = Vx* + y? + 2% (xi + yj + zk)

D: Theregionl = x* + y? + 22 =2

Thick sphere F = (xi + yj + zk)/Vx? + y? + 27

D: Theregionl = x? + 2 + 22 =4

Thick sphere F = (5x7 + 1202 + (y* + ’sinz)j +

(521 + e’ cosz)k

D: The solid region between the spheres x> + y? + z2 = | and
xg = o _1-'2 + 22 =2

Thick cylinder F = In (x> + y?)i — (Z; m""}')j -

9 3
zVx* + y°k

D: The thick-walled cylinder 1 = x> + 2 =2, —-1=z<2




e —

Properties of Curl and Divergence
17. div (curl G) is zero

a. Show that if the necessary partial derivatives of the compo-
nents of the field G = Mi + Nj + Pk are continuous, then
V: VX G=0.

b. What, if anything, can you conclude about the flux of the
field V X G across a closed surface? Give reasons for your
answer,

18. Let F, and F, be differentiable vector fields and let a and b be

arbitrary real constants. Verify the following identities.
a. V-(aF, + bF,) = aV-F, + bV F;

b. V X (aF; + bF;) = aV X F, + bV X F:

¢. V-(FiXF,)=F,VXF —F VX F;

19. Let F be a differentiable vector field and let g(x, y, z) be a differ-

entiable scalar function. Verify the following identities.
a. V- (gF) = gV+F + Vg-F
b. VX (gF) =gV XF+ Vg xF

20. If F = Mi + Nj + Pk is a differentiable vector field. we define

the notation F+ V to mean

d d d
‘Mﬂx + Nr’iy F Pﬂz'

For differentiable vector fields F, and F,, verify the following
identities,

a VX (F XF)=(FV)F - (F*V)F; + (V:Fy)F, -
(V-F))F,

b. V(F|'Fg] = (F-V)F; + (F;}_‘V]F] + F) X (VX F) +
Fa X (VXF)

Theory and Examples

21.

22,

Let F be a field whose components have continuous first partial
derivatives throughout a portion of space containing a region D
bounded by a smooth closed surface S, If |F| =1, can any
bound be placed on the size of

[frror

D

Give reasons for your answer.

The base of the closed cubelike surface shown here is the unit
square in the xy-plane. The four sides lie in the planes
X=0,x=1y=0,andy = . The top is an arbitrary smooth
surface whose identity is unknown. Let F = xi — 2 + (z + 3)k
and suppose the outward flux of F through side A is 1 and through
side B is —3 . Can you conclude anything about the outward flux
through the top? Give reasons for yOur answer.

23.

24.

25.

26.

27.
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a. Show that the flux of the position vector field F =
xi + yj + zk outward through a smooth closed surface S is
three times the volume of the region enclosed by the surface.

b. Let n be the outward unit normal vector field on . Show that

it is not possible for F to be orthogonal to n at every point of
S.

Maximum flux Among all rectangular solids defined by the
inequalities 0 < x <a,0<y=50=z= 1, find the one
for which the total flux of F = (—x2 — dxy)i — 6yzj + 122k
outward through the six sides is greatest. What is the greatest
flux? '

Volume of a solid region Let F = xi + ¥j + zk and suppose
that the surface S and region D satisfy the hypotheses of the
Divergence Theorem. Show that the volume of D is given by the

formula
Volume of D = %[/F-nda-.

§
Flux of a constant field Show that the outward flux of a
constant vector field F = C across any closed surface to which
the Divergence Theorem applies is zero.

Harmonic functions A function f(x, y, z) is said to be har-
monic in a region D in space if it satisfies the Laplace equation
*f P P
VY =Ve9f=S gty -L g
/ / ax? ayt a8zl
throughout D.

a. Suppose that f is harmonic throughout a bounded region D
enclosed by a smooth surface § and that n is the chosen unit
normal vector on S. Show that the integral over S of Vfen,
the derivative of f in the direction of n, is zero.

b. Show that if f is harmonic on D, then

[/f'?f-ndﬂ: [/ |VfI2av.
D

5
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28. Flux of a gradient field Let § be the surface of the portion of

Chapter 16: Integration in Vector Fields

the solid sphere x? + y? + z% < 47 that lies in the first octant
and let f(x,3,z) = InVx? + »? + 22 Calculate

f/ Vf-ndo.
M

(Vf - nis the derivative of f in the direction of n.)

29. Green’s first formula  Suppose that f and g are scalar functions

30. Green’s second formula

kIR

with continuous first- and second-order partial derivatives
throughout a region D that is bounded by a closed piecewise-
smooth surface S. Show that

//”g'"d" ) ///‘f Vig+ Vi-Vg)aV.  (9)
hy D

Equation (9) is Green’s first formula. (Hint: Apply the Diver-
gence Theorem to the field F = f Vg.)

(Continuation of Exercise 29.) Inter-
change f and g in Equation (9) to obtain a similar formula. Then
subtract this formula from Equation (9) to show that

//U Vg - gVf) ndo = // (f Vg — gVifrdv. (10)
5 D

This equation is Green’s second formula.

Conservation of mass Let v(1,x, y,z) bea continuously differ-

“entiable vector field over the region D in space and let p(r, x, y, z)

be a continuously differentiable scalar function. The variable 1
represents the time domain. The Law of Conservation of Mass
asserts that

%///P(Lx.y.z}di’= _//;?V'nd{r,
y:h Y

where S is the surface enclosing D.

LF S
L

a. Give a physical interpretation of the conservation of mass law
if v is a velocity flow field and p represents the density of the
fluid at point (x, y, z) at time 1.

b. Use the Divergence Theorem and Leibniz’s Rule,

1 : fap
é;.[[/]J{r.x,'i'.szV = ./]/-a—fdi.
D

D
to show that the Law of Conservation of Mass is equivalent to the
continuity equation,

ap
Vepy + T 0.
(In the first term V- pv, the variable ¢ is held fixed, and in the
second term dp/dz , it is assumed that the point (x, y, z) in D is
held fixed.)

The heat diffusion equation Let 7{t, x, y, z) be a function with
continuous second derivatives giving the temperature at time 7 at
the point (x, v, z) of a solid occupying a region D in space. If the
solid’s heat capacity and mass density are denoted by the con-
stants ¢ and p , respectively, the quantity cpT is called the solid’s
heat energy per unit volume.

a. Explain why —VT points in the direction of heat flow.

b. Let —kVT denote the energy flux vector. (Here the constant
k is called the conductivity.) Assuming the Law of
Conservation of Mass with —kV7 = v and ¢pT = p in
Exercise 31, derive the diffusion (heat) equation

oT

— 2
) = KV-T,

where K = k/(cp) > 0 is the diffusivity constant. (Notice
that if 7{1, x) represents the temperature at time ¢ at position x
in a uniform conducting rod with perfectly insulated sides,
then V2T = 4*T/dx” and the diffusion equation reduces to the
one-dimensional heat equation in Chapter 14’s Additional
Exercises.)

Chapter
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- What are line integrals? How are they evaluated? Give examples.

. How can you use line integrals to find the centers of mass of

springs? Explain.

. What is a vector field? A gradient field? Give examples.

» How do you calculate the work done by a force in moving a particle

along a curve? Give an example.

. What are flow, circulation, and flux?

What is special about path independent fields?

How can you tell when a field is conservative?

Questions to Guide Your Review

10.
I1.
12.
13.

. What is a potential function? Show by example how to find a po-

tential function for a conservative field.

. What is a differential form? What does it mean for such a form to

be exact? How do you test for exactness? Give examples.

What is the divergence of a vector field? How can you interpret it?
What is the curl of a vector field? How can you interpret it?
What is Green's theorem? How can you interpret it?

How do you calculate the area of a curved surface in space? Give
an example.




