Math 22A Kouba Vectors in IR2, IR3, and IR"

DEFINITION 3 If $\mathbf{v} = (v_1, v_2, \dots, v_n)$ and $\mathbf{w} = (w_1, w_2, \dots, w_n)$ are vectors in \mathbb{R}^n , and if k is any scalar, then we define

$$k\mathbf{v} = (kv_1, kv_2, \dots, kv_n) \tag{11}$$

$$-\mathbf{v} = \overbrace{(-v_1, -v_2, \dots, -v_n)} \tag{12}$$

$$\mathbf{w} - \mathbf{v} = \mathbf{w} + (-\mathbf{v}) = (w_1 - v_1, w_2 - v_2, \dots, w_n - v_n)$$
 (13)

THEOREM 3.1.1 If u, v, and w are vectors in \mathbb{R}^n , and if k and m are scalars, then:

(a)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

(b)
$$(u + v) + w = u + (v + w)$$

(c)
$$u + 0 = 0 + u = u$$

(d)
$$u + (-u) = 0$$

(e)
$$k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$$

$$(f) \quad (k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$$

(g)
$$k(m\mathbf{u}) = (km)\mathbf{u}$$

$$(h) \quad 1\mathbf{u} = \mathbf{u}$$

THEOREM 3.1.2 If v is a vector in \mathbb{R}^n and k is a scalar, then:

(a)
$$0v = 0$$

(b)
$$k0 = 0$$

$$(c)_{-1}(-1)v = -v$$