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Add —3 times the first equation to the third to Add —3 times the first row to the third to obtain

obtain

x+ y+ 2z= 9

2y— 7z=—17

— liz = —27

Multiply the second equation by to obtain

x+ y+ 2z= 9
7__ I?

— ‘
—

— liz = —27

1 1 2 9

o 2 —7 —17

o 3 —11 —27

Multiply the second row by to obtain

I I 2 9

II i 7 U
2 2

0 3 —11 —27

The solution in this example
can also be expressed as the or
dered triple (1,2,3) with the
understanding that the num
bers in the triple are in the
same order as the variables in
the system, namely, .r, y, z.

Add —3 times the second equation to the third Add —3 times the second row to the third to

ExerCise Set 1.1
I. In each part, determine whether the equation is linear in x1, 2. in each part, determine whether the equation is linear in x

i, and x3. and y.

(a) x1 + 5x3 — V’5X1 = I (b) x1 + 3x2 + X1X3 = 2

to obtain

x+y+2z= 9
7

y
— —

I.. 3
— 5’ — _5

Multiply the third equation by —2 to obtain

x+y+2z= 9
7__ 17

— ‘ —

z= 3

Add —l times the second equation to the first
to obtain

— 35
X T’ 7

7,. 17
Y 2’ 2

2= 3

Add — times the third equation to the first

and times the third equation to the second to

obtain
x =1

y =2

z=3

The solution x = 1. y = 2, z = 3 is now evident. I

obtain

I 1 2 9
o 7 17

2 2

o o — —

MultipI the third row by —2 to obtain

I I 2 9

0 i 7 7
2 2

o o 1 3

Add—I times the second row to the first to
obtain

II 35

o i 17
2 2

o 0 1 3

Add — times the third row to the first and
times the third row to the second to obtain

1 0 0 1

o 1 0 2

o 0 I 3

(c) X1 = —7x2 + 3x3

(a) 2113x + s/Iy =

(d) Xj +X2 + Ru = 5 (c) cos (t)X —
= Iog3

(1) ni — i5’x1 = 71/3

(b) 2XV + 3/7 = I

(d) cosu—4y=O

(e) X’ —2x---X =4 (e) xy = (1) y — 7 = x
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3. UsingthenotationofFormula(7), writedownagenerallinear (a) (, [ I) (b) (, , 0) (c) (5,8, I)

system of
(5 10 2) (e) (5(a) two equations in two unknowns.

(d) --. 5, —

(b) three equations in three unknowns. 11. In each part, solve the linear system, if possible, and use the

(c) two equations in four unknowns, result to determine vhether the lines represented by the equa

tions in the system have zero, one, or infinitely many points of

4. Write down the augmented matrix for each of the linear sys- intersection. If there is a single point of intersection, give its

tems in Exercise 3. coordinates, and if there are infinitely many, find parametric

In each part of Exercises - 6, find a linear system in the un- equations for them.

knowns x1 • x2, x3,..., that corresponds to the given augmented (a) Zr
—

2y = 4 (b) Zr
—

4y = I (c) x — 2y = 0

matrix. 6x—4y=9 4x—8y=2 x—4y=8

r2 ol F3 0—2 s1
12. Under what conditions on a and b will the following linear

5. (a) 3 —4 0 (b) 7 1 system have no solutions, one solution, infinitely many solu

i ij [o —2 I 7j tions?
it

-
= a

ro 3 —l —l —I] 4x—6y=b
6. (a) ,5 2 0 —3 _6j In each part of Exercises 13—13, use parametric equations to

describe the solution set of the linear equation. ‘4r o I —4 3]

1—4 0 4 I —31 13(a) 7x—5y3
(b) I_I 3 0 2 —91 (b)3x1 —5x,+4x37

[ 0 0 0 —I (c) —8x1 + Zr, — 5i + 6x. = 1

In each part of Exercises 7—H, find the augmented matrix for (d) 3v — 8w ± Zr
—

y + 4z = 0

the linear system.
14. (a) x + IGy = 2

7. (a) —Zr1= 6 (b)6x1 — x’+3x3=4

3x1= 8 It2— x3l (b)xj+3x2—12x23

9x1 = —3 (c) 4x1 +2x, + Zr3 = 20

(c) 2x2 —3x4+ X5= 0 (d)v+w+x—5y+7z=0

—it1 — x2+xj
6x1 + 2x2 — x3 + 2X4 — 3x5 = 6 In Exercises 15—16, each linear system has infinitely many so

lutions. Use parametric equations to describe its solution set.

8. (a) it1 — Zr’ = —l (b) 2x1 + Zr3 = I 15. (a) 2x
—

3y =

4x1 + It = 3 it1 — x2 + 4x3 = 7 6x — 9v = 3
Th1 +3x2 = 2 6x1 +X2 — .t, =0

(b) x1--3x1— x3= —4
(c) x1 =1 it1 ±9x2—3x3—12

=2 —x1—3x’+ x= 4
X3 =3

9. In each part, determine whether the given 3-tupleis a solution 16 (a) 6x1 ± Zr1 = —s (b) Zr
—

y + 2z = —4

ofthelinearsystem 3x1+ x=—4 6x—3y-,-6:=—12
—4.r+2v—4z= 8

Zr1 —4x2 — x1 = I
— 3x2 + .r3 = 1 In Exercises 17—Ill, find a single elementary row operation that

4 Zr1 — Sx — Zr3 = I will create a I in the upper left corner of the given augmented ma

trix and will not create any fractions in its first row.
(a) (3,1,1) (b) (3, —1,1) (c) (13,5,2)

(d) (#,,2) (e) (I7,7,5) r— —l 2 1 Fo —l —s o]

r 17.(a) 2 —3 3 2 (b) 12 —9 3 2
10. In each part, determine whether the given 3-tuple is a solution L o 2 —3 lJ [1 4 —3 3J

of the linear system

x1-2y—2z3 F 2 4 —6 81 r —4 —2 21

5X— y+ ZI l8,(a) 7 I 4 (b) I 3 1 8 Ii
—x±5y—5:=’S [—s 4 2 7J L—6 3 —l 4J
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In Exercises 19—20, find all values of k for which the given

auQmented matrix corresponds to a consistent linear system.

19. (a) 1] (b)

21. The curve y = as2 ± bx + r shown in the accompanying fig
ure passes through the points (x1, yl), (x2, Y2), and (a3, y).

Show that the coefficients a, b, and c form a solution of the
system of linear equations whose augmented matrix is

4 Figure Ex-21

22. Explain why each of the three elementary row operations does
not affect the solution set of a linear system.

23. Show that if the linear equations

t -s-ks2 =c and Si +1x2 =d

have the same solution set, then the two equations are identical
(i.e., k = I and c = d).

24. Consider the system of equations

ax + by = k

cx + dy = I

ex + fy =

Discuss the relative positions of the lines ax + by =

cx + dy = 1, andes + fy = in when

(a) the system has no solutions.

(b) the system has exactly one solution.

(c) the 5 stem has infinitely many solutions.

25. Suppose that a certain diet calls for 7 units of fat. 9 units of
protein, and 16 units of carbohydrates for the main meal, and
suppose that an individual has three possible foods to choose
from to meet these requirements:

Food I: Each ounce contains 2 units of fat, 2 units of
protein, and 4 units of carbohydrates.

Food 2: Each ounce contains 3 units of fat, I unit of
protein, and 2 units of carbohydrates.

Food 3: Each ounce contains I unit of fat, 3 units of
protein, and 5 units of carbohydrates.

Lets, y, and z denote the number of ounces of the ftrsi, sec
ond, and third foods that the dieter will consume at the main
meal. Find (but do not solve) a linear system in s, y, and z
whose solution tells how many ounces of each food must be
consumed to meet the diet requirements.

26. Suppose that you want to find values for a, b, and c such that
the parabola y = ax + bx + c passes through the points
(I, I). (2,4), and (—1,1). Find (but do not solve) a system
of linear equations whose solutions provide values for a,
and c. How many solutions would you expect this system of
equations to have, and why?

27. Suppose you are asked to find three real numbers such that the
sum of the numbers is 12, the sum of two times the first plus
the second plus Iwo times the third is 5, and the third number
is one more than the first. Find (but do not solve) a linear
system whose equations describe the three conditions.

True-False Exercises

TF- In parts (a)—(h) determine whether the statement is true or
false, and justify your answer.

(a) A linear system whose equations are all homogeneous must
be consistent.

(b) Multiplying a ro’v of an augmented matrix through by zero is
an acceptahlc elementary row operation.

(c) The linear system
5— y=3

2x
—

2y = k

cannot have a unique solution, regardless of the value of k.

(d) A single linear equation with two or more unknowns must
have infinitely many solutions.

(e) If the number of equations in a linear system exceeds the num
ber of unknowns then the system must be inconsistent.

(f) If each equation in a consistent linear system is multiplied
through by a constant c, then all solutions to the new system
can be obtained by multiplying solutions from the original
syslem by c.

(g) Elementary row operations permit one row of an augmented
matrix to be subtracted from another.

(h) The linear system with corresponding augmented matrix

is consistent.

Working with Technology

r2 —l 4
[o 0 —l

TI. Solve the linear systems in Examples 2. 3, and 4 to see how
your technology utility handles the three types of systems.

1’2. Use the result in Exercise 21 to find values of a, b, and r
for which the curve

‘
= ax2 + bx + c passes through the points

(—1.1,4). (0,0, 8), and (I, 1.7).

20. (a) [1 —4
8

k
5

k —l
8 —4

I —2
—I 2

(b)

I,

.t1 I Yt

x I Y2

4 53 1 y3

= 052 hx + c



The leading Vs occur in positions (row 1, column I), (row 2, column 3), and (row 3,
column 5). These arc the pivot positions. The pivot columns are columns 1, 3, and 5.

.4

There is often a gap between mathematical theory and its practical implementation—
Gauss—Jordan elimination and Gaussian elimination being good examples. The problem
is that computers generally approximate numbers, thereby introducing roundoff errors,
so unless precautions are taken, successive calculations may degrade an answer to a
degree that makes it useless. Algorithms (procedures) in which this happens are called
unstable. There are various techniques for minimizing roundoff error and instability
For example, it can be shown that for large linear systems Gauss—Jordan elimination
involves roughly 50% more operations than Gaussian elimination, so most computer
algorithms are based on the latter method. Some of these matters will be considered in
Chapter 9.

Exercise Set 1.2
12345

1 0 7 1 3 ri
0 0 0 0 1

(g)[0

00000

In Exercises .3—3, suppose that the augmented matrix for a lin
ear system has been reduced by row operations to the given row
echelon form. Solve the system.

I —3 4 7

3.(a) 0 1 2 2

0 0 I 5

5 51 1 0 8—5 6

3 2j (b)0 I 4—9 3

0 0 1 1 2

I 7 —2

0 0 I
(c)

0 0 0

o 0 0

0 —8 —3

1 6 5

I 3 9
0 0 0

22 chapter 1 Systems of Linear Equations and Matrices

1 EXAMPLE 9 Pivot Positions and Columns

Earlier in this section (immediately after Definition 1) we found a row echelon form of

0 0 —2 0 7 12

A= 2 4 —lO 6 12 28

2 4 —5 6 —5 —l

to be

If A is the augmented ma
nix for a linear system, then
the pivot columns identify the
leading variables. As an illus
tration, in Example S the pivot
columns are I, 3, and 6, and
the leading variables arex1 ,

and x5.

Roundoff Error and
Instability

1 2 —5 3 6 14

0 0 I 0 — —6

0 0 0 0 1 2

In Exercises 1—2, determine whether the matrix is in row ech
elon form, reduced row echelon form, both, or neither.

1 0 0 1 0 0 0 10
1.(a) 0 1 0 (b) 0 1 0 (c) 0 0 1

001 000 000

ri o 3
(d) I

[0 I 2 4

—2 0 I

0 1 —2

12030

00110
(e)

0 0 0 0 I
00000

0 0 r1
(f) 0 0 (g)

00 L

—7

fl 2 0 I 0 0 I 3 4

2.(a)I0 1 0 (b) 0 I 0 (c) 00 I

Lo 0 0 0 2 0 0 0 0

1 5 —3 1 2 3 I —3 7
(d) 0 I I (e) 0 0 0 (d) 0 1 4

0 0 0 001 0 0 0
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I 0 0 —3 l7.3xl+x+x3+x4O 18. v+3w—2x=O

4.(a) 0 1 0 0 511—x,+13—14=0 2u+ v—4w+3x=O

o 0 I 7 2u+3v+2w— 1=0

I 0 0 —7 8
—4u—3v+5iv—4x=0

(b) 0 I 0 3 2 19. 2x+2v+4z0
0 0 I I —5 -

IL’ — y—32=O
I —6 0 0 3 2 2w+3x+ y+ z=0

c)
0 0 1 0 4 7 —2w+ x+3y—2:=O

0 0 0 I 5 8

0 0 0 0 0 0 20. 11+312 ±14=0

x+4x3±233 =0
I —3 0 0

— 2x — It3 — 13 = 0
(d) 0 0 1 0

0 0
211—412+ 13+14=0

i —212— 13+330

In Exercises 5—8, solve the linear system by Gaussian climi

nation.
21. 21

— 12 + 313 + 414 = 9

II —213+714=11

5. 11+ 12+233= 8 6. 211+233+213= 0 31—31+ 13+514 8

—11—213+313= I —2x+5xz+2x= 21+ 12+413+414= 10

311—712+413=10 811+ 12+413=—I

22. Z3+ Z4+Z5=0

7. x— y+2z— w=—I —Zi — Z3+2Z3—3Z4+Z5=O

2x+ y—2z—2w—Z z+ Z2—2Z3

—x+2y—4z+ W= I 2Z1+2Z3— Z3

3x —3w=—3
In each parc of Exercises 23—24, the aunented matrix for a

8. — 2b + 3c = I linear system is given in which the asterisk represents an unspec

3a + fib — 3c = —2 ified real number. Determine whether the system is consistent,

6a + 6b + 3c = 5
and if so whether the solution is unique. Answer “inconclusive” if

there is not enough information to make a decision. -1

In Exercises 9—12, solve the linear system by Gauss—Jordan

elimination. 1 * * I * *

9. ExerciseS 10. Exercise 6
23. (a) [ * (b) [ i

II. Exercise 7 12. Exercise 8
P * * *1 Il * * *

In Exercises 13-14, determine whether the homogeneous sys- (c) 0 I * * (d) 0 0 * 0

tem has nontrivial solutions by inspection (without pencil and L0 0 0 iJ 0 I *

paper).

13.1v1—3x2+4x3— 14=0
[I * * *1 El 0 0 *

711+ 13—813+914=0 24.01)10 1 * H (b)1* 1 0 *

0 I Ii L* * I *

211+812+ 1j t40
Fl 0 0 01 Fl * * *

14.11+313—13=0 (c)Il 0011 (dHiOO I

[i * * *J Li 0 0 1

= 0
In Exercises 25 26. determine Ihe values of a for which the

In Exercises 15—22, solve the given linear system by any system has no solutions, exactly one solution, or infinitely many

method, solutions

l5.2x+ 12+313=0 16. lv— y—3z=O 25. x+2y— 3z= 4

11+212 =0 —x+2y—3cO 3x— y+ 5z= 2

11=0 1- y-r4Z=O 4x+ y-’-(a2—14)z=a+2
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26. a- 2x + z = 2 36. Solsc the following system for r, Land z
lr—2+ 3z=I I 2 4
r+2i —(a—3)z=a =1

In Exercises 27—28. what condition. if any. mu,i a, h. and 2
—satisfy for the linear system to be consistent9 1

z —

27.x+3) — z=a 28. x+3 +zci __+_+12=
x+ y+2z=b —r—2+=b A Z

2) — Jz = € 3x + 7) — Z = C 37. Find the coefficients a, b, c, and d so that the cune shown
in the accompanying figure is the graph of the equation

In Exercises 29—30, solve the following systems where a, b,
= + b 2 + + d

and € are constants

30. xi+ x+ x1=i 2(1
3r+6s =b Zn —lr,=b (U ((I)

31. Find two different row echelon forms of

+ 3t, =

(4)
rI 31 -20

[2 7j I I Figure Ex-37

Thb exercise shows that a matrix can hate multiple row eche- 38. Find the coefficieni ii b, t, and cisc) that the circle shown in

Ion forms ihe accompanying figure is gitcii by the equation
a52+a12+hv+c) +d=0

32. Reduce

H 5]

to reduced row çchelnn form without introducing fractions at
any intermediate stage

_________ ________________

33. Show that the following nonlinear system has IS solutions if
0< e <11,0< fl5 2r.ando 5 y S 2ir (4, 3) 4 Figure Ex-38

sine + 2cosfi + 3 tan Y = 39. ii the linear system
2sine + Scosfl + 3tany = 0 a1 r —b1 +‘; = 0
—sina—Scosfl.,-5tany=Q

[Hmt Begin by making the subsiiiutions r = sin ix, i r + b1 i — = U
y = cosfl, and z = tan Y I has only the trivial solution, what can be said about the solu

34. Solve the following system of nonlinear equations for the un- tions of the following system

knownanglese,fl,andy,whereo<a<2ir,0<$<2n, aix+biv+qz= 3
andO< y <Jr a2r—b2 +c2z= 7

2sine— cosfi+3tany=3

4 sine + 2 cos fi —2 tan y = 2 40. (a) If A is a matrix with three rows and fise columns, then
6 sine — 3 cos fi + tan y = 9 what is the maximum possible number of leading l’s in its

reduced row echelon form9
35. SuIte the following system of nonlinear equations for r ,

and z (b) If B is a matrix tuth three rows and six columns, then

2 2 _2
— 6

what is the maximum possible number of parameters in
+ t

— the general solution of the linear system with augmented
matrix B’

2r — — = 3 (c) If C is a matrix with Inc rows and three columns then
[Hint Begin by making the subiitutions X = t’ j = 2 whai is the minimum possible number of rows of zeros in
Z = z J any row echelon form of (9
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41. Describe all possible reduced row echelon forms of (Li) A homogeneous linear system in ‘I unknowns whose corre

sponding augmented matrix has a reduced row echelon form

‘i

a h t with r leading I has ii — r free variables.
e f g Ii

(a) d a I (b)
k (e) All leading Is in a matrix in row echelon form must occur in

g Ii i diflèrent columns.
in ii p q

42. Consider the system of equations
(F) If every column of a matrix in row echelon form has a leading

I, then all entries that are not leading l’s are zero.
ax + by = 0

cx + dv = o (a) If a homogeneous Linear system ofn equations in it unknowns

—

has a corresponding augmented matrix with a reduced row
cx + f

—
echelon form containing n leading l’s, then the linear system

Discuss the relative positions of the lines ax + by = 0, has only the trivial solution.

cx + d = 0. and ax ± fy 0 when the system has only the

trivial solution and when it has nontrivial solutions. (h) If the reduced row echelon form of the augmented matrix for

a linear system has a row of zeros, then the system must have

Working with Proofs
infinitely many solutions.

43. (a) Prove that if ad — be 0, then the reduced row echelon (i) If a linear system has more unknowns than equations, then it

form of must have infinitely many solutions.

rci i . r ol
{, ci]

‘ [o I] Working withTechnology

(b) Use the result in part (a) to prove that ifad — be 0, then TI. Find the reduced row echelon form of the augmented matrix

the linear system
for the linear system:

ax+hy=k 6x1+ x2 +4x4=—3

cx+dy=1 —9xi+2x2+3x3—8x4= I

has exactly one solution. 7x — 4x3 + 5x4 = 2

Use your result to determine whether the system is consistent and,

True-False Exercises ifso, find its solution.

rE In parts (a)-(i) determine whether the statement is true or -

T2. Find values of the constants A, B, C, and D that make the

false, and justify your answer. . .

following equation an identity (i.e., true for all values of x).

(a) If a matrix is in reduced row echelon form, then it is also in

rowechelon form.
3x3 +4x- —fix = Ax+ B

+ ._E_+ _...

(x2+Zr+2)Ci2—l) x2+2x+2 x—l x+1

(b) If an elementary row operation is applied to a matrix that is
- .

. [Hint: Obtain a common denominator on the nght. and then
in row echelon form, the resulting matrix will still be in row .

equate corresponding coefficients of the various powers of -t in
echelon form. the two numerators. Students of calculus will recognize this as a

Cc) Every matrix has a unique row echelon form, problem in partial fractions.1

,—._ ,tt nc-j,—_ç-,. r. ‘r’rurxa,aawfl.w.nn,i,,.’ -tflwrt,.K n-1ar w.aart: ,t

1.3 Matrices and Matrix Operations
Rectangular arrays of real numbers arise in coniexis other than as augmented matrices br

linear systems. In this section we will begin to study matrices as ohjects in their own right

by debining operations of addition, subtraction, and multiplication on them.

Matrix Notation and In Section 1.2 we used rectangular arrays of numbers, called augmented niatm’ices, to

Terminology abbreviate systems of linear equations. However, rectangular arrays of numbers occur

in other contexts as well. For example, the following rectangular array with three rows

and seven columns might describe the number of hours that a student spent studying

three subjects during a certain week:
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Trace of a Matrix DEFINITION 8 IfA is a square matrix, then the trace ofA. denoted by tr(A), is defined
to be the sum of the entries on the main diagonal of A. The trace of A is undeñned
if A is not a square matrix.

EXAMPLE 12 Trace

The following are examples of matrices and their traces.

r 1 2 7 0
(a11 a1’ a ( 3 5 —8 4

a” a1, =
1 2 7 —3

La3 a3 a33J
4 —2 1 0

tr(A)=a13+an+a33 tr(B)=—1±5+7+O=ll I

In the exercises you will have some practice working with the transpose and trace
operations.

Exercise Set 1.3
fr in Exercises 1—2, suppose that A,E.C, D, and E are matrices 4. (a) 2AT + C (b) DT — Er (c) (B — E)T

with the following sizes:
(d) BT+5CT (e) CT_ A (f) B—BT

A B C D E -

(4x5) (4x5) (5x2) (4x2) (5x4) (g)2ET_3DT (h)peT_3vTy (i) (crnE

in each part, determine whether the given matrix expression is (i) C(BA) (k) trWET) (I) tr(BC)

defined. For those that are defined, give the size of the resulting
matrix. 5. (a) AB (b) BA (c) (3E)D

1. (a) BA (b) ABT (c) AC + D (d) (AR)C (e) A(BC) (1) CCT

(d) E(AC) (e) A —
3ET (f) E(SB + A) (g) (DA)r (Ii) (CTB)Ar (i) tr(DDT)

2. (a) CDT (b) DC (c) BC — 3D (j) tr(4ET
— D) (k) tr(CTAT ÷2Er) (I) tr((ECT)TA)

(d) DT(BE) (e) lirD + ED (f) RAT + D
6. (a) (2DT

— EM (b) (4B)C + 211
t in Exercises 3—u, use the following matrices to compute the
indicated expression ifit is defined. (c) (_AC)T — SDT (d) (BAT — 2C)T

3 0 r4 —ii 4 21 (e) BT(CCT — ATA) (0 DE — (ED)T

/1=—I 2, 11=1 l.C=l

I
[0 2J [3 I SJ IT’- in Exercises 7—H, use the following matrices and either the row

method or the column method, as appropriate, to find the mdi
I 5 2 6 I 3 catedroworcolumn.

D=—1 0 1,E=—l 12 3—2 7 6—2 4
324 413 /1=6 5 4(andB=0 I 3

3.(a)D±E (b)D—E (c) SA 0

(d) —7C (e) 211 — C (f) 4E — 2D 7. (a) the first row of AR (b) the third row of AR

(g) —3(D + 2E) (h) A — A (i) trW) (c) the second column of AR (d) the first column of BA

(j) tr(D — 3E) (k) 4 tr(7B) (I) tr(A) (e) the third row of /14 (f) the third column ofA.4

I
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8. (a) the first column of AD (b) the third column of RB In Exercises 15—16, find all values of k, if any1 that satisfy the
equation. 4

(c) the second row of BR (d) the first column of AA
Fi I 0 Fkl

(e) the third columnofAB (0 thcfirst rowofliA
Is. I I] ji 0 2 fi I =

0’ In Exercises 9—10 use matrices A and B from Exercises 7—8. [o 2 —3 [ij
4

120 2
9. (a) Expresseach column vector ofAA as a linearcombination 16. [2 2 k] 2 0 3 2 = 0

of the column vectors of A.
0 3 1 k

(b) Express each column vector of RB as a linear combination
of the column vectors of B. P Ia Exercises 17—20, use the column-row expansion of AB to

express this prnduct as a sum of matrices. 4

10. (a) Express each column vector of AR as a linear combination r4 —31 r 0 I 2
of the column vectors ofA. 17. A

= [2 —iJ
B

= [—2 3 1
(b) Express each column vector of BA as a linear combination

of the column vectors ofli.
18. A

= [o _2]
B = [ I 4 1

P In each part of Exercises 11—12, find matrices A, x, and b that L4 —3J [—3 0 2

express the given linear system as a single matrix equation Ax = b,
1 2and write out this matrix equation. 4 1i 2 31

19.A=I I, B= 3 4
4 5 61

11.(a) 2x1 —3x,+5x3= 7 L 5 6
9x1— x2+ x3=—1
xi+Sx,+4x,= 0 ro 4 21 2 —I

20.A=I I. B= 4 0(b)4x1 —3x3+ x4=l II —2 51
Sxi+ x, —8x4=3 L I —l
2x1 — Sx + 9x3 — = 0 21. For the linear system in Examples of Section 12, express the

3x2 — x + 7x4 = 2 general solution that we obtained in that example as a linear
combination of column vectors that contain only numerical

12. (a) x1 — 2x, + 3x3 = —3 (b) it1 + 3x2 + it3 = 3 entries. [Suggestion: Rewrite the general solution as a single
2x1 + x2 = 0 —x1 — it2 — 2x3 = 3 column vector, then write that column vector as a sum of col

— 3x1 + 4x3 = I — 4x2 + = umn vectors each of which contains at most one parameter,
+ 3 = 5 and then factor out the parameters.]

P In each part of Exercises 13—14, express the matrix equation 22. Follow the directions of Exercise 21 for the linear system in
as a system of linear equations. Example 6 of Section 12.

In Exercises 23—24, solve the matrix equation for a, b, c,
5 6 —1 x1 r2 andd. 4

13.(a) —l —2 x2 Ho Ia 3 1 1 4
0 4 —lJ x3 [3

‘ [—i a+bj = [d±2c —2

Ii I I Eti r21
a—b b+a B I

) J2 3 0 jJ= 2J 24{3d+c 2d_c]{7 6]
L5 —3 —6 LzJ L—°J

25. (a) Show that if A has a row of zeros and B is any matrix for
which AR is defined, then AR also has a row of zeros.

3—i 2 x1 2

• 14. (a) 4 3 7 2 =
(b) Find a similar result involving a column of zeros.

—2 1 5 xj 4 26. In each part, find a 6 x 6 matrix [a0] that satisfies the stated
condition. Make your answers as general as possible by using

—2 0 I W letters rather than specific numbers for the nonzero entries.

1 7 =
(a)a11=0 if ij (b)aq=0 if i>j

S I 6 z 0 (c)a,=O if i<j (d)a11=0 if Ii—J>l
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a In Exercises 27—2%, how many 3 x 3 matrices A can you find

for which the equation is satisfied for all choices of x, y, and z? 4

Ex x+y
27.AIy = x—y

[z 0

I

28.A y = 0

a 0

29. A matrix B is said to be a square root of a matrix A if BR = A.

(a) Find two square roots of A
= [ ].

(b) How many different square roots can you find of

5 01
A=Lo 9]?

(c) Do you think that every 2 x 2 matrix has at least one

square root? Explain your reasoning.

30. Let 0 denote a 2 x 2 matrix, each of whose entries is zero.

(a) Is there a 2 x 2 matrix A such that A 0 and AA = 0?

Justify your answer.

(b) Is there a 2 x 2 matrix A such that A V and AA = A?

Justify your answer.

31. Establish Formula (II) bytsing Formula (5) to show that

(AB)1 = (cir1 + c2r2 + + crrr)ij

32. Find a 4 x 4 matrix A = [au] whose entries satisfy the stated

condition.

(a) a,j =i+j (b) o =i’

I if Ii—iI>l
(c)a=

—l if Ii—iIl

33. Suppose that type I items cost SI each, type II items cost $2

each, and type III items cost 53 each. Also, suppose that the

accompanying table describes the number of items of each

type purchased during the first four months of the year.

Table Ex-33

Type! Type II Type Ill

Jan. 3 4 3

Feb. 5 6 0

Mar. 2 9 4

Apr. 1 I 7

34. The accompanying table shows a record of May and June unit

sales for a clothing store. Let M denote the 4 x 3 matrix of
May sales and J the 4 x 3 matrix of June sales.

(a) What does the matrix M + J represent?

(b) What does the matrix M — J represent?

(c) Find a column vector x for which Mx provides a list of the

number of shirts, jeans, suits, and raincoats sold in May.

(d) Find a row vector y for which yM provides a list of the

number of small, medium, and large items sold in May.

(e) Using the matrices x andy that you found in parts Ic) and

(d), what does yMx represent?

Table Ex-34

Shirts 45 60 75

Jeans 30 30 40

SuIts 12 65 45

RaIncoats 15 40 35

June Sales

Small Medium Large

Shirts 30 33 40

Jeans 21 23 25

SuIts 9 12 11

RaIncoats 8 10 9

Working with Proofs

35. Prove: If A and B are it x it matrices, then

tr(A + B) = tr(A) + tr(B)

36. (a) Prove: If AR and BA are both defined, then AB and BA

are square matrices.

(b) Prove: If A is an m x it matrix and A(BA) is defined, then

B is an it x m matrix.

True-False Exercises

TF. In parts (a)—(o) determine whether the statement is true or

false, and justify your answer.

ri 2 31
(a) The matnx L4 6]

has no main diagonal.

(b) An m x it matrix has in column vectors and it row vectors

(c) If A and B are 2 x 2 matrices, then AD = BA.

(d) The ith row vector of a matrix product AB can be computed

by multiplying A by the ith row vector of B.

May Sales

SmaU MedIum Large

What information is represented by the following product?

560
2

294

17
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(e) For every matrix A. it is true that (AT)T = A.

(f) If A and B are square matrices of the same order, then

tr(AB) = tr(A)tr(B)

(g) If A and Bare square matrices of the same order, then

(AB)T = ATBT

(h) For every square matrix A, it is true that tr(AT) = tr(A).

(i) IfA isa6 x 4matrixandB isanm x n matrixsuchthat BrAT

is a 2 x 6 matrix, then in = 4 and n = 2.

(j) IfA ‘san ii x ii matrix andc isa scalar, then tr(cA) = c tr(A).

(k) If A, B, and C are matrices of the same size such that

A — C = B — C, then A = B.

(I) If A, B, and C are square matrices of the same order such that

AC = BC, then A = B.

(m) If AB + BA is defined, then A and B are square matrices of

the same size.

(n) If B has a column of zeros, then so does JiB if this product is

defined.

(o) If B has a column of zeros, then so does BA if this product is

defined.

Working withTecbnology

TI. (a) Compute the product AB of the matrices in Example 5,
and compare your answer to that in the text.

(b) Use your technology utility to extract the columns of A

and the rows of B, and then calculate the product AB by
a column-row expansion.

T2. Suppose that a manufacturer uses Type I items at $1.35 each,

Type H items at $2.15 each, and Type III items at $3.95 each. Sup
pose also that the accompanying table describes the purchases of

those items (in thousands of units) for the first quarter of the year.

Write down a matrix product, the computation of which produces

a matrix that lists the manufacturer’s expenditure in each month

of the first quarter. Compute that product.

Type I Type U Type UI

Jan. 3.1 4.2 3.5

Feb. 5.1 6,8 0

Mar. 2.2 9.5 4.0

1.0 1.0 7.4

n4: ,r.nr_amp1I tl... . lawflSa - - -
.•.- -

.

.

1.4 Inverses; Algebraic Properties of Matrices
In this section we will discuss some of the algebraic properties of matrix operations. We will

sce that many of the basic rules of arithmetic for real numbers hold for matrices, but we will

also see that some do not.

Properties of Matrix The following theorem lists the basic algebraic properties of the matrix operations.

Addition and Scalar
Multiplication THEOREM 1.4.1 Properties of Matrix Arithmetic

Assuming that the sizes of the matrices are such that the indicated operations can be

performed, the following rules ofmatrix arithmetic are valid

(a) A+B=B+A jCommntative Jaw for matrix addition)

(b) A +(B +C) = (A + B) + C iMsodativelawformafrlxaddldoaj

(c)

(d)

(e)

A(BC)=(AB)C 4iJ’

A(B+C)=AB÷AC

(B ± C)A = BA + CA

(f) A(B—C)AB—AC

(g) (B—C)A—L BA—CA

(Ii) a(B+C)=aB±aC

(I) a(B—C)=aB—aC

(1) (a+b)C=aC+bC

(k) (a—b)C=aC—bC

(1) a(bC) = (ab)C

Assocladve law for matrIx muldpllcatlonl

ILeft distributive lawl

[Right dlstributhe lswj

(m) a(BC) = (aB)C = B(aC)
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The following theorem establishes a relationship between the inverse of a matrix and

the inverse of its transpose.

THEOREM 1.4.9 If A is an invertible matrix, then AT is also invertible and

(AT)_i = (A)T

Proof We can establish the invertibility and obtain the formula at the same time by

showing that
AT(.A_I)T = (A1 )TAT = J

But from part (e) of Theorem 1.4.8 and the fact that 1T
= I, we have

= (A_IA)T = 1T
= I

(A1
)TAT = (AA_I)T = 1T

= j

which completes the proof. ‘4

EXAMPLE 13 Inverse of aTranspose

J Consider a general 2 x 2 invertible matrix and its transpose:

A_Fa bl nO AT_Ia
[c dj

a
[b d

Since A is invertible, its determinant ad — bc is nonzero. But the determinant of AT is

also ad — bc (verify), so AT is also invertible. It follows from Theorem 1.4.5 that

d c

(AT)_i_ ad—bc ad—bc

—— b a

ad—bc ad—bc

which is the same matrix that results if A’ is transposed (verify). Thus,

(AT)_t = (A_t)T

as guaranteed by Theorem 1.4.9. 4

Exercise Set 1.4
In Exercises 1—2, verify that the following matrices and scalars 2. (a) a(BC) = (aB)C = B(aC)

satisfy the stated properties of Theorem 1.4.1.
(b)A(B—C)=AB—AC (c)(8+C)A=BA+CA

r3 —ii Co 21 (d) a(bC) = (ab)C

A=l I, 8=1 I,
[2 4J ) in Exercises 3—I, verify that the matrices and scalars in Exer

r 1
cise I satisfy the stated properties.

c = [4 ‘j a =4, b = —7 4 1(a) (Ar)r = A (b) (ArnT = BrAT

4. (a) (A + rnT = AT + B (b) (aC)T = aCT

1. (a) The associative law for matrix addition.
In Exercises 5—6, use Theorem 1.4.5 to compute the inverse of

(b) The associative law for matrix multiplication, the matrix.

(c) The left distributive law. 2 —3 3 I

(d)(a+b)C=aC+bC 5.A[4
4]

6.B=[
2]



•

________________

SD Chapter 1 Systems of Linear Equations and Matrices

[2 01 r 6 41 P In Exercises 25—28, use the method of Example 8 to find the
7.C= I 8.D=I I

0 3] L—2 —u unique solution of the given linear system. • so
re

9. Find the inverse of 25. it, —2x2=—l 26. —x,±5x,=4

+ C) 4(e — C)l 4x1 + 5x’ = 3 —xl — it, = I

[(e—c) (e’+e-’)j

37

27.6x,+ x2= 0 2&2x1—2i,=4
10. Find the inverse of 4x,—3x2=—2 x,+4x2=4

E cos8 sinUl B
fr’ If a polynomial p(x) can be factored as a product of lower

—sin6 cosO]
degree polynomials, say 39

In Exercises 11—14, verify that the equations are valid for the p(x) = P’ (x)p2(x)
4G

matrices in Exercises SR. and if A is a square matrix, then it can be proved that

II. (A) = (A_I)T 12. (A’)’ = A p(A) = p,(A)p2(A) 41

In Exercises 29—3(1, verify this statement for the stated matrix A
13. (ABC)—’ = C’B ‘A 14. (ABC)T = CTBTAT and polynomials 4

In Exercises IS—IN, use the given information to find A. <1 p(x) =? —9, p,(x) = x + 3, p2(x) = x —3

r—3 71 r—3
— fl 29. The matrix A in Exercise 21. 41

15. (7A) = I I 16. (SATY’ = I - I
L I —2J L 2J

30. An arbitrary square matrix A.

I ‘1 r2 — Ii 31. (a) Give an example of two 2 x 2 matrices such that
17. (1+2Ay’=’ 18. A’= [ I

L4 sJ 3 5]
(A + B)(A — B) A — B

In Exercises 19—20, compute the following using the given ma
trix A. (b) State a valid formula for multiplying out 4!

(a) A3 (b) A3 (c) A1—2A+I
(A+B)(A—B)

19. A
= [ ‘ 20. A = 12 01 (c) What condition can you impose on A and B that will allow

I] [4 1] you towrite (A + B)(A — B) = A2 — B2?

In Exercises 21—22, compute p(A) for the given matrix A and 32. The numerical equation a2 = I has exactly two solutions.
the following polynomials. Find at least eight solutions of the matrix equation A2 = 13. 4(

(a) pCi) = x — 2 [Hint: Look for solutions in which all entries off the main
diagonal are zero.]

(b) p(x)=2x2—x+l

(c) p(x) = x3 — 2x + I 33. (a) Show that if a square matrix A satisfies the equation
A2 + 2A + I = 0, then A must be invertible. What is the

3 1 ‘2 01 inverse? 4

21 A— 22.A=I I
[2 I] L IJ (b) Show that if pCi) is a polynomial with a nonzeroconstant /

term, and if A is a square matrix for which p(A) = 0, then
In Exercises 2.3—24, let A is invertible.

A = I I , B = I C = I 34. Is it possible for A3 to be an identity matrix without A being ‘llra bl ro I] [0 ol
[c dJ [0 0 ‘ I oJ invertible? Explain.

23. Find all values of a, b, c, and d (if any) for which the matrices 35. Can a matrix with a row of zeros or a column of zeros have an

A and B commute, inverse? Explain.

24. Find all values of a, /,, c, and d (if any) for which the matrices 36. Can a matrix with two identical rows or two identical columns
A and C commute, have an inverse? Explain.

I’
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fr In Exercises 37—38, determine whether A is invertible, and if 49. Assuming that all matrices are n x n and invertible, solve

so, find the inverse. [Hint. Solve AX = I for X by equating cor- for EL

responding entries on the two sides.] 4 C’BA2BAC’DA2B1’C1 = CT

50. Assuming that all matrices are a x n and invertible, solve
I forD.

37. A I I 0 38.A I 0 0 ABCTDBATC_ABT

0 1 I 0 1 I

Working with Proofs
‘ In Exercises 39—40, simplify the expression assuming that A,

B, C, and I) are invertible. 4 b In Exercises 51—52, prove the stated result. 4

39. (ABri(AC)wC_y1ud
51. Theorem l.4.l(a) 52. Theorem IA.I(b)

40. (AC’)(AC’’)(AC”)’’AD’
53. Theorem 1.4.1(f) 54. Theorem I.4.1(c)

4J. Show that if R is a I x a matrix and C is ann x 1 matrix,

then RC = tr(CR). 55. Theorem 1.4.2(c) 56. Theorem 1.4.2(b)

42. If A is a square matrix and n is a positive integer, is it true that 57. Theorem 1.4.8(d) 58. Theorem 1.4.8(e)
(A1)T = (AT)n? Justify your answer.

43. (a) Show that if A is invertible and AB = AC, then B = C.
True-False Exercises

TF. In parts (a)—(k) determine whether the statement is true or
• (b) Explain why part (a) and Example 3 do not contradict one false, and justify your answer,

another.
(a) Two a x a matnces, A and B, are inverses of one another if

44. Show that if A is invertible and k is any nonzero scala; then and only if AB = BA = 0.

(kA)” = PA for all integer values of n. (b) For all square matrices A and B of the same size, it is true that

(A + B)2 = A2 + 2AB + 82.

45. (a) Show that if A, B, and A + B are invertible matrices with

the same size, then (c) For all square matrices A and B of the same size, it is true that

A2 82 = (A — B)(A + B).
A(A + r’)B(A ± Br’ = I

(d) If A and B are invertible matrices of the same size, then AB is

(b) What does the result in part (a) tell you about the matrix invertible and (AB) =

A’ + B’7
(e) If A and B are matrices such that AB is defined, then it is true

46. A square matrix A is said to be idempotent if A2 = A. that (AB)T = ATBT.

(a) Show that if A is idempotent, then so is I — A. (f) The matrix

(b) Show that if A is idempotent, then 2A — (is invertible A
— [a b

and is its own inverse. — Lc d

is invertible if and only if ad — be 0

• 47. Show that if A is a square matrix such that Ak = 0 for some

positive integer k, then the matrix I — A is invertible and (g) If A and B are matrices of the same size and k is a constant,

then (kA + BY = MT + Br.

(I—Ar’ =I+A+A++A’
(h) If A is an invertible matrix, then so is AT.

48. Show that the matrix
0) If pCi) = 0 +a,x +a2x1 + . ‘

+o.r”’ and! is an identity

r0 b] matrix, then p) = o +a, +a2 + .. .

r A=I I
• LC dj (j) A square matrix containing a row or column of zeros cannot

be invertible.
satisfies the equation

(k) The sum of two invertible matrices of the same size must be

A2 — (a + d)A ± (ad — bc)I = 0 invertible.
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Working withTechnology 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,...

TI. Let A be the matrix the terms of which are commonly denoted as
0

A=
,, FC,FFI.FJ F,,,..

I After the initial terms F0 = 0 and F1 = 1, each term is the sum of
V the previous two; that is,

Discuss the behavior of A’ as k increases indefinitely, that is, as
F,,=F,,±F,,1

T2. In each part use your technology utility to make a conjecture Confirm that if

about the form of A” for positive integer powers of n. rF, F,1 ri
iLra ii r cosS sinG1 F, F0 1 0

(a)A=I I (b)A=l . I
L° aJ L’9 cos6J then

T3. The Fibonacd sequence (named for the Italian mathematician = V”’ F,,

Leonardo Fibonacci 1170—1250) is L F,, F0

.

‘ , ‘ ‘ , -4aW :t4,-,..a,Ma K, a

1.5 Elementary Matrices and a Method for Finding A1
in this section we will develop an algorithm for finding the inverse ofa matrix, and we will
discuss some of the basic properties of invertible matrices.

In Section 1.1 we defined three elementary row operations on a matrix A:

I. Multiply a row by a nonzero constant c.

2. Interchange two rows.

3. Add a constant c times one row to another.

It should be evident that if we let B be the matrix that results from A by performing one
of the operations in this list, then the matrix A can be recovered from B by performing
the corresponding operation in the following list:

1. Multiply the same row by I/c.
2. Interchange the same two rows.

3. If B resulted by adding c times row’ r1 of A to row’ r. then add—c times r to r1,

It follows that if B is obtained from A by performing a sequence of elementary row
operations, then there is a second sequence of elementary row operations, which when
applied to B recovers A (Exercise 33). Accordingly’, we make the following definition.

DEFINITION 1 Matrices A and B are said to be row equivalent if either (hence each)
can be obtained from the other by a sequence of elementary row operations.

Our next goal is to show how matrix multiplication can be used to carry out an
elementary row operation.

DEFINITION 2 A matrix E is called an elementary matrix if it can be obtained from
an identity matrix by performing a single elementary row operation.
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Applying the procedure of Example 4 yields

1 6 4 1 0 0

2 4 —1 0 1 0

—1 2 5 0 0 I

r 1 6 4 I 0 01
I 0 —8 —9 —2 1 0 I a!dtd

I { rtnv to the second and added

L 0 8 9 I 0 lj lie hat row it, he third.

1 6 4 1 0 0

0 —8 —9 —2 I 0 • We added ilteseconil
row io the third

0 0 0 —1 1 I

Since we have obtained a row of zeros on the left side, A is not invertible.

I EXAMPLE 6 Analyzing Homogeneous Systems

Use Theorem 1.5.3 to determine whether the given homogeneous system has nontrivial
solutions.

(a) x1+2x,±3x3=0 (I,) xi+6x2±4x3=0

2x1+5x2±3x3=0 2s1+4x2— x3=0

+8x3=0 —xi+2x,+5x3=0

Solution From parts (a) and (b) of Theorem 1.5.3 a homogeneous linear system has
only the trivial solution if and only if its coefficient matrix is invertible. From Examples 4
and 5 the coefficient matrix of system (a) is invertible and that of system (b) is not. Thus,
system (a) has only the trivial solution while system (b) has nontrivial solutions. I

Exercise Set 1.5
In Exercises 1—2, determine whether the given matrix is ele- - In Exercises 3—4, find a row operation and the corresponding

menary. .i elementary matrix that will restore the given elementary matrix to
the identity matrix.

l.(a) F I Oj
(b) I I]

[—5 Ii [ 1 0]
rI —31 —7 0

3.(a) I I (b) 0 1 0

I 1 0
2 0 0 2 LU lJ

0 0 I
0100

(c) 0 0 1 (d)
0010 0010

000 100
000

(c)[0 I o] (d)
I 00

Ii ol 0 0 I
5 0 I

0 o 0

2.(a) 0 ‘i1
(b) 0 I 0

L J 100 100

I 00 —I 0 0
4.(a)[l j (b) 0 1 0

(c) 0 1 9 UI) 0 0 1

001 010 0001 I 0— 0

0100 0 I 0 0
(c) (d)

0010 0 0 I 0

1000 0 0 0
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In Exercises 5—45 an elementary matrix if and a matrix A are
given. Identify the row operation corresponding to if and ver
ify that the product LA results from applying the row operation
to A.

r6
(b) A = I

—2

—I 3 —4

(I,) 2 4 1

—4 2 —9

_2
[I

Iis 5 3j ,3 3 1
3 3 ii 5 3 1O12 (a) I (b) — —1 I

I
— U

_4 U5 5 10 3 3 10

P In Exercises 13—IS, use the inversion algorithm to find the in
verse of the matrix (if the inverse exists). 4

rI —5
10. (a) A

= [3 —16

r0 il [—1 —2 5 —L]
5.(a)E=I ‘.

L1 0] 3 —6 —6 —6 i 2 31

ri 0 o1 r2—l 0—4—41 ll.(a)r2 5

(b)if=I0 I UI, A=I1 —3 —l

3J
Li 0

[0—3 iJ [2 0 1 3—I

P’ In Exercises 11—12, use the inversion algorithm to find the in
verse of the matrix (if the inverse exists). -I

0 41 ri 41
(c)E=I0 I DI, A=I2 51

[a 0 [3 6]

[—6 ol [—1 —2 5 —fl
6.(a)E=’ I,

L 01] 3—6—6 —6]

[1 00•i [2_I 0—4_fl [1011
(b)E=I—4 I OH A=11 —3 —l 5 3] LL ij L2 0 1 3 1

I 10

f2Wio

14. —4q’ 0

0 0 I

266

15. 2 7 6

277

1000

1300
16.

1 3 5 0

1357

100 14

(c)L= 0 5 0 , A= 2 5

001 36

In Exercises 73, use the following matrices and find an ele
mentary matrix if that satisfies the stated equation.

3 4 1 8 I 5

A= 2 —7 —i , 8= 2 —7 —I

8 1 5 3 4 I

3 4 1 8 15

c= 2 —7 —l , D= —6 21 3

2 —7 3 3 4 I

S I

F= S I I
3 4 I]

2—4 0 0 0 0 2 0

1 2 12 0 1 0 0 I

0 0 2 0
18.

0 —I 3 0

0 —1 —4 —5 2 1 5 —3

In Exercises 19—20, find the inverse of each of the following
4 x 4 matrices, where k1, k2, k3, Ic4, and Ic are all nonzero. ‘

Ic1 0 0 0 Ic 1 0 0

0 Ic2 0 0 0 I 0 0
19.(a)

0 0 Ic3 0
(b)

0 0 k I

0 0 0 Ic3 0 0 0 I

7. (a) LA = B

(c) LA = C

(I,) LB = A

(d) LC = A
0 0 0 Ic1 Ic 0 0 0

0 0 Ic 0 1 Ic 0 0
20.(a)

0 Ic, 0
(b)

Ic 0

&(a)LB=D (b)ED=B Ic4 0 0 0 0 0 I Ic

(c) LB = F (d) LF = B in Exercises 21—22, find all values of c, if any, for which the

-
- given matrix is invertible. ‘

> In Exercises 9—1(1, first use Theorem 1.4.) and then use the
inversion algorithm to find At if it exists.

[i 4

7

I ccc
r2 —41 21.1cc

(b)A=[4
8] I I c

dO

22. I c I

Ole
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fr In Exercises 23—26, express the matrix and its inverse as prod- 33. Prove that if B is obtained from A by performing a sequence
ucts of elementary matrices, 4 of elementary row operations, then there is a second sequence

—3 1 0 of elementary row operations, whichwhenapplied to B recov
a { 2 2]

24. {_ 2]
ersA.

True-False Exercises
I 0 —2 I I 0

25. 0 4 3 26. 1 I
TF. In parts (a)—(g) determine whether the statement is true or
fake, and justify your answer.o o I Oil
(a) The product of two elementary matrices of the same size must

In Exercises 27—28, show that the matrices A and B are row be an elementary matrix.
equivalent by finding a sequence of elementary row operations

(b) Every elementary matrix is invertible.that produces B from A, and then use that result to find a matrix
C such that CA = B. 4 (c) If A and B are row equivalent, and if B and C are row equiv

I 2 3 1 0 5 alent, then A and C are row equivalent.

27. A = 1 4 1 , B = 0 2 —2 (d) If A is an n x n matrix that is not invertible, then the linear
2 1 9 I I 4 system Ax = 0 has infinitely many solutions.

2 1 01 6 9 4 (e) If A is an ii x n matrix that is not invertible, then the matrix
28. A = — I I 0 , B = —5 — I 0 obtained by interchanging two rows of A cannot be invertible.

3 0 —iJ —1 —2 —l . .

(f) If A is invertible and a multiple of the first row of A is added
29. Show that if to the second row, then the resulting matrix is invertible.

100

A = 0 I o (g) An expression of an invertible matrix A as a product of ele
mentarv matrices is unique.abc -

is an elementary matrix, then at least one entry in the third Working withTechnology
row must be zero.

Ti. It can be proved that if the partitioned matrix
30. Show that

0 a 0 0 0 B
b 0 0 0 [C D

A=OdOeO ..

is invertible, then its inverse is
OOfOg

o 0 0 Li o [A_i+A_iaw_CAiB)_IcA_ _AB(D_CABr

is not invertible for anyvalues of the entries. [ —w — CA_iB)CA CD —

provided that all of the inverses on the right side exist. Use thisWorking with Proofs result to find the inverse of the matrix
31. ProvethatifAandB arem xn matrices,then A and B are I 2 1 0row equivalent if and only if A and B have the same reduced

row echelon form. 0 —J 0 1

0 0 2 032. Prove that if A is an invertible matrix and B is row equivalent
to A, then B is also invertible. 0 0 3 3
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Solution The augmented matrix is

r1 2 3 b11
2 5 3 b21

0 8 bj

Reducing this to reduced row echelon form yields (verify)

r1 o 0 —40b1 + 16b2 + 91,31
0 1 0 l3b— 5b2—3b3 (2)

L° o I 5b— 2b— b3j

_________________________

In this case there are no restrictions on b1, b2, and b3, so the system has the unique
What does the result in Exam- solution
pie 4 tell you about the coeffi

xj=—40b1+16b2+9b3, 1213b1—5b2—3b3, x3=5b1—2b2—b3 (3)
cient matrix of the system?

for all values ofb1, 2, and b3. I

Exercise Set 1.6
In Exercises 13, solve the system by inverting the coefficient 12. xi + 313 ± Sx, =

matrix and using Theorem 1-6.2. 4 —x1 — 2x2 =

1. x,±x,=2 2.4x—3x,=—3 2x1±5x2+4x,=b,

5x±6x=9 2x—5x,= 9 (i) b1=l, b2=0, t’,=—l
(ii) bI=0. b2=l. b,=I

3. x1+3x2+x3= 4 4.511+312±213=4 (iii) b=—l, b=—l, b,=0
211+212+13=—I 3x+3x,±2x,=2

I’- In Exercises 13—17, determine conditions on the b’s, if any, in213+312+13= 3 x2+ x,=5
order to guarantee that the linear system is consistent.

S. x+y+ z= 5 6. — x—2y—3z=0 13. x1+3x2=bi 14.6x3—4x2=b1
x +y —4z= lO w+ x +4y +4z=7 —2x + x2 =b3 3x —213 133

—4x+y+ z= 0 w+3x+7y+9z=4
—in— 21 —4y —6z =6 — 2x+5x, =b 16. x1 — 213

—
13 =b1

4x — 512 + 8x, = —4x + 513 + 213 =

7. 3x1 + 513 =b 8. x1 +212 +3x, =1, —3xj + 313 — 313 =b, —4x + 713 +4x, =bJ

13+212=1,2 2x+5x+5x,=b, 17. x1— x2+3x,+2x4=b1
3x1+512+8xJ=b3 —2x+ x+5x,+ x—b2

In Exercises 9—12, solve the linear systems together by reducing + 213 + 2x, — =

the appropriate augmented matrix. — 3x, + x + 3x4 =

9. x1 — it, =
18. Consider the matrices

3x3+2x2=b’
. P 1 21 rx1

(Ob=l, (ii)b—2, b3=5 A=12 2 —21 and

I lJ L13i10. —x1+4x+ x3=b1
xi + 9x — 213 = (a) Show that the equation Ax = x can be rewritten as

6x ± 413 — 813 = (A — I)x = 0 and use this result to solve Ax = x for x.

(i) b(=0 1 = I, b, =0 (b) SolveAx=4x.
(ii) b=—3, b=4, b3=—5 St— In Exercises 19—20, solve the matrix equation for X. d

I1.4x—7x3=b3 I

(Obi=0, 1,3=1 (ii)b3=—4, b3=6 19. 2 3 0IX=!4 0 —3 0 II 4
xi+2x2=b2

[1

—1 Ii r2 —l 5 7 gi

(iii) b3=—l, b1=3 (iv) b1=—5, b2=1 0 2 —iJ L —7 2 lJ
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‘1

—2 0 1 3 2

20. 0 —l —l X=j6 7 8

I 1 —4 [i 3 7

Working with Proofs

21. Let Ax = Obe a homogeneous system of n linear equations in

ii unknowns that has only the trivial solution. Prove that if k

is any positive integer, then the system Akx = 0 also has only

the trivial solution.

22. Let Ax = 0 be a homogeneous system of n linear equations

in it unknowns, and let Q be an invertible it x ii matrix.

Prove that Ax = 0 has only the trivial solution if and only

if (QA)x = 0 has only the trivial solution,

23. Let Ax = h be any consistent system of linear equations, and

let x1 be a fixed solution. Prove that every solution to the

system can be written in the form x = xi + . ,vhere x9 is a

solution to Ax = 0. Prove also that every matrix of this form

is a solution.

24. Use part (a) of Theorem 1.6.3 to prove part (b).

True-False Exercises

TF. In parts (a)—(g) determine whether the statement is true or

false, and justify your answer.

(a) It is impossible for a system of linear equations to have exactly

two solutions.

(b) If A is a square matrix, and if the linear system Ax = b has a

unique solution, then the linear system Ax = c also must have

a unique solution.

(c) If A and B are it x it matrices such that AB = 1,1, then

BA = 1,,.

(d) If A and B are row equivalent matrices, then the linear systems

Ax = 0 and Bx = 0 have the same solution set.

(e) Let A bean it x it matrix and S is ann x n invertible matrix.

If x is a solution to the linear system (SAS)x = b, then Sx

is a solution to the linear system Ay = Sb.

(f) Let A be ann x it matrix. The linear system Ax = 4x has a

unique solution if and nnly if A — 41 is an invertible matrix.

(g) Let A and B be it x it matrices. If A or B (or both) are not

invertible, then neither is AB,

Working withTechnology

TI. Colors in print media, on computer monitors, and on televi

sion screens are implemented using what are called “color mod

els”. For example, in the ROB model, colors are created by mixing

percentages of red (R), green (0), and blue (B), and in the YIQ

model (used in TV broadcasting), colors are created by mixing

percentages of luminescence (fl with percentages of a chromi

nance factor (I) and a chrominance factor (Q). The conversion

from the ROB model to the YIQ model is accomplished by the

matrix equation

,ci s2..— —

1.7 Diagonal,Triangular, and Symmetric Matrices

[n this section we will discuss matrices that have various special forms. These matrices arise

in a wide variety of applications and will play an important role in our subsequent work.

1.

Diagonal Matrices A square matrix in which all the entries off the main diagonal are zero is called a diagonal

matrix. Here are some examples:

6 00 0

2 0
1 0 0

0 —4 0 0 0 0

[0—51’ 010,
0 0 0 0’[OO]

001
0 0 0 8

9

9

r.299 .587 .114 R

I =L596 —.275 —.321

[.212 —.523 311 B

What matrix would you use to convert the YIQ model to the ROB

model?

T2. Let

I —2 2 0 II

A= 4 5 I ,B1= 1 ,B2= 5 ,B3= —4

0 3—I 7 3 2

Solve the linear syslems Ax = B,, Ax = B2, Ax = B3 using the

method of Example 2.
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EXAMPLE 6 The Product of a Matrix and ftsTranspose Is Symmetric

Let A be the 2 x 3 matrix

A—1’
—2 4

0 —5

Then
F- I 10 —2 —11

ATA=[_2
Oj[

—2 4 —S

AAT
=

J] = [2’ I

Observe that ATA and AAT are symmetric as expected. ‘4

Later in this text, we will obtain general conditions on A under which AAT and ATA

are invertible. However, in the special case where A is square, we have the following

result.

THEOREM 1.7.5 If A is an invertible matrix, then AAT and AT/S are also invertible.

Proof Since A is invertible, so is AT by Theorem 1.4.9. Thus AAT and ATA are invertible,

since they are the products of invertible matrices. I

Exercise Set 1.7
b In Exercises 1—2, classify the matrix as upper triangular, loWer r 1 2 —51 [“
triangular, or diagonal, and decide by inspection whether the ma- “ L— —, oj I 0 3 0

trix is invertible. [Note: Recall that a diagonal matrix is both up- L 0 0 2

per and lower triangular, so there may be more than one answer

in someparts.J r 0 0] 2 0 4 —4

r2 ii ro ol 5.10 2 oIl I —5 3 0 3

l.(a)L 3]
(b)[ o] Lo 0 —JL—o 2 2 2 2

—100 3—2 7 2 0 0 4—I 3—300

(c) 020 (d)0 0 3 6.0—I 0 I 2 0 050

00 0 0 8 0 0 4—5 1—2 002

r4 i Ia 3] In Exercises 7—10, find A2, A2, and At (where /c is any inte

2. (a)
[1 7]

(b) [ ] ger) by inspection. 4

—6 0 0
4 0 0 [3 00

7.A=P 01 8.A= 0 3 0
(c) 0 4 0 (d)13 I 0 L° 2j

0 0 5

0 0 —2 L7 0 0

fr- In Exercises 3—6, find the product by inspection. 4
. 0 0

—2 0 0 0

3 0 o’r2 l
2 0—4 0 0

II 9.A= 0 1 1O.A=
3.10 —l 011—4 II 0

0 0—3 0

Lo 0 2JL2 5J 0 0 0 2
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—I 0 0 [3 0 0J[5 0

12. 0 2 0 10 5 0110 —2 0

o ‘ [a U 7j[0 0 3

W In Exercises 13—14, compute the indicated quantity. 4

II 0
14. I

L°
In Exercises 15—16, use what you have learned in this section

about multiplying by diagonal matrices to compute the product

by inspection. 4

a 00 u V r S t a 00

15.(a) Gb 0 wi (b) isv w Gb U

OOc y z xy z OOc

a 0 0] r s r

(b) 0 b 01 is v in

0 0 ci x y z
- In Exercises 17—18, create a symmetric matrix by substituting

appropriate numbers for the x’s. “4

I x

3 I
(b)

7 —8

2 —3

I 7 —3

x 4 5
(b)

x x I

x x x

In Exercises 19—22. determine by inspection whether the ma

trix is invertible. ‘4

0 6 —1

19. 0 7 —4

0 0 —2

600

=150

326

)‘ In Exercises 25—26, find all values of the unknown constant(s)

for which A is symmetric. -‘4

r4
25. A = a+5

29. If A is an invertible upper triangular or lower triangular ma

trix, what can you say about the diagonal entries of A’?

30. Show that if A is a symmetricn x ii matrix and B is any n x m

matrix, then the following products are symmetric:

BTB. fisT, 5T48

)- Ii, Exercises 31—32, find a diagonal matrix A that satisfies the

given condition. 4

33. Verify Theorem 1.7,1(h) for the matrix product AD and The

orem 1.7.1(d) for the matrix A, where

‘- In Exercises 11—12, compute the product by inspection. ‘4

100 200 000

Ii. 0 0 0 0 5 0 0 2 0

003 000001

b- In Exercises 23—24, find the diagonal entries of AD by inspec

tion. 4

3 2 6 —127

23.A= 0 I —2 , B= 0 5 3

0 0 —1 0 0 6

4

24.A= —2

—3

39
II 0

13.
—1

00

00,

0 7

B

U
a 0

16.(a) w x
b

yz

—3

—l

2 a—2b+2c 2a+b+c

26.A= 3 5 a+c

0 —2 7

In Exercises 27—22, find all values of x for which A is invertible.
4

x—1 X1 X4

27.A= 0 x+2 x3

0 0 x—4

x—f 0 0

28.A= x x— 0

x2 x3 x+

12 —l
17. (a) I

L

x x

x x

0 x

9 0

Co
18. (a) I

30

2

—7

—6

3
rI 0 0

31. 45= lo —l 0
[0 0 —l

20. 0

0

2

3

0

19 0 0
32.A2= 0 4 0

Lo 0 1

4

0

5

I 0 0 0

2 —5 0 0
21.

—3 4 0

I —2 I 3

2 0 0 0

—3 —l 0 0
22.

4 —6 0 0

0 3 8 —5

[—1 2 5 [2—8 0

A=I 0 I 3, B=I0 2 1

[0 0—4 [o 0 3

34. Let A be an it x it symmetric matrix.

(a) Show that A2 is symmetric.

(b) Show that 2,12
— 3,1 + I is smmetric.
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35. Verify Theorem 1.7.4 for the given matrix A. 43. V.’e showed in the text that the product of symmetric matrices

-, is symmetric if and only if the matrices commute, Is the prod

r 2 — ii
I —2 3 uct of commuting skew-symmetric matrices skew-symmetric?

(a) A11 31 (b) A —2 I —I Explain.

L i 3_7 4j
Working with Proofs

36. Find all 3 x 3 diagonal matrices A that satisfy

A2 — 3A —41 = 0
44. Prove that every square matrix A can be expressed as the sum

of a symmetric matrix and a skew-symmetric matrix. [Hint:

37. Let A = lao) be ann x it matrix. Determine whether A is Note the identity A = (A + AT) + (A — AT).]

symmetric. 45. Prove the following facts about skew-symmetric matrices.

(a) a P + fr (b) 0ij
=

— (a) If A is an invertible skew-symmetric matrix, then A is

(c) a, = 21 + 2] (d) a = 212 + 2j7 skew-symmetric.

(b) If A and B are skew-symmetric matrices, then so are AT,

38. On the basis of your experience with Exercise 37, devise a gen
A+ B, A — B,andkA foranyscalark.

eral test that can be applied to a formula for a, to determine

whether A = [aqi is symmetric. 46. Prove: if the matrices A and B are both upper triangular or

both lower triangular; then the diagonal entries of both AS

39. Find an upper triangular matrix that satisfies and BA are the products of the diagonal entries of A and B.

A3
— [I 30] 47. Prove: If A’A = A, then A is symmetric and A = A2.

True-False Exercises

40. If then x it matrix A can beexpressed as A = LU, where L is

alowertriangularmatrixand U isanuppertriangularmatrix,
TF. In parts (a)—(m) determine whether the statement is (rue or

false, and justify your answer.
then the linear system Ax = b can be expressed as LUx = h

and can be solved in two steps: (a) The transpose of a diagonal matrix is a diagonal matrix.

Step 1. Let Ux =y, so that LUx = b can be expressed as (b) The transpose of an upper triangular matrix is an upper tn

Ly = b. Solve this system. angular matrix.

Step 1 Solve the system Ux = y for x. (c) The sum of an upper triangular matrix and a lower triangular

In each part, use this two-step method to solve the given matrix is a diagonal matrix.

system.
— — (d) All entries of a symmetric matrix are determined by the entries

0 Oi 2 —l 3 xi Ii occurring on and above the main diagonal.

(a) —2 3 01 0 1 2 x2 = —21
2 4 lJ 0 0 4 oj (e) All entries of an upper triangular matrix are determined by

the entries occurring on and above the main diagonal.

2 0 0 F3 —5 2 x,9 F 4

(b) 4 1 0 I 0 4 1 2 I = I (f) The inverse of an invertible lower triangular matrix is an upper

—3 —2 3 [p 0 2 x3j [ 2
triangular matrix.

(g) A diagonal matrix is invertible if and only if all of its diagonal

‘ In the text we defined a matrix A to be symmetric if AT = A. entries are positive.

Analogously, a matrix A is said to be skew-symmetric if AT = —A. .
(h) The sum of a diagonal matrix and a lower triangular matrix is

Exercises 41—45 are concerned with matrices of this type. (
a lower triangular matrix.

41. Fill in the missing entries (marked with x) so the matrix A is

skew-symmetric.
(i) A matrix that is both symmetric and upper triangular must be

a diagonal matrix.

x x 4 x 0 x
lfAandflaren xn matricessuchthatA±Bissvmmetric,

(a)A= 0 x x (b)A=Ix x —4 then A and B are symmetric.

x—l x L8 x x
(k) If A and B are it x ii matrices such that A + B is upper trian

42. Find all values of a, b, c, and d forwhich A is skew-symmetric. gular, then A and B are upper triangular.

0 2a — 3b + C 30 — Sb + sd
(1) If A2 is a symmetric matrix, then A is a symmetric matrix.

A = —2 0 So — Sb + 6c (m) If kA is a symmetric matrix for some k 0 0, then A is a sym

—3 —5 d J metric matrix.

-4


