PAPER No. T1-3

A Generalization of the Accessibility Problem for Control Systems

Arthur J. Krener University of California Davis, California

Preliminaries

Let M be an m+l dimensional C manifold. Points in M will be denoted by p, q, p_0 , p_1 , etc. Let t: $M \longrightarrow R$ be a C function such that $dt \neq 0$. We assume at each $p \in M$ there exists a neighborhood V containing p and a a chart $(t,x): V \longrightarrow R^{m+1}$ where $x = x_1, \dots x_m$.

We denote the tangent space to M at p by ${\tt T\,M}_p$ and the tangent bundle by ${\tt TM}.$

Let V be a neighborhood of $p \in M$, we define $V^{+} = \{q \in V: t(q) > t(p)\}$

and
$$V^- = \{q \in V: t(q) < t(p)\}.$$

Let N be another C^{∞} manifold, a function $f\colon M \to N$ is $(\underline{pwC^{\infty},C^{\infty}})$ map if for every $p \in M$ there exists a neighborhood V and C^{∞} functions $g:V \to N$, i=1,2, such that $g_1(q)=f(q)$ for $q\in V^{+1}$ and $g_2(q)=f(q)$ for $q=V^{-1}$. We define $f^+=f_{V^+}$ (f restricted to V^+) and $f^-=f_{V^-}$. We consider the function, f, to be double-valued at points $q\in V$ such that $f^+=f_{V^+}$ (for $f^+=f_{V^+}$). From the context it will be clear which value we mean.

A $(\underline{pwC}^{\infty},\underline{C}^{\infty})$ vector field, X, is $pw(\underline{C}^{\infty},\underline{C}^{\infty})$ map X: M — TM satisfying

$$\begin{array}{ll}
(i) & x_p \in T_p M \\
(ii) & \langle dt, X \rangle_p = 1
\end{array}$$

((dt,X) is the natural pairing between a one-form and a vector field, and in this case (dt,X)p = X(t)p).

Each $(pwC^{\infty},C^{\infty})$ vector field X gives rise at least locally to a flow denoted $\Upsilon(s)p$, the curve $s \to \Upsilon(s)p$ is the solution to the differential equation

$$\dot{\gamma}(s)p = \frac{d}{ds}\gamma(s)p = X_{\gamma(s)p}$$

with initial condition

$$\gamma(0)p = p$$
.

 TM A vector field system, F, is map F: M ightarrow 2 TM is the collection of all subsets of TM) satisfying

$$(i) F_p \subseteq T_p^M \forall p \in M$$

$$(ii) if Y_p \in F_p then \langle dt, Y_p \rangle = 1$$

The vector field system is C^{∞} , (alternately (pw C^{∞} , C^{∞})), if for every $p \in M$ and for every $Y \in F$ there exists C^{∞} , (alternately (pw C^{∞} , C^{∞})), vector field X defined on a neighborhood, V, of p such that $X_p = Y_p$ and $X_q \in F_q$, $Y_q \in V$. The vector field system, F, is finite or convex if $Y_q \in M$, Y_p is a finite or convex (respectively) subset of

Find system, F, is finite or convex if Ψ p \in M, F_p is a finite or convex (respectively) subset of T_p^M . In an abuse of notation we will also use F to denote $\{X: \ X(pwC^{\infty},C^{\infty}) \ vector field and \ X_p \in F_p, \ \Psi \ p \in M \}$ We similarly define E.

Suppose X_1, \dots, X_n are $(pwC^{\infty}, C^{\infty})$ vector fields

on M. Henceforth we will use E to denote the finite vector field system defined by

$$E_{p} = \{X_{1p}, X_{2p}, \dots, X_{np}\}$$

and F to denote the convex vector field system defined by

$$F_p = convex hull E_p \subseteq T_pM$$

If $X \in E$ and $A \in F$ then X will be referred to as an <u>E-control</u> and A as an <u>F-control</u>. X is also referred to as a bang-bang control.

Accessibility and Controlability.

The set of points F-accessible from p is denoted by $\overline{a(F,p)}$ is defined as a (F,p) = $\{p \in M: \exists A \in F \text{ with flow } \alpha \text{ and } \sigma > 0 \ni p = \alpha(\sigma)p_o\}$.

The set of points F-controllable to p a(-F,p) = $\{p \in M: A \in F \text{ with flow } \alpha \text{ and } \sigma > 0\}$ p = $\alpha(-\sigma)p_0 \text{ (or } p_0 = \alpha(\sigma)p)\}$.

The set of points E-accessible from p denoted by a(E,p) and the set of points E-controllable to p denoted by a(-E,p) are defined similarly.

These sets are sometimes referred to as the set of points bang-bang accessible from p and bang-bang controllable to p respectively.

Clearly since $E \subseteq F$,

$$a(E,p_o) \subseteq a(F,p_o)$$

and
$$a(-E,p_0) \subseteq a(-F,p_0)$$
.

Let V be a neighborhood of p_o in M, $a(F, p_o, V)$ = $\{p \in V : \exists A \in F \text{ with flow } \alpha \text{ and } \sigma > 0 \ni p = \alpha(\sigma)p_o \text{ and } \alpha(s)p_o \in V \text{ for } s \in [0,\sigma]\}$.

The sets $a(-F,p_0,V)$, $a(E,p_0,V)$ and $a(-E,p_0,V)$ are defined accordingly.

Note

$$a(E, p_0, V) \subseteq a(F, p_0, V) \subseteq V^{+} \subseteq V$$

and

$$a(-E,p_o,V) \subseteq a(-F,p_o,V) \subseteq V \subseteq V$$
.

Integrability and Local Semi-integrability

Let H: M → 2TM satisfying

(i) H_{p} is a linear subspace of $T_{p}M$, $\forall p \in M$

(ii)
$$\forall p \in M \text{ and } \forall Y_p \in H_p$$
,

there exists a neighborhood, V, of p and C^{∞} vector field X such that $X_p = Y_p$ and $X_q \in H_q$, $Y_q \in V$. H is called a C^{∞} distribution on M, and we will confuse notation by allowing $H = \{X, aC^{\infty} \text{ vector } \}$

field: $X_p \in H_p$, $Y p \in M$. H is non-singular if

 $\begin{array}{lll} \dim \ H &= \ constant. & H \ is \ \underline{locally \ finitely \ gener-} \\ \underline{ated} \ \ If \ \ V \ p & M & \ neighborhood \ V \ of \ p \ and \ C^{\infty} \ vector \ fields \ X_1, \ldots, X_n \ such \ that \end{array}$

$$H_q = span \{X_{1q}, \dots, X_{nq}\} \ \forall \ q \in V.$$

Let X, Y be C^{∞} (alternately $(pwC^{\infty}, C^{\infty})$) vector fields on M. The Lie bracket [X,Y] is a C^{∞} (alternately $(pwC^{\infty}, C^{\infty})$) vector field on M defined by

$$[X,Y] = XY - YX.$$

Let D'H = H + [H,H]. D'H is the C^{∞} distribution of all linear combinations of vector fields in H and Lie brackets of vector fields in H with coefficients from the space of C^{∞} real-valued functions on M. We define

 $D^{i}H = D^{i-1}H + [H,D^{i-1}H]$ and $DH = \bigcup D^{i}H$. DH is called the <u>derived system</u> of H.

Theorem 2.1. (Frobenius-Hermann [2]).

Suppose H is a C^{∞} distribution on M such that on some open neighborhood V of p, H satisfies one of the following

- (a) DH is non-singular
- (b) dim DH $_{\gamma(s)}$ is constant along every C^{∞} curve $\gamma(s) \in V$ satisfying $\gamma(0) = p$, $\dot{\gamma}(s) \in DH_{\gamma(t)}$
 - (c) DH is locally-finitely generated on V
 - (d) M and H are real analytic

Then there exists a unique maximal submanifold, L, of M in V satisfying

$$p \in L$$
 and $T_qL = DH_q$, $\forall q \in L$.

L is called the integral submanifold of H (or DH)
in V, through p.

Corollary 2.2. Suppose E,F are C^{∞} vector field systems as above and we define a C^{∞} distribution H as

$$H_p = span E_p \subseteq T_pM$$
.

H satisfies the hypothesis of Theorem 2.1 on an open neighborhood V of $\mathbf{p}_{_{\mathbf{O}}}$

$$a(E,p_0,V) \subseteq a(F,p_0,V) \subseteq L$$

and

$$a(-E,p_{o},V) \subseteq a(-F,p_{o},V) \subseteq L.$$

We would generalize the above result to systems which are only $(pwC^{\infty}, C^{\infty})$. A $(pwC^{\infty}, C^{\infty})$ distribution, H, on M is a map

satisfying

(i) $\forall p \in M$, \exists open neighborhood V of p such that H restricted to V^+ is a C^∞ distribution on V^+ and H restricted to V^- is a C^∞ distribution on V^- (we denote the restriction by H^+ and H^- respectively).

(ii) Ξ c > 0 and C^{∞} curves γ^{+} : [0,c] V^{+} and γ^{-} : $[0,c] \rightarrow V^{-}$ such

that
$$\gamma^+(0) = \gamma^-(0) = p$$
 and $\dot{\gamma}^+(s) \in H^+_{\gamma(s)}$ s

$$\hat{\gamma}(s) \in H_{\gamma(s)}$$

A $(pwC^{\infty}, C^{\infty})$ distribution H is locally semi-integrable if for every $p \in M$, there exists a neighborhood V of M and C^{∞} restriction, H^{+} and H^{-} , of H to V^{+} and V^{-} such that H^{+} satisfies the hypothesis of Theorem 2.1 on V^{+} and H^{-} satisfies the hypothesis on V^{-} . They need not satisfy the same condition of (a), (b), (c) or (d).

$$T_{\mathbf{q}} \stackrel{+}{\mathbf{L}} = DH_{\mathbf{q}}^{+}$$
 $\forall \mathbf{q} \in V^{+}$
 $T_{\mathbf{q}} \stackrel{-}{\mathbf{L}} = DH_{\mathbf{q}}^{-}$ $\forall \mathbf{q} \in V^{-}$

Furthermore, $p \in closure\ L^+$ and $p \in closure\ L^-$. We call L^+ , L^- the unique maximal semi-integrable submanifolds of H (or DH) through p.

Corollary 2.4. Suppose E,F are $(pwC^{\infty},C^{\infty})$ vector field systems as above and we define a $(pwC^{\infty},C^{\infty})$ distribution H as

$$H_p = span E_p \subseteq T_p^M$$

Then if H is locally semi-integrable there exists a neighborhood V of $p_{\rm O}$ and semi-integrable submanifolds L^+ and L^- of H such that

$$a(E,p_0,V) \subseteq a(F,p_0,V) \subseteq L^+$$

and

$$a(-E,p_o,V) \subseteq a(-F,p_o,V) \subseteq L^-.$$

REFERENCES

- Hermann, Robert, "Differential Geometry and the Calculus of Variations, Academic Press, 241-257, 1968.
- Hermann, Robert, On the accessibility problem in Control Theory, International Symposium, Nonlinear Differential Equations and Nonlinear Mechanics, 325-332, Academic Press, 1963.