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1. INTRODUCTION

The ultimate aim of this work is to put the theory of
""observability'" for nonlinear systems in a form that is
sultable for use in the construction of estimators and
observers for complicated nonlinear systems, for example,
aircraft. The concepts of Kalman filters and Luenberger
observers, that have been so successfully applied to linear
systems, have so far received no nice generalization for
nonlinear systems, and we believe that geometric ideas might
play a crucial role in such a development. This paper is a
shorter, more intuitive version of the full-scale one, to
be published elsewhere [15], and also reflects a series of

talks given by one of us (A.K.) at the Ames conference.
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Our emphasis here' is on.carrying over to nonlinear

systems the '"duality" betweenvobservébility and # "control-

$

lability" that is so well known and useful for linear systems.

We do this not by constructing a "dual' nonlinear system
(although that would be a desirable, but harder, approach!)
but by exploiting the duality (already well known to differ-

ential geometers) between 'vector fields'" and “"differential

forms" on manifolds. 1In turn, the relation between 'control-
OAGErLr o
lability" and "vector fields" i%4 Zn a theorem of

W.L. Chow [5,9,10] that has already been extensively exploited,

refined, and explained in the control-systems theory

literature.

2. CONTROLLABILITY AND VECTOR FIELDS

Consider an input-output, continuous-time, state space

model of a system of the usual form.

dx _ '
H f(X,U)

(2.1)

y = gx)

x is the state vector, element of a space X. u 1is the

control vector, element of a space U. y is the output

vector, element of a space Y. Of course, the theory is
best known, developed and applied in case it is of the

linear form:
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dx _
It Ax + Bu

S (2.2)
y = C(Cx

It is known that "controllability" and ""observability" are

’

in this linear case, respectively the following conditions:

B(U), AB(U), AZB(U),...

(2.3)
spans the vector space X

(kernel C) N kernel(CA) n kernel(CAZ) n -« = (0) (2.4)

Look at the nonlinear system (2.1) as living on the
manifolds X, U, Y with all data sufficiently smooth. It
was shown in [9] that the condition (2.3) could be generalized

in the following way: For each fixed u, construct the

vector field

_ .

AU = f(X,U) ﬁ (2°5)
on X. (For the notation of differential geometry, refer
to [2] or [10]. 1In (2.5) we use an obvious "'vectorial

notation'".) Let V(X) denote the Lie algebra (under Jacobi
bracket) of smooth vector fields on X. Let g denote the
smallest Lie subalgebras of V(X) containing all of the
vector fields Au’ as u ranges over U. L is.called the

system Lie algebra, and plays a basic role in many important

structural questions concerning nonlinear systems.
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For each x ¢ X, ‘let L(x) cC Xx denote the linear
subspace ofi the tangent space to X spanned by the values

of all the values at x of the vector fields of L.

Definition

The system (2.1) is said to satisfy the controllability

rank condition if L acts transitively on X, i.e., if

~

E(x) = Xx (2.6)

for each x ¢ X

Remark. If (2.6) is satisfied, it follows from Chow's
theorem [5,10] that, starting at a given point X X,
every other point is reachable along a solution of (2.1) for

some suitablf choice of control, but time has to be allowed

to run backwards as well as forwards. Partial information

about the sett reachable by going only forward in time is

available from work of Krener [20] and Sussman—Jurdjevich

[22].

Another way of thinking of this is that the degree of
transitivity of the system Lie algebra L is an "infinitesi-
mal' measure of '"controllability'". Our aim now is to give

an analogous (and, in fact '"dual", in a precise téchnical

technical sense) criterion for "observability'.
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3. THE OBSERVABILITY ‘PFAFFIAN SYSTEM

First, let us review the standard ideas concerning
"observability" for systems of type (2.1). (We follow
Sussman's ideas [23-26] concerning the manifold formulation

of systems of type (2.1).) For each point X4 consider

the map

¢X : (curves in U) - (curves in Y)
0

obtained as follows:

The image of the curve t » u(t) is the

output curve t > y(t) of the system (2.1)

with XO the initial state vector.

Let us say that Xg,Xq € X are indistinguishable,

written

if

I, defined in this way, is an equivalence relation. The

system (2.1) is said to be observable if the equivalence

Classes are just points, i.e., if different points of the

state space give different input-output maps.
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Let F(X) and F(Y) denote the (commutﬁtive, associ-
ative, real-scalar) algebra of Cw, real-valued functions

on the manifolds X and Y.

F'(X), FL(Y) denote the F(X) and F(Y)
modules of one-differential forms on X
and Y. (See [2,10].)
The "read out map"
g: X » Y

associated with the system (2.1) will be assumed to be (=
g*¥: F(Y) » F(X)
g*: Fl(y) » Fl(x)

S
denote the dual pull-back map . Let L C V(X) denote the
Lie subalgebra of vector fields defined by the system (2.1)
For each vector field A ¢ V(X) and one form 6 ¢ Fl(X),

one can define the Lie derivative
Z, (8)

of © by the vector field A, as another one-form.

Definition

The observability Pfaffian system P defined by the

system (2.1) is the smallest F(X) submodule of Fl(X)
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Ra

containing the one-forms g*(Fl(Y)) and closed under Lie
derivative by vector fields of L. Thus, P is formed by i

linear combinations of one-forms of the £oqmr;§;;2
1
D, o, @O

1 . .
where vy ,...,ym 1s a coordinate system for Y, and

Al’AZ""' are an arbitrary set of vector fields in the

system Lie algebra associated with the system.
If the rank of P is constant over X (which we

shall assume, for simplicity) then it is a completely

integrable Pfaffian system, in the Frobenius sense, i.e.,

the two-forms d6 for 6 ¢ p lie in the Grassman algebra

ideal generated by P.  Then, by the Frobenius Complete 3

Integrability Theorem [2,10], the maximal submanifolds of |

X for which all the forms of P restrict to zero define

a foliation of X. Our basic dbservation is that this
foliation is (modulo certain possible complications described
in more detail in the main paper [15]) justrthat defined by

the indistinguishability equivalence relation I. 1In

particular:

The condition for ""observability" which is
analogous to the Chow condition for 'control-

lability is that

P = Fl(X)

?




1
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of forms of n*(Fl(Y))

and their iterated Lie 'derivatives under L 3

have, at each point of X,

possible rank.

~

the maximal

The full proof of this result is given in [15]. Here,

we shall only give a plausibility: argument. Let t - At

be a one-parameter family of véctor fields in L.

It may

~

be considered as the infinitesimal generator of a flow

on X [10].

curves t -+ x(t)

The orbits of the flow are the solution

of the non-autonomous differential equations

7o At (3.1) -
Now, suppose that B is a vector field on X which
annihilates g, i.e.,
6(B) = O! (3.2)
for all 6 le g

(Geometrically, this condition
the foliation defined by P.)

conditions for solutions of (3.
curves of B.

This means that

surface

means that B 1is tangent to
Let us deform the initial
1) by means of the orbit

we construct a two-parameter

(s,t) » x(s,t)
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in X such that:

X = AN(x(s,t)) (3.3)
9
55 (s,00 =

B(x(x,0)) (3.4)

Let us now consider a real-valued function h ¢ F(Y)

: on the observation space Y. We ask:

What are the conditions on At and B
which assure that the function

(s,t) - hig(x(s,t))) = h'(s,t) does

not depend on s?

(The relation to the ""observability" question for system
(2.1) will be explained in a moment.) We can work this out

using Lie derivatives:

ht(s,t) = g*(h)(x(s,t))
Hence,

55— (s,0) = g*(dh) (B) (x(s,0))

=0 (3.5)
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since g*(dh) € P and (3.2) is satisfied. Now,

4 2
oh' _ % 9 X
3sst - & (dh) (asat)

2= (2*(dn)) (A" (x(s,t))

Set t = 0, and use (3.4): . - ?;31

s (5,0) = (A" g*(dn)) (B) (x(s,0)) (3.6)
(+ denotes the contraction operation between vector fields
and differential forms. See [10].) Now, the fundamental

identity 1linking contraction, Lie derivative and exterior

derivative gives:

(%4 g (@) = @ (g*(ah) - ATS dg* (ah))

2 (g*(dn)) -
A

in o

Hence, we can rewrite (3.6) as:

oh'
3sat (500)

1]

QAt (g* (dh)) (B) (x(s,0))

n
m o

’ (3.7)

since B annihilates all differential forms in g*(Fl(Y))

and their arbitrary order Lie derivatives by elements of L.

vonar

ot e
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Continuing in this way, we see that all derivatives
with respect to t of 3h'/3s ?vaniSh at t = 0, hence
(at least if all the data is refal analytic), that:

o (s,t) = EO , (3.8)
1.e., h' 1is constant in s, {In {15], the technical tools
for relaxing '"real analyticity”ﬂare developed.)
Thus, the curves L 'J
t > x(s,t)
are state-space curves of the system (2.1), with the same
input curve, but with differing initial state vector. Hence,
(3.8) means that the output
y(s,t) = g(x(s,t))
f
is independent of s, l1.e., the state space curve
x(s) = x(s,0)
i
lies in a single equivalence.
To see the system-theoretit interpretation of this
result, return to the system in form (2.1). Let t =+ u(t)
be a curve in the input space U. Set:
AY = f(x, u(e)) & (3.9)
b ax

The orbit curves of the flow generated by At are the solu-
tions of



-
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&= kw0,

o ,
i.e., the state-space curves of the system (2.1) of the-

|

"indistinguishability" equivalence relation 1. Set:
V.= {BeV(X): P(B) = 0}
We have then proved that:

The elements of V are tangent to the

equivalence classes of 1I.

One can also prove conversely (essentially by just reversing
the argument given above), that the values of Y fill up

the tangent spaces to the equivalence classes of I, provided’
that I defines a nonsingular'foliation of X. Note that

the following properties of V also hold:

[(V,V] c V. . |7

~, 2
(This is "complete integrability'".)

(L,vl cv

i.e., the elements of L 1leave invafiant the foliation V.

-~

Let us now specialize system (2.1) to the familiar
linear system (2.2) and show how the "full observability
rank conditions", i.e., V = 0, 1leads to the familiar

observability conditions for linear systems.
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= . : 9
Au = *(Ax + Bu) %
dg = Cdx.
25 dg) = d(z, (g)
u u

= d((Ax + Bu)C)

= (AC) dx

<, , £, (dg)
Au

3
Au d((Ax-FBu) =5 ° ACdx)

AZCdx

1]

Continuing in this way, we see that the condition that V =

~

1s that

C, AC, A’c, ...

have only zero in the intersection of their kernels.

This way of looking at the observability concept for
system (2.1) suggests a more coordinate-free, manifold-
theoretic way of defining an input-output system. Suppose

manifolds U,X,Y are given, with the following data:

a) A Lie subalgebra L C V(X).
b) A map u ~» Au of U -+ L.

c) A '"read-out map" g: X > Y

. e —_——

0
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One can then identify -

&

: [ .
"inputs", ”statif", and "outputs"

|
in the following way. A curve

;
t > ju(t)

¢
in U 1is an input. It deflines 4 curve t - At = Au(t) in
) i

L. Given a state Xg € X, %a cuﬁve t » x(t) 1is defined as
~ - 48

- 4

the solution of

~
3

dx t . 5 (
Ir = AT(x(t)) 4= A (x(t)) ’
dt x 3;L§ ‘-i(t)
(
x(0) = x 5

i,

The curve ;

t > y(t) 1* é(X(t))

Al

is the output. Everything Qe have done for system (2.1)

obviously generalizes to this set-up.

) |
Finally, it is worthw%ile pbinting out explicitly in
what sense the condition "U = O”; we have found for observ-

ability is "dual" to the controllability in turn obtained

using Chow's theorem. L, as one abstract Lie algebra, acts

-~

via derivations in the commutative associative algebra F(X).

V(X) is an F(X)-module. L | acts--via Jacobi bracket--on
V(X), and the Chow controlliability criterion invélves this

action. F'(X) is the dual F(X)-module to V(X). The Lic

Ly
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derivative action of L' in Fl(X) 1s then just the dual to

the Jacobi bracket operation pf L in V(X).
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