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Abstract

Given an input-output map described by a
nonlinear control system x = f(x,u) and non-
linear output y = h(x), we present a simple
straightforward means for obtaining a series
representation of the output y(t) in terms of
the input u(t). When the control enters
linearly x = f(x) + ug(x) the method yields the
existence of a Volterra series representation.
The proof is constructive and explicitly
exhibits the kernels. It depends on standard
mathematical tools such as the Fundamental
Theorem of Calculus and the Cauchy estimates
for the Taylor series coefficients of analytic
functions. In addition, the uniqueness of
Volterra series representations is discussed.

1. 1Introduction

Consider a control system Z of the general
form

x = £(x,u)
(1.1 x(0) = x°
y = h(x)

where the input takes values in IRz, the state x
m
is an element of IR , and the output y takes

values in IR™. The vector field f and output
function h are assumed to possess a sufficient
degree of smoothness. Depending on the form of
£, the input function u(t) is either absolutely
integrable on [0,T] or is bounded and measurable.
In other words u belongs to one of the two

Banach spaces Ll([O,T] , IRI’) or L7([0,T], IRI‘).
In either case the output y(t) is a member of

the Banach space CO([O,T],DRn) for each choice
of input. In view of this it is natural to
associate with & the input-output map
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where r = 1,s.
For the linear system

X = AX + Bu
(1.2) %0 = x°
y = Cx

where A, B, C are constant matrices of appropri-
ate dimension, the map § is affine and given by
the variation of comnstants formula

(1.3) vy = cd0 4+ theA(t-s)Bu(s)ds.
0

The kernel function w(t) = CeAtB is often referred
to as the impulse response function or the weight-
ing pattern of the system.

If the system is not linear then § does not
have such a simple representation as (1.3).
Wiener, in the 1940's, gave consideration to
representation of ¢ in a form similar to

t
(1.4 y() = w0 + [ w (c,0)n(s)ds
0
Ens
+f0f La,y(t,8 158,08 Yu(s,)ds ds i+
0

a generalization of (1.3). Functional expansions
such as (l.4) were first considered by Volterra
[9] and have since become known as Volterra
series. Since their introduction by Wiener,
papers dealing with Volterra series have appeared
periodically in the system theory literature
although until recently questions regarding
validity and/or convergence of such a series have
been treated lightly.

In part, the current interest in the Volterra
series representation stems from a study of bi-
linear systems

2
X = Ax 4+ ¥ u B .x
. ivi
i=1
(1.5) x(0) = xo
y = Cx.

In their paper [3] d'Alessandro, Isidori, and
Ruberti showed that bilinear systems do possess



Volterra expansions and explicit formulas for
the calculation of the kernel functions
wk(t,sl,...,sk) were given. Brockett [1] used a

technique of Carleman [2] together with an
approximation result of Krener [7] to show
existence and uniqueness of Volterra series for
systems of the form

W
]

2
£(x) + T u;g(x)

i=1
(1.6) x(0) = x°
y = h(x)

where the functions f, g, and h are analytic.
Recently Gilbert [4] has developed similar
results for (1.1) and (1.6) based on functional
analytic techniques due to Graves [5]. The
major purpose for the present paper is to
introduce a simpler and more straightforward
approach to results similar to those of Brockett
and Gilbert.

2. The Basic Algorithm

For the sake of simplicity, we consider
(1.6) for scalar input and scalar output. The
case of a vector input and a vector output
offers no conceptual difficulty.

Let Yo(t,s,x) be the solution of the dif-

ferential equatiom,

d
Tt Yolt>s.x) = f(YO(t,s,X))
such that

yo(s,s,x) = X.

Given u ¢ Ll(O,T],BV ), demote by y (t,s,x) the

solution of

L (55,0 = £y (£,5,%)) + u(D)g(y (,5,%))

satisfying

Yu(s,s,x) = X.
Further, we designate points of the form
YO(S,O,XO), Yu(s,O,xo) by the simpler notation
Xo(s), Xu(s) respectively.

Next, consider the locus, p(s}, of end-
points obtained via concatenation of the
trajectory Xu(T), 0 <+ <s, with the trajectory

YO(*,S,Xu(s)), s <1< t. The curve is given by
2 () = yo(t,8,% (5)) = y(t=5,0, (s))

and satisfies

p(0) = Xy(B), p(t) = y, ().

Applying the Fundamental Theorem of Calculus to
the function h(p(s)) yields

t
d
(2.1) hex (£) = hiyy(t) +j0 T B (s))ds.
To calculate the above integrand we first define
the function H(sl,sz) by
H(sp,s,) = hly(t-5,,0,% (s,)).
Then,

h(p (8)) = H(s,s),

3H dH
d 1 2
& b)) =(a—-sl + a——-—32> (s,8).

This last equation in conjunction with the
equation,

3h(yy(t-s,0,%))

£ (x)
ax xlxu(s)
_ dh(x)
= ax f(x)‘ 3

x=Y0(t-s,0,xu(S))

(YO is the flow of f) yields
ah(yo(t-S,O,X))

S hGe () = ue)— g 2 (1)
x=xu(s)
Bh(yo(t,s,x))
= u(e) @]
x=xu(s)

In view of this, equation (2.1) becomes

(2.2) hx () = wy(t) + I: W, (t,5,% (s))u(s)ds,
where
wo(t) = h(xy(r))
} 3h(yy(t,s,x))
W, (t,8,%x) = -‘—ax—g(X)-

Next, we replace h(-) by Gl(t,s,-) and use (2.2)
to compute ﬁl(t,s,xu(s)) obtaining

s
W, (£,5,%,(8)) = W, (€,5) +Jrov'zz(t,s,r,xu<r)>u<r>dr,

where

W, (£,8) = W (t,5,%,(s))



3w, (£,8,Y4(s,1,%))
Py g(x) .-

az(c,s,r,x) =
Substitution of this into (2.2) yields

t
h(x (1)) = wy(t) + r W, (t,8)u(s)ds
Y

R
+ T4 (t,s,r,x (r))u(r)u(s)drds.
JO.;O 2 u

After k repetitions of the above we have
h(xu(t)) represented as

k-1 |t
e (0) = wo(e) + 3 [ w ce,s™u s™as”
170

t
+ Iow:rk(t,skx(sk))uk(sk)dsk

where the expression,

t

“

| m jul m
Pw (t
M ce,sMu sMas™,

denotes the multi-integral,

t S

f ...F m-lw(t:,sl,...
0

Yo ,sm)u(sl)...u(sm)dsm...dsl.

The functions W W oare given recursively by

the formulas,

- m~-1
N O A CI I O))

Gm(t,sm,x) = = g(x)
(2.3)
wm(t,sm) = Gm(t,sm,xo(sm)).

Continuing indefinitely, the procedure
outlined here yields a formal series of the
type (l.4). For bilinear systems with output
map h(x) = x the above reduces to Picard
iteration. However, in the general case the
two are not equivalent.

Sufficient hypotheses on f,g,h which just-
ify the above developments can be given.
Definitions and theorems pertaining to these
matters occur in the next section. In additionm,
uniqueness of such expansions is also treated.
The proofs of these results as well as the
extension of the basic algorithm to systems of
the form (1.1) are to appear elsewhere.

3. Definitions and Statements of Theorems

The first three theorems in the section
pertain to the case where ¢ has the form (1.6)
while the last considers the question of unique-
ness of a Volterra representation. Preceding
these are the pertinent definitions. We con-
tinue to assume scalar input and scalar output.
Definitions and theorem statements could be

worded so as to accommodate vector inputs and
outputs, but this is not pursued since it does
not introduce any conceptual difficulties but
does produce considerable notational complica-
tioms.

(3.1) Definition Let wl’ WZ be maps from
L} 0,11, By into ¢%([0,T], R) and u,
Yy € Ll([O,T] ,IR). By the notation
k.
§1(0) = g, + o(flu - ugl™)
1

we mean that for every ¢ > 0 there exists a § > 0
such that

le(u) - @2(“)“0 < e“u - uou:

whenever
- < 8.
u - ugl, <5
Hire U-Hl and u-uo denote the usual norms on
L*([0,T],R) and cO([0,T],R). Similarly,

1@ = 4y + 0 - ey

if for some ¢ > O there exists a § > 0 such that
the above inequality holds.

(3.2) Definition ¢ has a Volterra expansion of

length-k if there are k + 1 functions (kernmels)

wo,wl,...,wk such that,

(i) LA is defined on [0,T], L is defined on

{(tysysen. <t<T}.

,sm)\o S

(ii) Each v, is continuous on its domain of

definition.
kot W .
WD) (8) = wo(e) + 3 [ wou ds® + o(u])
m=1'0 1

(3.3) Definition ¢ has a Volterra series repres-

entation if there exists a set of kernels wm,

0 < m< =, satisfying (i), (ii) and there exists

a § > 0 such that whenever uuul <
® ot m m, . m
g (©) = wy(e) + x [ v ce,sMu sMas™
m=1"0

The series converges in norm topology on
CO([O,T],IR) for all Uuul <§.

(3.4) Theorem Let f and g be C~ vector fields
on R™. Given that the initial value problem

x = £(x), x(0) = %0

has a solution on [0,T], then for some fixed
5§ >0

x = £(x) + ug(x), =x(0) = x0

has a solution on [0,T] for all u with nuul < 6.

(3.5) Theorem Let h € ¢*1, f ¢ ¢!
k > 1. If the initial value problem

» 8 € Ck,



x = £(x), =x(0) = xo

is solvable on [0,T], then § has a Volterra
expansion of length-k.

(3.6) Theorem Let f,g be analytic vector
fields and h an analytic function. If % = f(x),

x(0) = xo has a solution on [0,T], then § has a

Volterra series representation.

(3.7) Theorem Let wl,gz be input output maps

which have Volterra expansions of length-k. If
k 1

*1 =y, + o(lu“l) then v

wi is the m— kermel of Wj’ j=1,2.

= wi, 0 < m< k, where

(3.8) Corollary If an input output map y has a
Volterra series representation then it is
unique.

The proof of Theorem (3.4) depends on the
following:

(3.9) Lemma Let w(s) >0, v(s) >0,

1
wsv € L7[0,T].
If f is continuous on [0,T} and satisfies

A5
0 < £(s) Sj [w(t)E(E) + y(r)dt
0

for all s € [0,T] then

8
I w(r)dr T
0< £(s) < &0 J‘ v(r)dr.
0

The following estimate, which is based on
the wellknown Cauchy estimates of analytic
function theory, is central to the proof of
(3.6).

(3.10) Lemma Let Gl’GZ""’GL’h be analytic
functions of n variables and have modulus
bounded by M on the closed polydisc P with
center a and radii rj = R. Then,

s d )

2 3 2Tty

!‘(Gl E{i—)( 1 W)h(a)l SL'(—R-—-) M.
2 1

4. Concluding Remarks

The principle aim of the preceding has been
to offer a simpler way of arriving at the
Volterra series representation for the input
output map of (1.6). Recursive equatioms,
(2.3), permit a geometric description of the

mEh kernel in the Volterra Series. It is this
interpretation which leads to the proof of con-
vergence via standard tools and results of
analysis.

For the case of bilinear systems the
explicit kernel formulas in [3] are easily
obtained from equations (2.3). In the general
case, (1.6), we follow along the lines of [1].
Explicit formulas are obtained by utilizing the
approximation results of {7] together with
equations (2.3).
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