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Stochastic integrals are defined using a differential rule and the fundamental theorem of
caleulus. It is shown that such integrals lead to the solution of stochastic differential equations
driven by a single Wiener process or square integral sample path continuous martingale.

1. INTRODUCTION

The importance of stochastic models has clearly been demonstrated in
numerous applications in science and engineering. Frequently the models
take the form of an initial value problem for an ordinary differential
equation with stochastic driving terms.

dX =f(t, X)dt + i g:(t, X )dw,

i=1

(1.1)
X(0)=Xx°.

On the intuitive level, the solution X (¢) is a stochastic process represent-
ing the ensemble of states of the system at time ¢, X° is the random initial
condition, f(x) the disturbance-free dynamics, the Wiener process W(t) is
the accumulated disturbance of type i to time t and g, (x)dW, the
infinitesimal effect of an incremental disturbance dW, on a system in state
X at time ¢.

*This research supported in part by The National Science Foundation under grant MC
575-05248 A01.
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106 A.J. KRENER

To make (1.1) mathematically precise is difficult because the sample
paths of a Wiener process are of unbounded variation on any interval
almost surely. An alternate formulation of (1.1) is the integral equation

k
X=X+ [0/ (s, X(s)ds+ Y {4 g:(s, X (s))dWi(s) (1.2)

i=1

but the meaning of this requires a definition of the stochastic integrals.
Wiener defined stochastic integrals of the form

fo h(t)dW (1) (1.3)

where h is a square integrable function, Ito [2] and Stratonovich [5]
extended this to integrals of the form

fo Y(1)dW (1) (1.4)

where Y (t) is stochastic process satisfying certain conditions. Wiener and
Ito took a Lebesque-like approach, ie., first defining (1.3) and (1.4) for
simple functions or processes and then extending it to a larger class by a
limiting process. Stratonovich took a Riemannian approach defining (1.4)
as the hmit of Riemann sums where the integrand is evaluated at the
midpoint of each subinterval. The Stratonovich integral is less general
than the Ito integral and generally gives a different answer. A variation of
Stratonovich is to evaluate the integrand in the Riemann sum at the point
of each subinterval which splits it into pieces of proportion A and 1—..
This s called the generalized Stratonovich or J-integral, A=1/2 is
Stratonovich and A=0 agrees with Ito when the former is defined. The
Stratonovich integral can also be defined via a “correction term” added to
the Ito integral. The correction involves the quadratic variation of
integrand with the Wiener process. Details can be found in the Appendix
of [12].

In this paper we take a formal approach; instead of defining the
stochastic integral we shall define a family of chain rules indexed by A,
0=1<1, for the composition of a C' function and a stochastic process.
Each chain rule and the fundamental theorem of calculus fixes the
definition of a stochastic integral,

[oh, W@y d,w (1.5)

where h{t,w) is a C! function. This integral is approximately as general as
the corresponding A-integral and agrees with it when both are defined.

The formal approach is in the spirit of Schwartzian distributions and
generalized-stochastic processes [ 1]. It generalized the alternate definition of
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the Wiener integral (1.3) for C! functions h(t) using integration by parts
as given by Paley, Wiener and Zygmund [4]. Generalizations to integrals
involving more than one noise fail because of a geometric obstruction.

In Section 3 we use the formal approach to define the solution of the
stochastic differential equation (1.1) deriven by a single noise (k=1). This
is done by showing that under suitable hypothesis on fand g there exist a
unique random field X (¢, w) depending on two parameters ¢ and w with
C' sample functions almost surely. The solution of (L.1) is X(t)
=X (t,w(t)). This is related (o work of Lamperti [3], Sussmann [6] and
Doss [11]. They have formally defined the solution of the stochastic
differential equation (1.1) for k=1 directly, without having first defined a
stochastic integral. We discuss their work in more detail in Section 3.

Although the formal approach to (1.1) i1s more restrictive in that it
requires k=1, it has some advantages. For example it shows that the
solution is of the form X ()= X(t, W(t)) where X(t,w) is a random field
whose sample functions are C! almost surely. From the formal approach
it is easy to see why the correction term of Wong and Zakai [9] must be
added to (1.1) when W(t) is approximated by a Lipschitz continuous
process. The formal approach may prove useful in developing numerical
schemes to simulate solutions to (1.1).

In Section 4 we extend the formal approach to differential equations
driven by a square integrable sample path continuous martingale.

2. INTEGRATION
Let Wi(r) be a Wiener process; we wish to define integrals of the form
[oh(e, W(t)dW (1) (2.1)

when #(z,w) is a real-valued function which is C! in ¢ and w. To do so we
shall use two axioms. The first is the fundamental theorem of calculus:

VEdH (1, W ()= H(t, W ()] (2.2)

The second is the chain rule for differentials, actually a family of chain
roles indexed by 4,

dH(E W) =H (¢, W(t)dr + H (s, W(e)d,W(t)
‘ +(12=)H,, (L, W(t))dt  (2.3)

The subscripts + and w denote partial differentiation. We restrict (2.3) to
functions H(t,w) which are continuously differentiable with respect to ¢
and twice continuously differentiable with respect to w. If A=1/2, (2.3) is

B
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standard chain rule and if 1=0 it is a special case of the Ito differential
rule.

We take (2.2) and (2.3) as primitive and use them to define (2.1). The
generalized Stratonovich approach is to define (2.1) by Riemannian sums,
take (2.2) as primitive and deduce (2.3) in the following fashion.

Define a family of difference operators

A, () =f(t+ (1 = D)At)—f (t - AAt)

for 0SA<IIf A=0 (12 or 1) A, is the forward (centered or backward)
difference operator. If At=(b—a)/n and t=a+iAt

H(G W)IE=lim Y AH (i, W(r)).
At—0i=1
Expanding A;H(z, W(t)) in a Taylor series based at t; we obtain
AH (L, W) =H, (1, Wt DAL+ H, (8, W(t,)A, W (t;)
+ G H (15 WD) AW (1)) +0(A0) +0(A, W (1)) (2.4)
Then

M=

H,(t, W(t;))At

{

1

converges almost surely to the sample path Riemann integral

T2 H, 0, W (0)),
3 Holts Wie)A W

converges by definition to the generalized Stratonovich integral
j‘z Hw([’ W([))di[/V,

and it can be shown (McKean [8] pp. 34-35) that if At goes to zero fast
enough then

2 Ho (1, W) AW (1))
i=1

has the same limit almost surely as

Z wa(ti’ W(tz))At
i=1
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which is of course the sample path Riemann integral

JoH,,(t, W(t))d.
The sum

2 0(AD) +0(A, W (1,))?
i=1
goes to zero almost surely.

To define (2.1) where h(z,w) is C' we choose a function H(t,w) such
that

H, (t,w)=h(t, w).
From (2.2) and (2.3) we obtain
§ah(e, W(@)d, W ()= H(, W ()]t
—[oH, (6, W(t))dt + () — U)o H, (e, W(t)dt  (2.5)
The integrands on the right are sample path continuous almost surely and
hence Riemann integrable.

This is generalization of Wiener integration as defined by Paley, Wiener
and Zygmund [4]. For C! functions h(t) they defined

@AW () =h(O)W (01— [5 W (6)dh )
J

The principal weakness of the formal approach (2.5) is that it does not
appear to generalize to integrals nvolving two Wiener processes, i.c. of the
form

fah(t, Wi (), W, (0))dW, (¢) (2.6)

Similar problems have been reported by Lamperti, Sussmann and Doss
regarding the formal solution of the stochastic differential equation (1.1)
when k> 1.

The obstruction is geometric in character. Suppose we try to integrate
(2.10) as before, then we must find a function H{(t,w,,w,) such that

H, =h and H,,=0.

This is not always possible. If # does not depend on ¢ this can be put
another way. Any one form h(w)dw in one independent variable is closed
hence exact on simply connected domains but a one form h(w,,w,)dw,
in two variables need not be closed. For example, consider w,dw,.
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3. DIFFERENTIAL EQUATIONS .

Consider the stochastic differential equation
dX =f(t, X)dt + g(t, X )dW

(3.1)
X(0)=Xx°

or in its integral formulation

X()=X"+{of s, X(s))ds+ b g(s, X (s))d, W. (3.2)

The solution will depend on A; for 1 =0 we expect the Ito solution and
for A=1/2 the Stratonovich solution. The appropriate choice of 4 depends
on the heuristics of the model. For example if (3.1) is the infinitesimal
limit of a difference equation

AX =f (1, X)At +g(t, X )A, W, (3.3)

then the appropriate 4 is obvious. For a further discussion of this point,
see Turelli [7].

Lamperti [3] and Sussmann [6] obtained the Ito and Stratonovich
solutions of (3.1) essentially by making a change of coordinates in (t, x)-
space which takes the coefficient of d,W(t) to a constant function. The
former used the Ito differential rule ((2.3) with A=0) and the latter
the standard chain rule {(2.3) with 4i=1/2) to compute the effect of the
coordinate change on (3.1). It is interesting to note that the same change
of coordinates works for all /.

In the new coordinates the second integrand of (3.2) is constant so the
integral follows from the fundamental thcorem of calculus. This allows
one to demonstrate by Picard iteration the existence and uniqueness of
the solutions of (3.1) for almost every sample path under suitable
regularity conditions on f and g, namely that f and the partial derivatives
of g are locally Lipschitz continuous in x. This technique cannot be used
to solve

dX =f (6, X )dt + g, (1. X AW, + g (t, X )dW, (3.4)

because regardless of which chain rule is employed, there does not always
exist a change of coordinates which makes the coefficients of both dw,
and dW, constant. If g, and g, are commuting vector fields then such a
change of coordinates can be found. Commuting vector fields are
geometrically dual to closed one forms.
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Doss used a similar approach, noticing that if z(¢) is a solution of
i=g(t,z)
then z(r)=2z(W(t)) is a solution of
dz=g(t, z)dW.

This solves (3.1) if f=0 if f#0 then one can make a change of
coordinates in (z,x) space which transforms (3.1) to a differential equation
with f=0.

We would like to demonstrate the existence and uniqueness of solutions
to (3.1) using the formal integral of Section 2.

Solutions to (3.1) using this integral exist and are unique under
precisely the same conditions as for Stratonovich, Lamperti and Sussmann
integrals. The Ito integral requires the weaker hypothesis that f and g be
locally Lipschitz.

THEOREM | Let f, ég/ét and og/cx be locally Lipschitz continuous in x
then for any 1e€[0,1] there exists a random Jield X (t,w) with C' sample
Junctions almost surely and a random variable T>0 such that X(t)
=X(t, W(t)) satisfies (in the sense of (2.3)) the integral equation (3.2)
almost surely for 0<t < T. Moreover the solution X(t) is unique in that any
two solutions agree almost surely on their common domain of definition.

The theorem is local in character: solutions exist and are unique for
small time periods. Of course they can be continued by the standard
techniques and if suitable growth conditions are assumed then solutions
will exist for all ¢.

The solution is constructed independently for each sample point omeQ.
We usc a lower case symbol to denote the sample point evaluation of a
random variable or process denoted by the corresponding upper casc
symbol. For example,

w(t)=WI(t,w)
x(Lw)=X(t,w,w)

X' =X%w).

Without loss of generality we take w(0)=0.

As with.most existence and uniqueness theorems for ordinary differen-
tial equations the proof of the above depends upon the contraction
mapping principle. Let C!(,¢) be the space of n vector valued functions
y(t,w) which are continuously differentiable for 0<1r<4$ and [w]§s‘ We
endow C!(8,¢) with the topology of uniform convergence of the function
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and its first partials. For fixed w(t) let F be the map from C'(6,¢) to itself
defined by

Fy)(t, w)=x°+ {5 1 (s, y)(s, w(s)))ds
+H(6w)— [ Hy(s, w(s))ds+ (A —1/2)[% h, (s, w(s))ds (3.5)
where
hit,w)=g(t, y(t,w)) (3.6a)
H(t,w)={§ h(t, v)dv (3.6b)

and subscripts denote partial differentiation.
Notice that

FO)ew(@)) =x°+ 51 (s, y(s, w(s)ds + Jo gls, y(s, w(s))d,w.  (3.7)

The following lemmas demonstrate that F is a local contraction, from
this the theorem follows. We use || || to denote a norm on R” and also the
associated operator norm on R"*".

LEMMA 1 Let L, C be chosen so that for all y*, y2, ||y’ —x°|=C and
0=<t<e, the following inequalities hold

d
1/ g(t.y") f (z,yl)ll,|l§(t,yl> <L (3.82)
and
. % i
Ay =1y eyt — gy, %%(t,)")~a~f(t,y2) ,
”— 6y —=> t YOS Ly =2 (3.8b)

There exist sufficiently small 5, ¢>0 so that ify(t, w)eC! (3,¢) and

v, w)—x°||=C (3.92)
ay 5

S ewlll STl 4oL (3.9b)

“ﬁ (t,w)| < (3.9¢)

for 0<t<9 and |w|<e then F(y)(t,w)eC" (3,¢) and satisfies (3.9) also for
0=t<é and ]w|<£
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Proof For any choice of ¢>0 we will always choose 6>0 so that

<efor 0 <6.

From the definition of F

1E )& w)=xO| < |Ifo.f (s, y(s, wis)) ))ds||

13
[wit))

+ || H (e w)|[+ |4 H, (s, w(s)) )ds|| + 5|15 by, (s, w(s)) )ds|

We estimate the first two terms,
lIfof (s, (s, wis))ds|| < Le< L,
[ =15 & y(0,0))do] < L] < Lo,
As for the third term,

HL (6wl =152 (e, )]

U =6y v)) + %(t i, v)) (t v)dv

<|wl(L+L(1 +2L+202))<2e(L+ 12+ I2)

So
MO (s,w(s) ds”<20£(L+L2+L3)
Similarly
[t )]| = Hg—i(t, Y, w))c%(t, w12
SO

16 h,, (s, w(s))ds|| S 2 <512
Hence if 6, ¢ are sufficiently small
[F)ew)—x°||<C.

Using the definition of F

=1 @y e w@)))| +][H, e, w)|

(3.10)

(.11)

+||H (&, w(o))| + 3| (6w ()|

From (3.8a) the first term is bounded by L, from (3.10) the next two are
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each bounded by 2¢(L+I7+1I7) and from (3.11) the last is bounded by
1/217. Hence if ¢ <1/(4L) then

(*F(}')([’W) §1+2L+2L2
at
Finally
F (y
—(?‘(3—)([, w)H:HHW(t, Wil = (e, W)

=gty w)|SL.  Q.ED.

LEMMA 2 Let L, C be chosen so that (3.8) holds. There exist sufficiently
small 9, £ >0 so that if y'(t,w)e CL(6,¢), satisfies (3.9) and

9" (&, w)=y* (L, w)| SK (t+]w)) (3.12a)
ay' oy*
— t —_—— i <
“ S ()= ()| <K (3.12b)
1 742
Vo) - )l <k/2L) (3.12¢)
ow ow

for 0<t <6 and ‘w| <¢ then F(y')(t,w)e C*(5,¢), satisfies (3.9) and

[F O ) (e w) = F ()6 wi) SK G+ ] )/2 (3.13a)
HAE (1 AL (12
Q,[i:l(“‘, )<(l, \‘)7€71¥2([’w) §K/2 (3]3b)
ct cl
)L T(v2
HF@(M”A%{U)(L wll <k /4L (3.13¢)
ow [oa1%

Jor 010 and |w| e
Proof The first two assertions follow from Lemma 1, as for the last,
[FOGMEw)=FOH W[ fof (55" (5, wls)) —f (5, (s, wis)))ds]|
HH (6 w) = H2 (6wl + 16 H{ (s, w(s)) = HE (s, w(s))ds|
+3{|J Ao (s, w(s)) — A (s, w(s))ds]|
where

R, w)=g(t, y'(t, w))
Hi(t, w) =[5 K (¢, v)dv.
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By the Lipschitz continuity of f,

66 537 5.0~ (5,325 (5|
<L§0||} (s, w(s)) =y (s, w(s))||ds
SLK|} (e +6)dt )dt < (e +)LKt < (6 + ) LK (1 +|w]).
Now
[[F (1ow) = HP (6wl =|[fis B (2, 0) — B2 (£, 0)dy]|
SLIR [y (6 0) = y2 (2, 0)||dv
guqlow'(a+o‘)du§(e+(>‘)LK|w|§(a+5)u<(z+[w[).

As for the third term we first bound

|1 (e, w)— hz(t, w|

LAy og c} Gg 1
i) \_T( o )
Jg ay!
<=2yt~ 28
=55 eyt ( ¥*) i
ag . alllert 4 L2
—{(t, ¥ ———— |+ L = PK
a5 - )
where
P=2(+0)(L+L+L)+L
So

HH}([, w)—H(t, w )| = fb

Lt v)—h2 (1 v)|do

<ePK <(e+0)PK (3.14)
and

16 HE (s, w(5)) = H7 (s, w(s))ds]| < (e -+ 0 )PK (1 + |w])

The estimate of the last term is simlar,

‘! 8)'1
thv([, wY—hZ(t, w)H II»( ply— g_([,yz) .
Cx cw
0 ayl 0y?
+ *g'(t,) g ar S(e+d)KIF+K/2. (3.15)
0x ow dw
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So

3[J6 (s, w(s)) = ki (s, w(s))ds|| < (3(6 + O )KL +K/4)(t +]|w])
Therefore (3.13a) holds if 4, ¢ are chosen so that
w(t)|<e for 0<t<5 and (¢+3)[2L+P+I*}2]<1/4

Turning to (3.13b)

F o N _OF .
5 e w) 5 ()t w)

<||f @y 6 w(©)) ~F @ y2 (6 we))|
+[|H! (6, w)—HE (e, w)||+||H! (€ w(e)— HE (8, w(t)|
+H[AL W (o)) —hi (e, w))]

The first is bounded by

(e+9)LK.
From (3.14) the second and third are bounded by

(e+0)PK
and from (3.15) the last is bounded by

e+ K2 +K/4.
Hence (3.13b) holds if
(e+8)L+2P+12/2]1<1/4.
The last (3.13c) is straightforward,

l‘aF(y ) _OF(y*)
o LW ow

(, W)H ={h* (t,w)— R (t, w)||

=|lg(t, y' (&, w) —g(t, Y’ (L, w)|| £ (e +)LK
so we must choose
(e+90)LZ1/(4L)

for it to hold. Q.E.D.
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Proof of theorem We start with uniqueness, suppose yit,w)e CL(d,e)
and both satisfy (1, w)=F(3')(t,w). We choose K, L, C, ¢, 5>0 such that
(3.8). (3.9), and (3.12) hold. By repeated application of Lemma 2, for 0t
<4, |w|<e and for all kx1

“yl(t, w)—y(t, w)“ §K(t+‘w|)/2"

hence y!(r,w)=y2(r, w).
To show existence we use the Picard iterates
x°(t, w)=x°
XET, w)=F(x*)(¢t, w)
We choose K, L, C, ¢ & such that (3.8) and (3.9) and (3.12) hold for
x°(t,w) and x'(¢, w). By repeated application of Lemma 2 for 0=1<4, |w|

<e¢and all k=1

“Xk+ x(t,w)~xk(t, W)“ <K(t+‘w|)/2k

6xk+ 1 ';xk
G w)—%(z, w)|[ SK/2"
8Xk +1 @Xk ]
Sa =) SR/ L)

Therefore x*(z, w) converges to some x(t,w)e C'(¢,d) given by

e

x(Lw)=x"+ Y (e w) - XK, w))
k=0
since
n

X w)=x04 Y (KL w) — x5, w)).
k=0

From the above we see that

|| (6, w)—x"* 1z, w|s Y [l e, w)— x4, w)]|
k=n+1

S Y K(H])/2 <K+ w2

k=n+1
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and similarly

Ox oxntl
K W< .,
o= 5 —(tw))| SK/2
C Aentl
()= ()| SK/2URL)
ow Sw

Applying lemma 2 we obtain
[F QO (8, w)—=x" "2 (e, w)|| SK (¢ + |w])/2n !

OF (x) axmt?

f , n+1
ey (t,w)— T (t,w)|| £K/2
AF (x NAE
F) - ol =k,
W (’}‘,‘v

Therefore x(t,w) is a fixed point of F and hence the desired
solution. Q.E.D.

4. FORMAL MARTINGALE CALCULUS

In this section we generalize the formal calculus to square integrable
martingales with continuous sample paths. We refer the reader 1o Kunita
and Watanabe [10] for the appropriate definitions and for the develop-
ment of the martingale calculus along the lines of the Ito calculus. In
particular we shall use the Kunita-Watanabe differential rule [10, Thm.
2.2] and the fundamental theorem of calculus to define our formal
integrals. Since it is very similar to the above, except from proving the
analogs of Lemmas | and 2, we shall only sketch the details.

Let M(r) be a square integrable martingale with continuous sample
paths almost surely and (M>(¢) be its quadratic variation. The sample
paths of (M>(t) are continuous and monotone increasing almost surely.
For convenience we take M(0)= (M >(0)=0.

Let h(r,m) be absolutely continuous in t uniformly in m and con-
tinuously differentiable in m, i.e., there exists K >0 such that

ﬁ“h, (t, m)“d[ <K
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for all m and h,,(t,m) is continuous for all ¢ and m. A particular case of
the Kunita—Watanabe rule is

dH(t, M (1)) = H,(t, M(t))dt
FH,(M@)M () +YH (L ME)A(MD () (4.1)

This is a generalization of (2.3) for W () is a square integrable sample
path continuous martingale with quadratic variation (W>(t)=t. For
simplicity we have not considered different values of A as in (2.3) although
such a development is possible.

The fundamental theorem of calculus and (4.1) motivate the definition
of martingale integral

fah(e, M(t))dt =H(t, M (1)1
—Ja H (6, M(0)de =5 o Hoo (6 W(@)A(MD (). (42)

where h=H,,. The integrals on the right are to be interpreted in the
Lebesque and Riemann-Stieltjes senses.
Consider the stochastic differential equation

dX =f{t, X)dt + g(t, X )JdM

(4.3)
X(0)=X°.

The integral formulation is
X()=X"+ 15 f (s, X (s))ds + {6 gls, X (s))dM (s). 4.4)
We have the following.

THEOREM 2 Let f, 8g/dt and Og/éx be locally Lipschitz continuous in x
then there exists a random variable T >0 and a random field X (t,m) whose
sample functions are absolutely continuous in t uniformly in m and
continuously differentiable in m such that X (t)=X(t, M(t) satisfies (in the
sense of (4.2)) the integral equation (4.4) almost surely for 0<t<T
Moreover the solution is unique in that any two solutions agree almost
surely on their common domain of definition.

As befere the theorem is local in character, under suitable hypothesis a
global result can be proved.

The random field X (z,m) is constructed independently for each sample
point we Q. For fixed w, we let

m{t)y=M(t,w)
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and
() =<{MH(t, »)
x{(t)=X(t, m w).

The proof is similar to that of Theorem 1, for suitable y(t, m) we define

F) (e, m)y=x°+f4f (5,7 (s, m(s)))ds
+H(t,m) = [o H(s,m(s))ds — 5[5 b (s, m(s))du(s)  (4.5)

where
h(t, m)=g(t, y(t, m))
H{(t,m)={g h(t,v)dv.

The desired solution x(t,m) is a fixed point of F. It exists and is unique
because F is a local contraction, as shown by the following lemmas.

Let D'(d,¢) be the space of all n vector valued function y(f, m) which
are absolutely continuous with respect to t uniformly in ]m|§s and
continuously differentiable with respect to m for 0<t<6 and |m|<e. More
precisely y(z,m)e D'(8,¢) if there exists K >0

v

ds<K
ot

18

(s,m)

for every |m|<¢ and
oy
(t’m)'_)'\——)/([7 n/l)
ém
1s continuous for 0<r<¢ and |m|§g.

LEMMA 3 Let L, C be chosen so that (3.8) holds and D> L+ I?. There exist
o and ¢ sufficiently small so that if y(t,m)e D*(d,¢) and

Hy(t,m)——xougC (4.6a)
ﬁ O (s m)lds < Dt + (1)) (4.6b)
o llae
D aml <L (4.6¢)
om

Jor 05t<6 and ‘m‘§s then F(y)(t,m)e D'(5,¢) and satisfies (4.6) for 0t
<5 and ‘W|§8.
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Proof For any choice of £¢>0 we will always choose 3>0 so that [m(t)]
and p(t)<e for 0<1<4.

From the definition (4.5) of F
IE G (e m) =0 < fo || (5. (5. ms)))||ds
FH @ m)ll + o [[H (s, ms))|ds + 35 [ (s, ms))dpa(s).
Now
§o[lf (s, y(s,m(s))|lds< Lt < Ls (4.7)
and
[[H & m)|[ =115 (&, y(t, v))dv]| < Ljm| < Le.
As for the third term, by Fubini’s Theorem
ol (s, mis))llds = fi [f5 b (s, v)au|as
= Juf
oJo

g og oy
8 (¢ v i3 Wl d
&(S,y(s,v))+ax(s,y(s,v))at(s,v) vds

=J5 Lt +L(t+p(t))dv S 2Le(t + u(t)) < 2Le(d +¢) (4.8)
The last term is easily bounded

o s, m(s)||dp(s)
<Jt ‘ ag
~ Jollox

and so if § and ¢ are sufficiently small (4.6a) holds.
Turning to (4.6b)

ML (s, mis)
m

du(s)

SPp()<IZe,  (49)

aF(})

dséj | (s, y (s, m(s)))||ds
0
+§6HH,(s,m)”dSij{)HH,(s,m(s))Hds

+3f0 || (s, m(s))|das)
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Ihe first, third and fourth terms are estimated in (4.7), (4.8), and (4.9); the
second term can be estimated similar to (4.8). Therefore

f()
which is less than P(1 + u(t)) if ¢ is suffictently small.
The last estimate (4.6¢) is straightforward,

JF (v
ﬁ’-(i)(t,m)” =t m)| = (e, m)]| =g (&, y(e, m))|| < L

oF(y)

at

(s,m)||ds = Lt + 4Le(t + p(t)) + Lp(t)

LEMMA 4 Let L, C be chosen so that (3.8) holds and D> L+ I2. There
exist 6 and ¢ sufficiently small so that if y'(t,m)e D' (5,¢) satisfies (4.6) and

[|v! (&, m) = 32 (6, m)|| SK (¢t + |m| — (1)) (4.10a)
1 AL o) .2
J L som) =2 (s m)|lds K (4 u0)) (4.10b)
ol Ot ot
FROR A BN (4.100)
om om

Jor 0Zt<3 and |m‘ ¢ then F(y')t,m)e D'(4,¢), satisfies (4.6) and

HF(y1 W, m)—F(y?*)(e, m)<SK(t+ jm{ +ul(t))/2 (4.11a)
*t Ja 1 SE (12
J ,ﬁfgl(sﬁm)_(’lx(ll(s, m)||ds <K (t+u(t))/2 (4.11b)
0 Ct Ct
A1 AL 1,2
T my = Ol <k 4 (4.11¢)
om om

for 0=t=<6 and |m|<e.
Proof The first two assertions follow from Lemma 3, as for the last,

[F G m) = F (v ) (e, m))
< Jo 1S (53 (s, m(s)) = (5, y2 (s, m(s)))|ds
+H[H (G m)— H (1, m)|
+ {6 ||H (s.m(s))— H2 (s, m(s))||ds
+ 36 (| (s, m(s)) — B2 (s, m(s))||due(s)
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where
hE(t,m)=g(t, y'(t,m))
Hi(t,m)={2h'(t, v)dv

By Lipschitz continuity

Follf (5.3 . m($)) 1 (s, y2 (5, m(s)))|ds
< Loy (s.mls)) = y2(s, mis))||ds
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SKLJ50+2edt SKL(S + 2e)(t + |m] + u(1)) 4.12)

Next
||H1(t,m)—H2(t,m)||§j%’"’”h‘(t,v)—h2(t,v)”dv
sITLyt ) -y, v)||dv
SKLJE"O +2e dv<KL(S + 2¢)(t +|m| + pu(t))
as for the third
§o 1= (s,m(s))—H} (s, m(s))||ds
={o |[faCn! (s,v) —h(s, v)du||ds
< 56 Jol|h (s, v) = B2 (s, v)||dsdv
Now
IIh! (1, m)—h2(t. m)|

0g, i, g
=< 55(&) (t,m))—af[(t,y (t,m))”
ég, oyt ay?
—— t ) [’ —
o ’"”’H R
ay*|||log g,
73¥ ﬁ(la_VI(t’m))—}_g(tay.-(t’m))”
ct {1lox 0x
oyl ay?
<Ly =+ L= -
e R
ay?
Lii— Jd 2
L =57
. oyl ay? ay?
SLO+2e)+ L)1 D L+ 20)| 2
ot ot ot
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So
Vo llH! (s, m(s))— H{ (s, m(s))||ds
SKLe(d+2¢)t+ L5 K( t+/1(t))dv

+KL(O+28)J J
0oJo

SKLe(0+2e)t +KLe(t +p(t))
+KLDe(S+28)(t + u(t)) (4.13)

——(s, v)||dsdv

Finally
Ji [ (5, m(5)) — B s, m(s))|da(s)

I
+[@

S Jo K2+ L]y (s, m(s)) — y* (s, m(s))||dpe(s)
S (K/2+KI2+2¢))u(t). (4.14)

,\

0x

So(s, ' (s, m(s)) )”“w(s m S))_ (S m(s))

m(s))

““(S, yHs,m(s))) ——(s, Y2 (s, m(S)))Hdu(S)

Hence (4.11a) holds if § and ¢ are chosen small enough so that
(RL+LDe+12/2)(642¢) < 1/4.
As for (4.11b)

I

OF (!
O (6 i) =T g msyla

ot ot
éﬂ) Hf(é’ yl (S’ m(s))) —f(S, yZ(S, m(S)))HdS
+J6 || Hi (s, m)— H (s, m)||ds + [ |} (s, m(s))— HZ(s, m(s))||ds

+ 3]0 [ (s, m(s)) — 2 (s, m(s))||du(s)

The first, third and fourth terms are estimated above (4.12), (4.13), and
(4.14) and the second can be estimated like (4.13). Hence

f‘ (y) m(s)) (y)(s’ms

S(K/4+(KL+2KLDe+KI2/2)(8+2e))(t+ u(t)),




¢
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5o (4.11b) holds if

(L+2LDe+12/2)(5 +2¢) < 1/4

Finally
O ¢y L00), n)“
om om

=”h‘(r,m)-h2(t,m)|[
=llgt, ' (t. m)) - g(t, y* (¢, m))|| SK L (53 + 2¢)

so for small § and e, (4.11c) follows. Q.E.D.
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