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Kalman-Bucy and Minimax Filtering

ARTHUR J. KRENER

Abstract—TIt is shown that the Kalman-Bucy filter is also a minimax
filter.

I. INTRODUCTION

Consider the linear system

x(1)=A()x(1) + B()u(s)
x(0)=x,

2(1)= C()x(t) + v(1) (1.1)

where the state x(¢) is 7 1, the driving noise u(f) is / X 1, and observa-
tion z(¢) and observation noise v(f) are mx 1. The time-varying matrices
A1), B(1), and C(z) are n X n, nX !, and m X n, respectively.

The filtering problem is to “optimally estimate” x(1), t>0, given the
particular observation history z(s), 0<s<t, and some general informa-
tion about x,, u(), and o(f), but not their specific values. Henceforth, we
shall refer to (xg,u(-),v(-)) as the disturbance triple.

In the Kalman-Bucy model, Xg is assumed to be a Guassian random
variable mean 0 and convergence P, and u(¢) and v(f) are independent
Guassian white noise processes with covariances Q(1) 8(¢—s) and R(?)
8(r—s). The estimate x(r) for +€[0,T] is that which minimizes the
conditional covariance of the error x(f)=x(¢)— x(1), i.e., (f) minimizes

(1.2)

for any 1Xn vector b. The form of the Kalman-Bucy filter is well
known [1]. It is the solution of stochastic differential equation

E(bx(£)x'(£)¥)2(s5),0< 5 < 1)

250 = ADFD) + FO)(a() - C()3(0)

x(0)=0 (1.3)
where the feedback is given by
F()=P()C'(HR () (1.4)
for P(f), the solution of the matrix Riccati differential equation
P=AP+PA’+ BOB'— PC'R~ICP
P(0)=P,. (1.5)

The error covariance (1.2) is nonstochastic, i.e., independent of the
particular observations and equal to P(¥),

E(bx()x'(1)b'|2(s),0<s <t) = E(bx()x'(1)b)=bP(1)¥'. (1.6)

In the minimax model, we do not make stochastic assumptions regard-
ing the uncertainties, but instead assume that (xq,u(-),v(+)) is an element
of a Hilbert space JC and is bounded in norm. For convenience, we

assume the bound to be 1, but any bound results in the same estimate,
although not the same error. The norm is given by

(), 00 )P = x5 o+ [ Tw()Q " (s)u(s) + v/ ()R ~(s)o(s)ds

(1.7)
where P, and Q(s) are nonnegative definite and R(s) is positive definite.
So that (1.7) is well defined, we adopt the following convention; if Xg is
in the range Py, xo= Py y, then

-1
xoPg Xo=y'xg,
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and if not, then

xoPg 1xg=o0.
This definition is independent of the choice of y since the null space of
P, is orthogonal to the range of P,. We adopt a similar convention for
#'(s)Q ~(s)u(s) and define I as the space of triples of finite norm,

lIx0, () (- )| < 0.

The interpretation of (1.7) is as the energy represented by the dis-
turbance triple.

The minimax filtering problem is to find for each t€[0,T], the
estimate x(f) based on the past observations z(s), 0 <s < which mini-
mizes the maximum of any linear functional of the error. The maximum
is taken as (xo,u(-),v(-)) ranges over those triples of norm less than or
equal to one, and which give rise to the particular observations z(s),
0<s<t. In other words, the minimax estimator x(f) minimizes

max { bx(1) : || xg,u(-).,0(-)|| < 1and gives rise toz(s),0<s <t}.

The minimax estimator employs a worst case design philosophy and
has a game-theoretic flavor. We assume that our opponent, Nature,
chooses the uncertainties in order to hide the true state. Nature is
restricted in the total amount energy that she can use. We seek the
estimate which minimizes our maximum loss as measured by any linear
functional of the error.

From the design point of view, the weighting matrices Py !, @ ~!(s),
and R ~!(s) are parameters to be chosen from information about the
system being model. They play the same role as the covariances of the
Kalman-Bucy model. We shall demonstrate in the next section that if
weights are the inverses of the covariances, then the Kalman-Bucy and
minimax estimates of the state of (1.1) are identical.

If Py and Q(s) are not invertible, then as covariances of Guassian
variables, this restricts the disturbances x, and u(s) to lie in their range
spaces with probability 1. Similarly, if the energy interpretation (1.7) is
used, this restricts x, and u(s) in exactly the same way.

Schweppe [4] considered a minimax estimator, but used a norm
different from (1.7); hence he obtained an estimate different from
Kalman-Bucy.

Other characterizations of the Kalman-Bucy filter as a minimax
estimator have appeared in the literature. Mintz [2] assumed. hybrid
uncertainties, the initial condition and observation noise stochastic, and
the driving noise deterministic. He weighted the loss function with the
norm of the driving noise and obtained a Kalman-Bucy estimate.

Morris [3] also treated hybrid uncertainties and allowed the covari-
ances to vary over compact intervals. He showed that the Kalman—Bucy
filter for largest covariances is a minimax solution to these problems.

We treat only continuous time filtering, but the basic result, that the
minimum variance estimate is also a minimax estimate, also holds for
discrete time or prediction or smoothing problems.

II. THE EQUIVALENCE OF THE KALMAN-BUCY AND MINIMAX

FILTERS

It is well known (see, for example, Jazwinski [1, ch. 5]) that the
minimum variance filter of Kalman-Bucy is also a maximum likelihood
estimate for Gaussian disturbances. Moreover, the maximum likelihood
estimate of x(¢) has a least squares (minimum energy) characterization.
The estimate x(7) is the endpoint of the trajectory generated by the triple
(xgu(+),v(*)) of minimum energy (1.7) necessary to produce the ob-
servations z(s), 0<s <1,

Let us indicate why this is also the minimax estimate; a formal proof
will follow. ‘

The set of disturbance triples giving rise to z(s), 0<s<? is an affine
subspace of J(, and if we also require the norm to be less than or equal
to one, we obtain a ball B, in that subspace. The map sending
(xg,u(-),0(-)) to x(¢) is linear; hence, it carries % to an ellipsoid & in
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R". The minimax estimate is the center of that ellipsoid. The center of B
is mapped to the center of & so that the minimax estimate can be
computed as the endpoint of the trajectory generated by the disturbance
triple in the center of %. But from the Hilbert space geometry, the
center of B is characterized as the element of $ lying closest to the
origin, i.e., the triple of minimum energy necessary to produce the
observations.

Now for a formal proof. Let (Xg,4(-),5(-)) be the triple of minimum
energy (norm) giving rise to the observations z(s), 0<s<t, and let
(xg (- ),v(+)) be any other triple giving rise to the same observation and
of norm less than 1. Let x(¢) and x(f) be the corresponding state
trajectories. Then the Kalman-Bucy estimate x(f)= X(¢) [1].

Since (X, #(+),0(+)) is of minimum energy, it follows that

ToPg Hxo— %o) + fo "W(s)Q "\ (s)(u(s) — ()

+T(s)R ~(s)(v(s)— 6(s))ds =0

or else the triples
(%0 #(),5(:)) + €e(xo= Zgu(-) = a(-),0() = 5()),

which also gives rise to the observations, would be of less energy for
some small positive or negative ¢. From this, it follows that the norms of
(X, #(+), O(+)) £ (x9— X, u(-)— @(-),0(+)— 0(-)) are the same. The plus
sign is just the triple (xo,#(-),0(-)) and leads to the error

x(£)=x(£) — x (1) = x(t) — %(1).

Since x(¢) depends linearly on x, and u(-), the negative sign leads to
the negative of the above error. This shows that () is the centroid of
the set of all x(r) generated by triples of norm < 1 and giving rise to the
observation; and hence, X(¢) is the minimax estimate.
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