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ON THE EQUIVALENCE OF CONTROL SYSTEMS AND THE
LINEARIZATION OF NONLINEAR SYSTEMS*

ARTHUR J. KRENER*®

Abstract. Given two control systems where the control enters linearly, a necessary and sufficient
condition is derived that these systems be locally diffeomorphic, i.e., that there exist a local diffeomor-
phism between the state spaces which carries a trajectory of the first system for each control into the
trajectory of the second system for the same control. As a corollary we derive necessary and sufficient
conditions for a system to be locally diffeomorphic to a linear system.

1. Introduction. Consider the two control systems

k
X = ag(x) + Y uft)adx),
i=1

x(0) = x°,
and
k
¥ = by + Y ul0biy),
(2) . i=1
w0y =y,
where x = (x(, -+, x,), ¥ = (¥, -+, y,) are vectors, ay(x), - -, a(x), bo(x), - - -,

b{x} are analytic vector-valued functions and u(t) = (u,{t), - - - , u,(t)) is a bounded
measurable control.

The purpose of this paper is to give necessary and sufficient conditions that
these two systems be equivalent, i.e., that there exist a local diffeomorphism from
x-space to y-space which takes the solution of (1) for each control into the solution
of (2) for the same control. As a corollary we derive necessary and sufficient condi-
tions that there exist a local diffeomorphism which carries a nonlinear system into
a linear one.

2. Preliminaries. Ifa(x), a;(x) are as above we define the Lie bracket[a;, a }(x),

another analytic vector-valued function, by
e 4)0) = Satx) — Txaf),

where (da;/0x){x) is the matrix of partial derivatives at x. Suppose ¢, x — o(f)x is the
family of integral curves of a(x), that is, (d/dt)af(t)x = afx(1)x) and «(0)x = x.
Then for fixed t, the map x — a{—t)x is a diffeomorphism from a neighborhood of
a{t)x° onto a neighborhood of x° and hence has a tangent map which we denote by
o —1t),. The derivative of the vector-valued curve t+— ai(—t)*a,(ozi(t)xo) att =90
is [a;, aj](xo) (Bishop and Crittenden [1, p. 17]). Since q;, a; are analytic, we obtain
the Taylor series expansion o —t),afoft)x®) = Y=  (t"/hYad*(a)afx’), where
ad®(a;)a(x°) = a(x°) and ad"(a)a(x°) = [a;, ad" ™ (a;)a;}(x°).

* Received by the editors October 31, 1972, and in revised form January 8, 1973.
t Department of Mathematics, University of California-Davis, Davis, California 95616.

670



EQUIVALENCE OF CONTROL SYSTEMS 671

Following Haynes and Hermes [2] we define D°(A) to be a set of functions
a0 =0, k} and Di(4) = DI~ Y(4) U {la;,c):i=0,-- K ceD'"Y(4)}, for
J < 1. The completed system of A is D(4) = U;,, D{A), and we define D(A),
= {c(x):ce D(4)} < R™ The rank r of D(A) at x is just the dimension of the span
D(A),.

THEOREM (Nagano [4]). Let the completed system of (1) have rank r ar x°.
Then there exists a submanifold M of dimension r through x°, which carries (1).
That is. if w(t) is any bounded measurable control and x(t) is the corresponding solution
of (1), then for some ¢ > 0, x(t)ye M for |t| < «.

For generalizations of this result see Krener [3].

3. Equivalent systems.

THEOREM 1. Consider the systems (1) and (2). Let M and N be submanifolds
which carry (1) and (2) at x° and ¥° respectively. There exists a linear map
[:span D(A)o — span D(B),o such that Kadx®) = b(y®) fori =0, -, k and

1([‘1“’ T [aih o ai,,] - '](XO)) = [bila T [bi,,, e bi,.] e .](yo)

forh <2and 1 < i; £ kif and only if there exist neighborhoods U and V of x°
and y° in M and N and an analytic map +:U — V such that 2 carries (1) into (2).
That is, if x(t) and y(t) are the solutions of (1) and (2) for the same control u(t) and
xX(ye U for || <&, then i) = Mx() eV for |t| < e Furthermore | is a linear
isomorphism if and only if A is a local diffeomorphism.

Proof. We start by assuming [ exists and constructing 4. Since the theorem is
local in nature, we can assume that M = R™ and N = R", then span D{(A),0 = R™
and span D(B),o = R". Let ¢ (x°), -, c(x°) be a maximal linearly independent
subset of D%(4),0. Let d,(y), -- -, di(y) be the corresponding elements of D°(B),
that is, if ¢(x) = afx) then d(y) = b{y). We choose Cri(X), -+, ¢ (x) from D(A)
so that ¢,(x%). -+ | ¢,(x°) forms a basis for R™. Let dyi (), -+, d,(y) be the cor-
responding elements of D(B), that is, if ¢fx) = la;, - la;,_.»a;]--1(x), then
di{yy=1[b,, - (bj,_,.b;1--1(y). Lett, x — ,(1)x. be the family of integral curves
of cyx)fori =1, -, m. That is (d/dtyaft)x = caft)x) and a{0)x = x. Similarly
t, v+ B{t)y, is defined by (d/di)B(t)y = d{(B(t)y) and B0y =y fori=1. .. m
Let 5 =(s;,---.s,) and define maps g,:s— x and g,:s+— y by g,(s) = 0, (5,,)
e o(sy)ay(sy)x® and g208) = B(s,) - -- By(s2)B(s)y°. Then (0g/05)(0) = cdx%),
0 g, has an inverse g; ':x+ s defined for x in some neighborhood U of x°.
Let 4:x+- y be defined on U by 1 = g,0g, L

We must now show that if x(t) and y(¢) are the solutions of (1) and (2) re-
spectively for the same control u(t), then Ax(1)) = W1). Since A(x(0)) = A(x°) = y°
= p(0) it suffices to show that (d/dt)A(x(t)) = (d/dt)y(t) or A (X(1)) = p(t), where Ay
is the tangent map to Aatx(t). Thisis true if 1,(a(x)) = b(Ax)),i = L, .-, k,forall
xe U, which in turn would follow if Adedx) =dfux), i=1, -, m, for all
xeU.

To show this we let x = g (s), x = gu(si, 5,0+ 0), fori=1,--- m,
Vo= ax) = gy(s)and y' = g (s,, -, $:,0,-+-,0),fori =1, -, m Then x™ = x
and fori = 1, --- m, the map a{—s)(-) takes x' into x'~ ! and is a local diffeo-
morphism with tangent at x’ denoted by «{—s,),. Similarly y" = y. and the map
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Bs)(-) takes y ~!into ) and is a local diffeomorphism with tangent at y'~!
denoted by Bisi)y

We now show that A, = B,(s.), - Bi(s)elo(—s1), - ot —Sn).- Since
0g(s)/0s; forms a basis for R™ it suffices to show that the right side applied
to dg,(s)/ds; yields 2,(0g,(s)/0s;)) which equals Jg,(s)/0s;. But 0g,(s)/ds;
= UplSpn)ye ii(si)*ci(xiA ') and dg,(s)/ds; = BulSms -+ .Bi(si)*di(yi_ ') so

0g,(s)
0s;

= ﬂm(sm)* o ﬂl(sl)*lal(_sl)* e aiAI( S;- 1)*C (xl l

ﬂm(bm) [ (51) L ( Sl):k T am(i‘sm)*

. Ve
= BolSm)y ﬂl(s,)*lz(;ll)! ad"‘(cl)(. .. Z(S(‘T_il)l)—!ad"“‘(ci_l)c,« ) (x%

= BulSmly - B (—b— ad"(d, ()" dh-d,_)d ©
= Pl 51y Il )"‘ZWG (di—d; -1 07)
= Bulsudy -+ Blsdd ) = "ﬁj‘”

This implies that

) = Bulsmdy -+ Bils)plo(=s1)y - - ol =) ci(X™)

S ACNRY RND L] (9 o RO [

m

(;,)fad'“ul)(wz(h), ad™(d,)d, --)(y")
1- m

= BulSde - Bals)y X

= d{ym.

Notice that 4,(c{x%) = d(3°)so ! = A, at x°. It follows by the inverse function
theorem that if [ is a linear isomorphism then 4 is a local diffeomorphism.

As for the converse, if A exists and A(x(t)) = y(t) where x(t) and y(t) are the solu-
tions of (1) and (2) for the same control u(t), then clearly 4 (a(x)) = b{A(x)). Itisa
standard result of differential geometry (Bishop and Crittenden [1, p. 14])) that if
Alex) = dfAlx)), i = 1,2, then A,([c,, c,](x)) = [d,,d,](Ax)),and so | = A, at
x? satisfies the required condition. Q.E.D.

Remark. Since g,(s) covers a neighborhood of x° in M, the map 4 is uniquely
determined in that neighborhood by the condition that it take system (1) into
system (2). Furthermore if M is connected and simply connected, then A can be
extended uniquely to a map defined on all M by standard arguments. See Example
3 below.

Example 1. Consider the two systems

X, =u, V. =u,

X, =u-t, Y, =y,.
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Since the right-hand side of the first system depends on ¢, we introduce a new
vartable x, = r.

Xy = 1, 1 0 0
X, =u, agx) =104{, ax)=11]1, (ag.a,](x) ={0],
X, = u-xg, 0 Xq 1

=[] v ={o). - i [ )
O(y)_' yl > l(y)_ O ’ [()’ 1]()))_ 1 ’

and ali other brackets are zero.

For initial points x° = (x§, x7, x9), y° = (42, y9), let I:R*>— R? be given by the

matrix ( 0 | 0)
woxg -1’
The hypotheses of Theorem 1 are satisfied and A can be constructed as in the

theorem. Let 2|, %, and a5 be the families ofintegral curves ofa,, a, and [a,. a,]and
B.. B, and f, be the families of integral curves ofby, b, and [by, b,]. Then

Bl 1552, 53) = oa(s3)ay(sy)oy (5 )x = (x§ + 5., x9 + S35 X5+ (X§ + 5)s; + s3).

¢a(81.55.53) = Bals3)B(s)B,(s,)y° = (3] + S2, ¥ + sy = s3).

and
Ax) = gylg, I(~\')) = ()"? + X - X?»)'(z) + (xg — Xg)y(l) —{x; — X(z)) + xo(x; — X?))-

Notice that M = R, N = R? and 4 is defined for all x e R? and is onto R2. In
fact. if we introduce a time coordinate y, = ¢ into the second system, then N = R?
and A becomes a diffeomorphism from R3 onto R3:

AX) = (5 + xo = x0, 10 + x; — X%, 93 + (xo — xI0 — (x; — x9)
+ xo(x; — x9)).

Example 2. Suppose we replace the second system of Example 1 with one
similar to that of Haynes and Hermes [2]-

Yo =1, 1 0
Y1 =u, bo(y) = (0], b(y) = 1 and [by,b,J(y)={ 0],
Yo =y ¥y, 0 Yo )2 Y2

and all other brackets are identically zero. The rank of D(B) is 3 except at points
where y, = 0, where it is 2. The system splits R? into three disjoint manifolds
N, =1{yy, >0}, Ng={y:y, =0land N_ = {y:y, < 0}. A trajectory of this
system must lie wholly within one of these manifolds.

For initial points x° and y° we define / by

1 0 0
0 1 0
0 (yo — xond 3
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and construct 4 as before:
M) = (g + xg = x0.p] + x; = x5 exp (09 — xQ)(x; — x9) + x; — x9).

Notice if "€ N (N _), then 1 is a diffeomorphism A:R* = N (N _). If y°e N,
then 4:R* — N, is onto.
Example 3. Consider the systems

X| = —ux,, Yy =u,

X, = ux,,

—x,
a, :( ), b,
Xy

and of course there are no nontrivial brackets. If x° = (1,0) and y° = 0, then

(1),

il

) 0
M= {(x;,x):x; +x3=1}and N =R. So | = (1) satisfies Theorem 1 and A

is defined in a neighborhood of (1, 0) on M by A(x,, x,) = arc tan (x,/x,). [t is clear
that 4 cannot be extended to a map on all of M.

4. The linearization of nonlinear systems. Consider the linear control system
(3) ¥ = Fl)y(ty + Glo)ult) + h(t),

where F and G are matrices, y and h are vectors and u is the control vector. As
before we introduce time as a coordinate, y, = t. It is well known that there exists
a change of the y coordinates which carries (3) into

k
4 y=by+ z u;b(yo),
i=1
where
[ 0
0
bo={-] bi={-|, i=1,---,k and yJ =0,
0 .

and where * denotes some real-valued function of y, alone.

The question we now answer is when does there exist a transformation
A:x— y which carries a nonlinear system (1) into a linear system (4).

THEOREM 2. Consider the system (1). Let n = rank of D(A).. and let M be the
n-dimensional manifold which carries (1). There exists a linear system (4), a neigh-
borhood U of x° in M, a neighborhood V of y° =0 in R" and a diffeomorphism
AU V ocarrying (1) into (4) if and only if for all 1 < i, j < k and for all h = 0,
(a;, ud™ag)a;}(x°) = 0.

Proof. Suppose the system (4) and 4 exist. Then A, the tangent to 4 at 0, is
one-to-one and

*([a;, ad"(ag)a](x°) = [b,, ad"(bo)bj](()).
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Then by induction for h 2 0,
0---0\/1 0 0
* 0 *
Cldh(bo)hl = 0 Sl 0 =
N VAN
and
0---0\/0 0---0\ /0 0
* * *
(b;, adh(bo)bj] = 0 S 0 C =
Jow N

*

and it foltows that [«;, ad*(a,)a;] = 0.
On the other hand if [4;, ad%(ag)a,}(x°) = 0, we construct (4) as follows. Let
S.x = a0(s)x be the family of integral curves of a,. Define the system (4) by setting

i1

0
-, k.

by = and  byy,) = ao(*yo)*aj(“o()’o)xo)’ j=1-

0

The Taylor series expansion of b (yo) = 37 ((yo)"/hYad"(ag)a (x°) and it follows

that
. d

ad'(by)b{(0) = Mb-

Also by hypothesis [ai,ad”(ao)aj}(xo) = 0 and we showed above for systems

of type (4), [b;, ad"(bo)bj] (0) = 0. Therefore the hypotheses of Theorem 1 are ‘satis-

fied with [ = identity map, and so we can construct . Q.E.D.
Example 4. Consider the nonlinear system

h
10) = adaga(x®) forj=1,---,kand h = 0.

X, =1 +u-xj,

- 2
X, = X1X, + U,

X, = X5,
1 X, X3
dy = (,\'fxz a, :K 1 ) . lag.a;] = | —2x,x,x;5 — x,\)
X, L 0 0
0

—2x,x3 — 4x,x,] .

0

and [a[ay,a,]] =
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Therefore the system is not linearizable in general. However if x§ = 0, then
the system is carried by M = {x:x; = 0} and on this submanifold

1 i 0} 10 0
a, = |xix,), a, =\|1|, [ag,a,]= |[-x3|, [a,lay,a,]] =|0],
(U 0! .0 0!
i 0 0 : 0
ad*(ag)a, = |-2x,], [a,,ad*aga;] ={0|, adYaya, = |-2
0 . 0 0/

All higher brackets are zero, so the system is linearizable. We do not have to com-
pute 4 to describe the equivalent linear system. For example if x° = (0,0, 0) we

define

a 0
<Y ¥
by =101, by = z -}T'ad"(ao)a,(xo) = - 30
h=0 """
0 0
Since v, = t and the y,-coordinate is superfluous, this becomes

.)./1 = u(l - [3,”3), yl(o) = O
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