ON THE EQUIVALENCE OF CONTROL SYSTEMS AND THE LINEARIZATION OF NONLINEAR SYSTEMS*

ARTHUR J. KRENER†

Abstract. Given two control systems where the control enters linearly, a necessary and sufficient condition is derived that these systems be locally diffeomorphic, i.e., that there exist a local diffeomorphism between the state spaces which carries a trajectory of the first system for each control into the trajectory of the second system for the same control. As a corollary we derive necessary and sufficient conditions for a system to be locally diffeomorphic to a linear system.

1. Introduction. Consider the two control systems

$$\dot{x} = a_0(x) + \sum_{i=1}^k u_i(t)a_i(x),$$

$$x(0) = x^0,$$

and

$$\dot{y} = b_0(y) + \sum_{i=1}^k u_i(t)b_i(y),$$

$$y(0) = y^0,$$

where $x = (x_1, \dots, x_m)$, $y = (y_1, \dots, y_n)$ are vectors, $a_0(x), \dots, a_k(x)$, $b_0(x), \dots$, $b_k(x)$ are analytic vector-valued functions and $u(t) = (u_1(t), \dots, u_k(t))$ is a bounded measurable control.

The purpose of this paper is to give necessary and sufficient conditions that these two systems be equivalent, i.e., that there exist a local diffeomorphism from x-space to y-space which takes the solution of (1) for each control into the solution of (2) for the same control. As a corollary we derive necessary and sufficient conditions that there exist a local diffeomorphism which carries a nonlinear system into a linear one

2. Preliminaries. If $a_i(x)$, $a_j(x)$ are as above we define the Lie bracket $[a_i, a_j](x)$, another analytic vector-valued function, by

$$[a_i, a_j](x) = \frac{\partial a_j}{\partial x}(x)a_i(x) - \frac{\partial a_i}{\partial x}(x)a_j(x),$$

where $(\partial a_j/\partial x)(x)$ is the matrix of partial derivatives at x. Suppose $t, x\mapsto \alpha_i(t)x$ is the family of integral curves of $a_i(x)$, that is, $(d/dt)\alpha_i(t)x=a_i(\alpha_i(t)x)$ and $\alpha_i(0)x=x$. Then for fixed t, the map $x\mapsto \alpha_i(-t)x$ is a diffeomorphism from a neighborhood of $\alpha_i(t)x^0$ onto a neighborhood of x^0 and hence has a tangent map which we denote by $\alpha_i(-t)_*$. The derivative of the vector-valued curve $t\mapsto \alpha_i(-t)_*a_j(\alpha_i(t)x^0)$ at t=0 is $[a_i,a_j](x^0)$ (Bishop and Crittenden [1, p. 17]). Since a_i,a_j are analytic, we obtain the Taylor series expansion $\alpha_i(-t)_*a_j(\alpha_i(t)x^0)=\sum_{h=0}^{\infty}(t^h/h!)ad^h(a_i)a_j(x^0)$, where $ad^0(a_i)a_j(x^0)=a_j(x^0)$ and $ad^h(a_i)a_j(x^0)=[a_i,ad^{h-1}(a_i)a_j](x^0)$.

^{*} Received by the editors October 31, 1972, and in revised form January 8, 1973.

[†] Department of Mathematics, University of California-Davis, Davis, California 95616.

Following Haynes and Hermes [2] we define $D^0(A)$ to be a set of functions $\{a_i: i=0,\cdots,k\}$ and $D^j(A)=D^{j-1}(A)\cup\{[a_i,c]: i=0,\cdots,k,\ c\in D^{j-1}(A)\}$, for $j\leq 1$. The completed system of A is $D(A)=\bigcup_{j\geq 0}D^j(A)$, and we define $D(A)_x=\{c(x): c\in D(A)\}\subseteq \mathbb{R}^m$. The rank r of D(A) at x is just the dimension of the span $D(A)_x$.

THEOREM (Nagano [4]). Let the completed system of (1) have rank r at x^0 . Then there exists a submanifold M of dimension r through x^0 , which carries (1). That is, if u(t) is any bounded measurable control and x(t) is the corresponding solution of (1), then for some $\varepsilon > 0$, $x(t) \in M$ for $|t| < \varepsilon$.

For generalizations of this result see Krener [3].

3. Equivalent systems.

THEOREM 1. Consider the systems (1) and (2). Let M and N be submanifolds which carry (1) and (2) at x^0 and y^0 respectively. There exists a linear map $l: \operatorname{span} D(A)_{x^0} \to \operatorname{span} D(B)_{y^0}$ such that $l(a_i(x^0)) = b_i(y^0)$ for $i = 0, \dots, k$ and

$$l([a_{i_1}, \cdots [a_{i_{h-1}}, a_{i_h}] \cdots](x^0)) = [b_{i_1}, \cdots [b_{i_{h+1}}, b_{i_h}] \cdots](y^0)$$

for $h \leq 2$ and $1 \leq i_j \leq k$ if and only if there exist neighborhoods U and V of x^0 and y^0 in M and N and an analytic map $\lambda: U \to V$ such that λ carries (1) into (2). That is, if x(t) and y(t) are the solutions of (1) and (2) for the same control u(t) and $x(t) \in U$ for $|t| < \varepsilon$, then $y(t) = \lambda(x(t)) \in V$ for $|t| < \varepsilon$. Furthermore l is a linear isomorphism if and only if λ is a local diffeomorphism.

Proof. We start by assuming l exists and constructing λ . Since the theorem is local in nature, we can assume that $M = \mathbb{R}^m$ and $N = \mathbb{R}^n$, then span $D(A)_{x^0} = \mathbb{R}^m$ and span $D(B)_{y^0} = \mathbb{R}^n$. Let $c_1(x^0), \dots, c_h(x^0)$ be a maximal linearly independent subset of $D^0(A)_{x^0}$. Let $d_1(y), \dots, d_h(y)$ be the corresponding elements of $D^0(B)$, that is, if $c_i(x) = a_j(x)$ then $d_i(y) = b_j(y)$. We choose $c_{h+1}(x), \dots, c_m(x)$ from D(A) so that $c_1(x^0), \dots, c_m(x^0)$ forms a basis for \mathbb{R}^m . Let $d_{h+1}(y), \dots, d_m(y)$ be the corresponding elements of D(B), that is, if $c_i(x) = [a_{j_1}, \dots [a_{j_{i-1}}, a_{j_i}] \dots](x)$, then $d_i(y) = [b_{j_1}, \dots [b_{j_{i-1}}, b_{j_i}] \dots](y)$. Let $t, x \mapsto \alpha_i(t)x$, be the family of integral curves of $c_i(x)$ for $i = 1, \dots, m$. That is $(d/dt)\alpha_i(t)x = c_i(\alpha_i(t)x)$ and $\alpha_i(0)x = x$. Similarly $t, y \mapsto \beta_i(t)y$, is defined by $(d/dt)\beta_i(t)y = d_i(\beta_i(t)y)$ and $\beta_i(0)y = y$, for $i = 1, \dots, m$. Let $s = (s_1, \dots, s_m)$ and define maps $g_1: s \mapsto x$ and $g_2: s \mapsto y$ by $g_1(s) = \alpha_m(s_m) \dots \alpha_2(s_2)\alpha_1(s_1)x^0$ and $g_2(s) = \beta_m(s_m) \dots \beta_2(s_2)\beta_1(s_1)y^0$. Then $(\partial g_1/\partial s_i)(0) = c_i(x^0)$, so g_1 has an inverse $g_1^{-1}: x \mapsto s$ defined for x in some neighborhood U of x^0 . Let $\lambda: x \mapsto y$ be defined on U by $\lambda = g_2 \cup g_1^{-1}$.

We must now show that if x(t) and y(t) are the solutions of (1) and (2) respectively for the same control u(t), then $\lambda(x(t)) = y(t)$. Since $\lambda(x(0)) = \lambda(x^0) = y^0 = y(0)$ it suffices to show that $(d/dt)\lambda(x(t)) = (d/dt)y(t)$ or $\lambda_*(\dot{x}(t)) = \dot{y}(t)$, where λ_* is the tangent map to λ at x(t). This is true if $\lambda_*(a_i(x)) = b_i(\lambda(x))$, $i = 1, \dots, k$, for all $x \in U$, which in turn would follow if $\lambda_*(c_i(x)) = d_i(\lambda(x))$, $i = 1, \dots, m$, for all $x \in U$.

To show this we let $x = g_1(s)$, $x^i = g_1(s_1, \dots, s_i, 0, \dots, 0)$, for $i = 1, \dots, m$, $y = \lambda(x) = g_2(s)$ and $y^i = g_2(s_1, \dots, s_i, 0, \dots, 0)$, for $i = 1, \dots, m$. Then $x^m = x$ and for $i = 1, \dots, m$, the map $\alpha_i(-s_i)(\cdot)$ takes x^i into x^{i-1} and is a local diffeomorphism with tangent at x^i denoted by $\alpha_i(-s_i)_*$. Similarly $y^m = y$, and the map

 $\beta_i(s_i)(\cdot)$ takes y^{i-1} into y^i and is a local diffeomorphism with tangent at y^{i-1} denoted by $\beta_i(s_i)_*$.

We now show that $\lambda_* = \beta_m(s_m)_* \cdots \beta_1(s_1)_* l \alpha_1(-s_1)_* \cdots \alpha_m(-s_m)_*$. Since $\partial g_1(s)/\partial s_i$ forms a basis for \mathbb{R}^m , it suffices to show that the right side applied to $\partial g_1(s)/\partial s_i$ yields $\lambda_*(\partial g_1(s)/\partial s_i)$ which equals $\partial g_2(s)/\partial s_i$. But $\partial g_1(s)/\partial s_i = \alpha_m(s_m)_* \cdots \alpha_i(s_i)_* c_i(x^{i-1})$ and $\partial g_2(s)/\partial s_i = \beta_m(s_m)_* \cdots \beta_i(s_i)_* d_i(y^{i-1})$ so

$$\beta_{m}(s_{m})_{*} \cdots \beta_{1}(s_{1})_{*}l\alpha_{1}(-s_{1})_{*} \cdots \alpha_{m}(-s_{m})_{*} \frac{\partial g_{1}(s)}{\partial s_{i}}$$

$$= \beta_{m}(s_{m})_{*} \cdots \beta_{1}(s_{1})_{*}l\alpha_{1}(-s_{1})_{*} \cdots \alpha_{i-1}(-s_{i-1})_{*}c_{i}(x^{i-1})$$

$$= \beta_{m}(s_{m})_{*} \cdots \beta_{1}(s_{1})_{*}l \sum \frac{(s_{1})^{h_{1}}}{h_{1}!}ad^{h_{1}}(c_{1}) \left(\cdots \sum \frac{(s_{i-1})^{h_{i-1}}}{(h_{i-1})!}ad^{h_{i-1}}(c_{i-1})c_{i} \cdots \right) (x^{0})$$

$$= \beta_{m}(s_{m})_{*} \cdots \beta_{1}(s_{1})_{*} \sum \frac{(s_{1})^{h_{1}}}{h_{1}!}ad^{h_{1}}(d_{1}) \left(\cdots \sum \frac{(s_{i-1})^{h_{i-1}}}{(h_{i-1})!}ad^{h_{i-1}}(d_{i-1})d_{i} \cdots \right) (y^{0})$$

$$= \beta_{m}(s_{m})_{*} \cdots \beta_{i}(s_{i})_{*}d_{i}(y^{i-1}) = \frac{\partial g_{2}(s)}{\partial s_{i}}.$$

This implies that

$$\lambda_{*}(c_{i}(x^{m})) = \beta_{m}(s_{m})_{*} \cdots \beta_{1}(s_{1})_{*}l\alpha_{1}(-s_{1})_{*} \cdots \alpha_{m}(-s_{m})_{*}c_{i}(x^{m})$$

$$= \beta_{m}(s_{m})_{*} \cdots \beta_{1}(s_{1})_{*}l\sum_{i} \frac{(s_{1})^{h_{1}}}{h_{1}!}ad^{h_{1}}(c_{1})\left(\cdots\sum_{i} \frac{(s_{m})^{h_{m}}}{h_{m}!}ad^{h_{m}}(c_{m})c_{i}\cdots\right)(x^{0})$$

$$= \beta_{m}(s_{m})_{*} \cdots \beta_{1}(s_{1})_{*}\sum_{i} \frac{(s_{1})^{h_{1}}}{h_{1}!}ad^{h_{1}}(d_{1})\left(\cdots\sum_{i} \frac{(s_{m})^{h_{m}}}{h_{m}!}ad^{h_{m}}(d_{m})d_{i}\cdots\right)(y^{0})$$

$$= d_{i}(y^{m}).$$

Notice that $\lambda_*(c_i(x^0)) = d_i(y^0)$ so $l = \lambda_*$ at x^0 . It follows by the inverse function theorem that if l is a linear isomorphism then λ is a local diffeomorphism.

As for the converse, if λ exists and $\lambda(x(t)) = y(t)$ where x(t) and y(t) are the solutions of (1) and (2) for the same control u(t), then clearly $\lambda_*(a_i(x)) = b_i(\lambda(x))$. It is a standard result of differential geometry (Bishop and Crittenden [1, p. 14]) that if $\lambda_*(c_i(x)) = d_i(\lambda(x))$, i = 1, 2, then $\lambda_*([c_1, c_2](x)) = [d_1, d_2](\lambda(x))$, and so $l = \lambda_*$ at x^0 satisfies the required condition. Q.E.D.

Remark. Since $g_1(s)$ covers a neighborhood of x^0 in M, the map λ is uniquely determined in that neighborhood by the condition that it take system (1) into system (2). Furthermore if M is connected and simply connected, then λ can be extended uniquely to a map defined on all M by standard arguments. See Example 3 below.

Example 1. Consider the two systems

$$\dot{x}_1 = u, \quad \dot{y}_1 = u,$$
 $\dot{x}_2 = u \cdot t, \quad \dot{y}_2 = y_1.$

Since the right-hand side of the first system depends on t, we introduce a new variable $x_0 = t$.

$$\dot{x}_{0} = 1,
\dot{x}_{1} = u,
\dot{x}_{2} = u \cdot x_{0},
\dot{b}_{0}(y) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad a_{1}(x) = \begin{pmatrix} 0 \\ 1 \\ x_{0} \end{pmatrix}, \quad [a_{0}, a_{1}](x) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},
b_{1}(y) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad [b_{0}, b_{1}](y) = \begin{pmatrix} 0 \\ -1 \end{pmatrix},$$

and all other brackets are zero.

For initial points $x^0 = (x_0^0, x_1^0, x_2^0)$, $y^0 = (y_1^0, y_2^0)$, let $l: \mathbb{R}^3 \mapsto \mathbb{R}^2$ be given by the matrix

$$\begin{pmatrix} 0 & 1 & 0 \\ y_1^0 & x_0^0 & -1 \end{pmatrix}.$$

The hypotheses of Theorem 1 are satisfied and λ can be constructed as in the theorem. Let α_1, α_2 and α_3 be the families of integral curves of a_0, a_1 and $[a_0, a_1]$ and β_1, β_2 and β_3 be the families of integral curves of b_0, b_1 and $[b_0, b_1]$. Then

$$g_1(s_1, s_2, s_3) = \alpha_3(s_3)\alpha_2(s_2)\alpha_1(s_1)x^0 = (x_0^0 + s_1, x_1^0 + s_2, x_2^0 + (x_0^0 + s_1)s_2 + s_3),$$

$$g_2(s_1, s_2, s_3) = \beta_3(s_3)\beta_2(s_2)\beta_1(s_1)y^0 = (y_1^0 + s_2, y_2^0 + s_1y_1^0 - s_3),$$

and

$$\lambda(x) = g_2(g_1^{-1}(x)) = (y_1^0 + x_1 - x_1^0, y_2^0 + (x_0 - x_0^0)y_1^0 - (x_2 - x_2^0) + x_0(x_1 - x_1^0)).$$

Notice that $M = \mathbb{R}^3$, $N = \mathbb{R}^2$ and λ is defined for all $x \in \mathbb{R}^3$ and is onto \mathbb{R}^2 . In fact, if we introduce a time coordinate $y_0 = t$ into the second system, then $N = \mathbb{R}^3$ and λ becomes a diffeomorphism from \mathbb{R}^3 onto \mathbb{R}^3 :

$$\lambda(x) = (y_0^0 + x_0 - x_0^0, y_1^0 + x_1 - x_1^0, y_2^0 + (x_0 - x_0^0)y_1^0 - (x_2 - x_2^0) + x_0(x_1 - x_1^0)).$$

Example 2. Suppose we replace the second system of Example 1 with one similar to that of Haynes and Hermes [2].

and all other brackets are identically zero. The rank of D(B) is 3 except at points where $y_2 = 0$, where it is 2. The system splits \mathbb{R}^3 into three disjoint manifolds $N_+ = \{y: y_2 > 0\}$, $N_0 = \{y: y_2 = 0\}$ and $N_- = \{y: y_2 < 0\}$. A trajectory of this system must lie wholly within one of these manifolds.

For initial points x^0 and y^0 we define l by

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & (y_0^0 - x_0^0)y_2^0 & y_2^0 \end{pmatrix}$$

and construct λ as before:

$$\lambda(x) = (y_0^0 + x_0 - x_0^0, y_1^0 + x_1 - x_1^0, y_2^0 \exp((y_0^0 - x_0^0)(x_1 - x_1^0) + x_2 - x_2^0)).$$

Notice if $y^0 \in N_+(N_-)$, then λ is a diffeomorphism $\lambda : \mathbb{R}^3 \to N_+(N_-)$. If $y^0 \in N_0$, then $\lambda : \mathbb{R}^3 \to N_0$ is onto.

Example 3. Consider the systems

$$\dot{x}_1 = -ux_2, \qquad \dot{y}_1 = u,$$
 $\dot{x}_2 = ux_1,$
 $a_1 = \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}, \qquad b_1 = (1),$

and of course there are no nontrivial brackets. If $x^0 = (1,0)$ and $y^0 = 0$, then

$$M = \{(x_1, x_2): x_1^2 + x_2^2 = 1\}$$
 and $N = \mathbb{R}$. So $l = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ satisfies Theorem 1 and λ

is defined in a neighborhood of (1,0) on M by $\lambda(x_1,x_2) = \arctan(x_2/x_1)$. It is clear that λ cannot be extended to a map on all of M.

4. The linearization of nonlinear systems. Consider the linear control system

$$\dot{y} = F(t)y(t) + G(t)u(t) + h(t),$$

where F and G are matrices, y and h are vectors and u is the control vector. As before we introduce time as a coordinate, $y_0 = t$. It is well known that there exists a change of the y coordinates which carries (3) into

(4)
$$\dot{y} = b_0 + \sum_{i=1}^k u_i b_i(y_0),$$

where

$$b_0 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, b_i = \begin{pmatrix} 0 \\ * \\ \vdots \\ * \end{pmatrix}, i = 1, \dots, k \text{ and } y_0^0 = 0,$$

and where * denotes some real-valued function of y_0 alone.

The question we now answer is when does there exist a transformation $\lambda: x \mapsto y$ which carries a nonlinear system (1) into a linear system (4).

THEOREM 2. Consider the system (1). Let n = rank of $D(A)_{x^0}$ and let M be the n-dimensional manifold which carries (1). There exists a linear system (4), a neighborhood U of x^0 in M, a neighborhood V of $y^0 = 0$ in \mathbb{R}^n and a diffeomorphism $\lambda: U \mapsto V$ carrying (1) into (4) if and only if for all $1 \le i, j \le k$ and for all $k \ge 0$, $[a_i, ad^h(a_0)a_i](x^0) = 0$.

Proof. Suppose the system (4) and λ exist. Then λ_* , the tangent to λ at 0, is one-to-one and

$$\lambda^*([a_i, ad^h(a_0)a_j](x^0)) = [b_i, ad^h(b_0)b_j](0).$$

Then by induction for $h \ge 0$,

$$ad^{h}(b_{0})b_{j} = \begin{pmatrix} 0 & \cdots & 0 \\ * \\ \vdots & 0 \\ \vdots & * \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ * \\ \vdots \\ * \end{pmatrix} = \begin{pmatrix} 0 \\ * \\ \vdots \\ * \end{pmatrix}$$

and

$$[b_i, ad^h(b_0)b_j] = \begin{pmatrix} 0 & \cdots & 0 \\ * & & \\ \vdots & & 0 \\ * & & \end{pmatrix} \begin{pmatrix} 0 \\ * \\ \vdots \\ * \end{pmatrix} - \begin{pmatrix} 0 & \cdots & 0 \\ * \\ \vdots \\ * \end{pmatrix} \begin{pmatrix} 0 \\ * \\ \vdots \\ * \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

and it follows that $[a_i, ad^h(a_0)a_i] = 0$.

On the other hand if $[a_i, ad^h(a_0)a_j](x^0) = 0$, we construct (4) as follows. Let $s, x \to \alpha_0(s)x$ be the family of integral curves of a_0 . Define the system (4) by setting

$$b_0 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \text{ and } b_j(y_0) = \alpha_0(-y_0)_* a_j(\alpha_0(y_0)x^0), \quad j = 1, \dots, k.$$

The Taylor series expansion of $b_j(y_0) = \sum_{h=0}^{\infty} ((y_0)^h/h!)ad^h(a_0)a_j(x^0)$ and it follows that

$$ad^h(b_0)b_j(0) = \frac{d^h}{dy_0^h}b_j(0) = ad^h(a_0)a_i(x^0)$$
 for $j = 1, \dots, k$ and $h \ge 0$.

Also by hypothesis $[a_i, ad^h(a_0)a_j](x^0) = 0$ and we showed above for systems of type (4), $[b_i, ad^h(b_0)b_j](0) = 0$. Therefore the hypotheses of Theorem 1 are satisfied with l = identity map, and so we can construct λ . Q.E.D.

Example 4. Consider the nonlinear system

$$\begin{split} \dot{x}_1 &= 1 + u \cdot x_3, \\ \dot{x}_2 &= x_1^2 x_2 + u, \\ \dot{x}_3 &= x_3, \\ a_0 &= \begin{pmatrix} 1 \\ x_1^2 x_2 \\ x_3 \end{pmatrix}, \quad a_1 &= \begin{pmatrix} x_3 \\ 1 \\ 0 \end{pmatrix}, \quad [a_0, a_1] &= \begin{pmatrix} x_3 \\ -2x_1 x_2 x_3 - x_1^2 \\ 0 \end{pmatrix} \\ \text{and} \quad [a_1[a_0, a_1]] &= \begin{pmatrix} 0 \\ -2x_2 x_3^2 - 4x_1 x_3 \\ 0 \end{pmatrix}. \end{split}$$

Therefore the system is not linearizable in general. However if $x_3^0 = 0$, then the system is carried by $M = \{x: x_3 = 0\}$ and on this submanifold

$$a_0 = \begin{pmatrix} 1 \\ x_1^2 x_2 \\ 0 \end{pmatrix}, \quad a_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad [a_0, a_1] = \begin{pmatrix} 0 \\ -x_1^2 \\ 0 \end{pmatrix}, \quad [a_1[a_0, a_1]] = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

$$ad^{2}(a_{0})a_{1} = \begin{pmatrix} 0 \\ -2x_{1} \\ 0 \end{pmatrix}, \quad [a_{1}, ad^{2}(a_{0})a_{1}] = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad ad^{3}(a_{0})a_{1} = \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}.$$

All higher brackets are zero, so the system is linearizable. We do not have to compute λ to describe the equivalent linear system. For example if $x^0 = (0, 0, 0)$ we define

$$b_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad b_1(y_0) = \sum_{h=0}^{\infty} \frac{y_0^h}{h!} a d^h(a_0) a_1(x^0) = \begin{pmatrix} 0 \\ 1 - \frac{y_0^3}{3} \\ 0 \end{pmatrix}.$$

Since $y_0 = t$ and the y_2 -coordinate is superfluous, this becomes

$$\dot{y}_1 = u(1 - t^3/3), \quad y_1(0) = 0.$$

REFERENCES

- [1] R. L. BISHOP AND R. J. CRITTENDEN, Geometry of Manifolds, Academic Press, New York, 1964.
- [2] G. W. HAYNES AND H. HERMES, Nonlinear controllability via Lie theory, this Journal, 8 (1970), pp. 450-460.
- [3] A. J. Krener, A generalization of Chow's theorem and the bang-bang theorem to nonlinear control problems, this Journal, 11 (1973).
- [4] T. NAGANO, Linear differential system with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan, 18 (1966), pp. 398–404.