Stochastics, 1981, Vol 4, pp. 193203
0090-9491,81.:0403-0193 $06.50,0

¢: Gordon and Breach Science Publishers Inc., 1981
Printed in Great Britain

The Complexity of Stochastic
Differential Equations

ARTHUR J. KRENERTt

Department of Mathematics, University of California, Davis, California 95616,
US.A.

CLAUDE LOBRY

Université de Bordeaux 1, U.E.R. de Mathématiques et d'Informatique 351
Cours de la Libération, 33405 Talence, France

(Accepted for publication April 12, 1980)

There has been considerable interest lately in the complexity of solving stochastic differential
cquations, for example, can they be solved individually for each sample path. In this note we
unify what several researchers have indicated, namely that the stochastic complexity depends
on the Lie algebra generated by the vector fields multiplying the noises and does not depend
on the drift term.

1. S~TATEMENT OF THE RESULTS

Consider the stochastic differential system

dX =f(X)dt+g(X)dW (1.1a)
X(0)=X° (L.1b)

where X is an nx 1 vector valued process, W is standard Wiener process
of dimension m x 1, X° is nx 1 dimensional random vector independent of
W and f, g are smooth (C™) functions of x with values of dimensions n x 1
and nxm respectively. Nonautonomous systems are included in (1.1) by
letting one component of X be equal to t.

The purpose of this note is to show that under certain assumptions the
complexity of solving (1.1) introduced by the stochastic nature of W is
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194 A. J. KRENER AND C. LOBRY

independent of the drift vector field f(x) and depends only on the vector
fields g'(x),..., g"(x) comprising the columns of g(x). Intuitively this is
quite reasonable because the latter are multiplied by dW, which is “of
order \/@” while the former is multiplied by dt. An immediate corollary
of this fact is that the complexity introduced by the stochastics is the same
whether (1.1) is interpreted as an Ito or Stratonovich differential equation,
since the transition from one to the other only involves modification of
the drift term.

Let us be more precise about what we mean by the complexity of (1. 1)
introduced by the stochastics. But first what about the complexity of the’
system without stochastics, i.e., consider the analogous control system

X=f(x)+g(x)u (1.2a)
x(0)=x° (1.2b)

where x(f) and u(t) are sure functions. Here we are interpreting (1.1) in
the Stratonovich sense; if (1.1) is an Ito equation then the appropriate
deterministic analog is

Xx=f(x)+g(x)u (1.3a)
x(0)=x° (1.3b)

where the drift is modified by a correction term
Fx)y=f(x) + Z x)g(x) (1.3c)

Intuitively, there are two ways of approaching the complexity of (1.2)
(or (1.3)). The first is how hard is it to integrate? For arbitrary u(t) can the
solution be written in closed form involving quadratures? The second is
how difficult is it to simulate? Suppose we have another system

Z=h(z,v) (1.4a)
2(0)=2° (1.4b)

and maps v=a(u), x=¢(z) such that for any input u{t), the solution x(t)
of (1.2) and the solution z(t) of (1.4) under input v(t)=a(u(t)) satisfy x(t)
=¢(z(t)). In this case the second system (1.4) is said to simulate the first
(1.2) and hence intuitively (1.4) must be at least as complex as (1.2).

It turns out the answer to both of the above questions involves the Lie
algebra # of vector fields generated by {f, g',.. g™}. The solutions to
(1.2) can be expressed in quadratures iff the algebra 1s solvable. If &
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nilpotent/albelian/one dimensional the quadratures take successively sim-
pler forms. We discuss this point in more detail later on.

Let # be the Lie algebra of vector fields generated by {hiz,v)w
=constant}. In [10] it is shown that a necessary condition for (1.4) to
simulate (1.2) is that # is the homomorphic image of a subalgebra of #.
Moreover if # is finite dimensional then this condition is almost sufficient
in the following sense. If # is the homomorphic image of a subalgebra of
S then (1.4) may not simulate (1.2) but one can construct a system with
algebra isomorphic to # which does simulate (1.2).

But we wish to focus on the complexity of (1.1) as introduced by the
stochastics. The solution satisfies the stochastic integral equation

x(r)=x°+§f(x(s>>ds+§g(x(s))dms). (L5)

Can this be reformulated as a series of stochastic quadratures and a
nonstochastic integral equation? Put another way can (1.1) be simulated
by the composition of two systems, one of which involves the stochastics
but is solvable by quadratures and the other which is more complicated
but has no white noise driving term, dW? An answer to these questions is
supplied by the following. We denote by 4 the Lie algebra of vector fields
generated by {g',...,¢"} and for convenience we assume that the initial
condition X° of (1.1b) is equal to x° almost surely.

THEOREM L. Suppose G is of finite dimension d. Then there exists a
neighborhood U of the (y°,z°)e R x R"

1) a stochastic differential equation

dY=k(Y)dW (1.6a)
Y(0)=1° (1.6b)
dZ =h(Y,Z)dt (1.6¢)
Z(0)=z° (1.6d)

where Y and Z are of dimensions d and n and k(y), h(y,z) are smooth
Junctions of dimensions d x m and nx 1 for (y,z)e,

i) a smooth map ¢(y, z)=x defined for (y,z)e ¥ and
1) a stopping time T>0 as. such that if (Y(t),Z(t)) and X(t) are the
Stratonovich solutions of (1.6) and (1.1) then for 0<t<T

e(Y (1), Z(t))=X (1) (1.7)
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Movreover @ induces an isomorphism from Lie algebra A~ generated by the
columns of k onto 4.

After changing the vector field h, the result also holds for the Ito
solutions of (1.6) and (1.1).

We defer the proof of this and other results to the next section. Notice
that the stochastic complexity of solving (1.6) is wholly contained in the
first part (1.6a,b). For a solution of this will have continuous sample
paths almost surely and hence (1.6¢,d) can be solved for each sample path
individually using standard techniques. Hence (1.1) can be solved for each
sample path individually if (1.6a,b) can.

Actually we have considerable freedom in our choice of the stochastic
differential equation (1.6a,b). This is advantageous for as we shall see in a
moment if the Lie algebra % is not too complicated then by an
appropriate choice of (1.6a, b) we can greatly simplify the stochastic
integrations required to solve the equation.

THEOREM Let % be of finite dimension d and k*(v),...,k™(y) be smooth
vector fields defined on a neighborhood of y°eR'. Let A denote the Lie
algebra generated by these vector fields, A (y) the linear space spanned by
the vector fields of A" evaluated at y and A7 the isotropy subalgebra at y,
i.e., the space of vector fields of A which vanish at y. Assume X" acts
transitively, ie., A (y)=R' and freely, ie, #*={0} for every y in some
neighborhood of y°. Finally assume the correspondence ki(y)— g’(x) extends
to a Lie algebra homomorphism of A" onto. 4. Then Theorem 1 holds with
K(y),..., k™(y) defining (1.6a,b).

Let us see how these theorems lead to some of the recent results
regarding stochastic differential equations which have appeared in the
literature. First we consider the case of a scalar diving noise, m=1. This
has been treated by Lamperti [12], Sussmann [13], Doss [5] and Krener
[11]. In this case the Lie algebra % is one dimensional, and hence
isomorphic to any one dimensional algebra. We apply Theorem 2 with y a
scalar, k'(y)=1, the constant vector field and y°=0. Then (1.6a,b)
becomes the trivial stochastic differential equation

dY=dw
Y(0)=0

whose solution is Y (t) = W(t). We next solve (1.6c,d) for each sample path
independently. This is possible because the sample paths of Wiener
process are almost surely continuous. If w(t) is a particular sample path
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then we must solve the ordinary differential equation

dz
E:h(z, w(t))

z(0)=2°

which is certainly possible since the right hand side is smooth in z and
continuous in f. Finally we plug this into the mapping ¢ to get x()
=@(z(t), w(r)), the sample path solution of (1.1).

Suppose there are several noises and the Lie algebra % is abelian. This
case has been discussed by Doss [5], Clark [2] and Davis [3,4]. We
proceed as before, applying Theorem 2 with the dimension of y equal to
m, k’(y) the constant unit vector field pointing in the jth direction and y°
=0. Again (1.6a,b) is trivial

dY,=dW, i=1,...m
¥,0)=0
and as before we can construct the solution sample path by sample path.
Recently, Yamato [15] discussed the case where the Lie algebra ¢ is
nilpotent. By Ado’s theorem every finite dimensional Lie algebra has a

faithful representation as a matrix algebra. Therefore by applying this to
Theorem 2, we can choose the vector fields k'(y),...,k™(y) to be linear in y

K(y)=Aly

for some x| matrices 4%,..., 4™ which generated a Lie algebra isomor-
phic to 4. If 4 is nilpotent then, in the appropriate coordinates, the

matrices A',..., A" are strictly lower triangular. If 4’=(a},) then (1.6a,b)
becomes
m i—1
dY,=Y Y al, Y,dw, (1.8a)
j=tk=1
Y(0)=)? (1.8b)

for i=1,..,L These equations are solvable in terms of multiple quadra-
tures of the form

s1 Sn—

T AW (5 dW, (5,-y). dW(s,). . (19)
Q Q

Jn-1

S,

For deterministic systems, expressions such as (1.9) are called multiple path
integrals by K. T. Chen. They have been used extensively by Fliess [6,7]
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in treating deterministic systems. If the integrations of (1.9) are to be
interpreted in the Ito sense then Ito calls them multiple Wiener integrals
[8]. With Stratonovich interpretation they are closer to the multiple
integrals found in Wiener’s famous paper, The Homogeneous Chaos [14].

If 4 is solvable then the situation is similar except that the matrices
A', ..., A™ need only be lower triangular. Therefore (1.6a,b) becomes

dY,=Y ¥ d Y, dW, (1.10a)
j=1k=1
Y,(0)=)7 (1.10b)

for i=1,..,I. By the variation of parameters formula we obtain the
Stratonovich solution

Y(e)=exp( Y af}W,(t))
=1
t m ) i-1 m )
. [y?+§exp(— S a w,m) S ¥ ms’)dvvj(s)} (i)
0 i=1 k=1j=1
The Ito solution is a bit more complicated

Y;(t)::exp<i a{i(VVj(t)_a{i[/z)>

j=1

. m ilm
x[;v?ﬂ"exp(* Z a{i(Wj(s)—a{iS/z)> Z Z
Q0 J

i=1 k=1j=1

+ al K((s)(de(s)~a{ids)} (1.12)

Both solutions (1.11) and (1.12) can be expressed in terms of multiple
stochastic integrals of the form

s fn—

fj... _fldexp(ocj"VVj"(Sn)) .dexp(a; W, (s,)). (1.13)
00 0

This is similar to the multiple Wiener integrals (1.9). The expression of the
Ito solution (1.12) also involves multiple integrals of mixed stochastic and
deterministic type.

In closing this section we would like to emphasize that Theorems 1 and
2 do not imply that the deterministic complexity of the differential
equation has been lessened by replacing (1.1) by (1.6). It is only that the
intrinsic stochastic complexity has been separated out into (1.6a,b). For a
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full treatment of decompositions of differential systems we refer the reader
to {10].

Since completing the first version of this paper, similar results of
Kunita’s have come to our attention [16].

2. PROOFS

In this section we prove Theorems | and 2 for both the
Stratonovich and Ito interpretations of (1.1). We start with the
Stratonovich version of Theorem 1 and then modify it to obtain the
others. The proofs involve generalizations of techniques used by
Sussmann, Doss and Yamato.

Let g'(x),..., g°(x) be a basis for 4; then

g/x)= 2, big'(x) @0

for j=1,...,m. Let {c/} be the structural constants of % relative to this
basis
. .. d P
[8,81(x)= ) cl/g"(x) (2.2)

k=1

Let y/(t)x denote the flow of §/(x), i.e.,
L otye=g i (2.3a)
dt
Y(0)x =x. (2.3b)

The juxtaposition of y/(t) with x does not mean multiplication; we use
this notation instead of y/(t;x) to avoid an excess of parentheses. Let
(1), denote the tangent map,

yf(r)*gi(x)—ﬂl( O (x).

We make use of the following lemma.

LEMMA. Let J(t) be the analytic functions defined as the solutions of the
differential equatlons

iw— Y i (2.42)

n=1

AJ(0)=5i (2.4b)
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for i, j, k=1,...,d where Ji is the Kroenecker 8. Then for any x and i, j
=1,...,d

d
P(OLE G (—0x)= Y A (0)g (x). (2.5)
k=1

Proof of Lemma. From the group property of flows,
P(E+s)x =y (0 (s)x =y (s (t)x,
it follows that

d . o . d . o A :
2V O (0x)=70 7 7 ()8 0 (s (= 1)x)
ss=0

It i1s a straightforward calculation [1, p. 17] that

d . oo oo 4
Il VLG (=) =[g g1 x)= PIREHEY
Ss:O n=1

SO

d

d
2 P OEZ 6 (= 0x)= 3 (0,80 (= 1)), (26)
n=1

Differentiating the other side of (2.5) we obtain

d d d
(S rorm)- 3 % dmi 2
d[ k=1 k=1n=1
Notice that at any ¢ where (2.5) holds the derivatives (2.6) and (2.7) of
both sides agree. Clearly (2.5) holds at ¢=0 so by uniqueness of solutions
to differential equations the lemma is proved.
For simplicity of notation assume x°, y° and z° are the origins in R", R
and R". For small yeR? and zeR" define a map ¢(y,z)=x by

0

o, 2)=7"(y1).. . V' (va)z. (2.8)
Then
9 g, il Si(md( v i
3y Uy 2) =7 k7T O D8 G 0) -7 (adx)
J

=9 e T DR80T N (=) (v e ()
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By repeated use of the lemma we conclude that there exists analytic
functions f(y) such that

0 4
o (J,~ Y BN (@ (y.2)) (2.9a)

i=1

Bl(0)=0! (2.9b)

From this we see that the matrix (B/(y)) is invertible for small y. Let k(y)
denote the inverse matrix and k’(y), the jth column of k, we view k'(y) as
a vector field. By construction k’(y) is ¢-related to g/(x), i.e., the Jacobian
of ¢ maps k/(y) to §(x)

0 o )
%’,(y, DR (y)=g(p(y. 7)) (2.10)

for all small y and z. This implies [1, p. 14] the brackets of the ks are ¢-
related to the corresponding brackets of §s. In other words the Jacobian
of @ is a homomorphosm from the Lic algebra # generated by k',..., k¢
onto 9.

Actually this mapping is an isomorphism for if there exists a vector field
k(y)e A such that for some small y and all small z

co
k()=
ay

then for all small x=¢(y, z)

'ﬁ() 2)k(v)= Z Biy)k; (18 (x)=0.

i,j=1

But this contradicts the assumption that g'(x),...,g"(x) is a basis for 4.
Next we define
. d .
k()= Y. bR ()

i=1

then by (2.1) and (2.10) for small y and z

6, . )
L k) =gl 2)) @11)
ay

By the uniqueness of solutions to ordinary differential equations we
conclude that the n x m matrix d¢/éz(y, z) is invertible. Let a(y, z) denote
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the inverse matrix and define the vector field h(y, z) by
h(.}’ Z) = “(y’ Z)f((p(}a Z))

The h is @-related to f,

a
o2 = (. 2) (212)
z

We use this h(y,z) and the above k'(y),....k™(y) to construct (1.6) on
some open neighborhood # of (0,0) where ¢ is also defined. Let
(Y(t), Z(r)) be the Stratonovich solution of (1.1) and T the stopping time

T=inf{t>0:(Y(t),Z(t))¢ %}.

Usmng the standard differential rule, (2.11) and (2.12) it is straightforward
to verify that X (t) defined as @(Y(t), Z(t)) is Stratonovich solution of (1.1)
for 0<t<T :

When (1.1) and (1.6) are to be interpreted in the Ito sense, we define the
vector field & by

2

.
h()\Z):%(,\’,Z)[f(qo(}',Z))~1/2 Y ¥ k?(y)k}‘(y)} (2.13)

. ’

Lj=1n=1%¥iV)j

so that

2
o=

] =

ay,

C

J

I

(3, 2y, 2)+ 172 3
i =1

2 2GR,
in Yj

(2.14)

Using the Tto differential rule, (2.11) and (2.14) it is straightforforward to
verify that if (Y(t), Z(t)) is the Ito solution of (1.6) then X(t)
=@(Y(t), Z(t)) is the Ito solution of (1.1).

Moving on to the proof of Theorem 2, we choose vector fields
R(y).... k' (y) which span ¢ . Since the action is free these vector fields
evaluated at any small y span R'. Let g'(x),..., §'(x) be the homomorphic
images of these vector fields, and let »!(t)y,....5 (t)y; y (t)x, ..., 7 (t)x be
their flows. Let s=(s,,...,s,)e R and zeR". Consider the maps

S’—’.\'(S):V-l(31)---%1(51)}'0
(s,z)i——»x(s,z):)l(sl)...yl(sl)z

defined for small s and z. The first is invertible, let s(y) denote its inverse.
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We define

then ¢, is a Lie algebra homomorphism from # onto % and Ki(yyis ¢-
related to g/(x). (See Krener [9], [10] for details.) The rest of the proof
proceeds essentially as with Theorem 1.
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