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1. Introduction

In the study of decoupling of linear systems the
important geometric concept is that of (A4, B) in-
variance [1]. Recall that for the linear system

X =Ax+ Bu (1.1)

where x €R" and ¥ € R™, a subspace VCR" is
(A, B) invariant if there exists an m X n matrix F
defining a linear feedback law u = Fx+ v such
that the modified dynamics

x=(A+ BF)x+ Bv (1.2)
leaves “Vinvariant, i.e.
(A4+ BF)VC. (1.3)

It is well known and easy to see that (1.3) is
equivalent to

AVC N+ R (B) (1.4)
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where 9R.(B) denotes the subspace spanned by the
columns of B.

A similar concept arises in the decoupling of
nonlinear systems as we discussed in [2].

Consider the nonlinear system

%= f(x,u)=g%x) +g(x)u

=£°(x)+ 3 g0} (13)

where x are local coordinates of a smooth n-
dimensional manifold M, u €R™, g° and the m
columns g/ of g are smooth vector fields on M
(smooth means either C* or analytic). A distribu-
tion A on M is (f,g) invariant if there exists a
nonlinear feedback law v = a(x) + B(x)v, when «
and B are smooth functions taking values in R™
and R™ ™, such that the modified dynamics

x=g%x) + g(x)a(x) + g(x)B(x)v (1.6)
leaves A invariant, i.e.
[8° +ga. A](x) CA(x).
[2B.A1(x) cA(x).

In general, it is desirable to maintain as much
open loop control as possible; therefore, one seeks
a f(x) satisfying (1.7b) which is invertible. (Con-
dition (1.7b) is trivially satisfied in the linear case
since the open loop term Bv does not depend on

X.)
It is easy to see that (1.7) implies that

[8°. A}(x) CA(x) + R (g(x)),
[g,A](x) CA(x) +R(g(x));

however, the reverse implication does not always
hold. (R (g(x)) is the span of the column of g(x).)
A stronger form of (1.8b) is

[5.8](x) cA(x) (1.8¢)

which yields the following partial converse:

(1.7a)
(1.7b)

(1.8a)
(1.8b)

Hirschorn’s Lemma [3]. Suppose A is involutive and
the dimensions of A(x), R(g(x)) and A(x)N
R(g(x)) are constant over M. If (1.8a) and (1.8c)
hold, then locally around each x there exists an a(x)
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satisfying (1.7a). If M is simply connected then a
global a(x) can be found.

A similar result can be found in [4].

In [2] we defined a locally ( f,g) invariant dis-
tribution as one which satisfies (1.8a) and (1.8b)
and stated without proof a weaker version [2;
Lemma 2.3] of the following lemma:

Lemma. Suppose A is a locally (f,g) invariant
distribution, A its involutive closure, and the dimen-
sions of A(x), R(g(x)) and A(x) N R(g(x)) are
constant. Then locally around each x there exists
a(x) and invertible B( x) satisfying (1.7a) and (1.7b).

The purpose of this letter is to give the proof of
this.

After submitting this note for publication, it
has come to our attention that similar results are
found in an unpublished manuscript of Nijmeijer

5.

2. Proof of the lemma

We prove the existence of a and 8 by showing
the integrability of certain first order partial dif-
ferential equations given by (1.8). A smooth one
form w on M defines a first order partial differen-
tial equation. Given w, we seek a function ¢: M —
R such that

(2.1a)
(2.1b)

d¢=w,
(x?)=¢".

The fundamental result is the following;:

Proposition 1. 4 solution ¢ of (2.1) exists locally
around x° iff in a neighborhood of x° w is a closed
one form, i.e. dw=20. If the solution exists, it is
unique. If M is simply connected and w is closed,
then a unique global solution exists.

One can describe a partial differential equation
in a dual fashion. Suppose X' ..., X" are smooth
vector fields which are linearly independent at

each point and y',...,y" are smooth functions. We
seck a solution ¢ of

X (@) =v", (2.2a)
p(x%)=¢". (2.2b)
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(The vector fields and functions of (2.2a) need not
be globally defined. Rather for each element of an
open cover of M, an equation of the form (2.2a)
might be given subject to the obvious compatibil-
ity conditions on the intersections of the open
sets.) The following is the equivalent formulation
of Proposition 1:

Proposition 2. A solution ¢ of (2.2) exists locally
around x° iff in a neighborhood of x°

X(y)—x/(y') = g Cyv* (2.3)

where C/ are structural coefficients defined by

[X,x]= Y CV/x*
k=1
If the solution exists, it is unique. If (2.3) is
globally satisfied and M is simply connected, then a
unique global solution exists.

The equivalence of these follows immediately
from the identity

do(X,Y) = X(w(Y)) = Y(o(X)) — ([ X,Y]).

Suppose not all the partial derivatives of ¢ are
specified; instead, for some d =<\ n we seek a solu-
tion of (2.2a) for k=1,...,d. It is convenient to
assume the distribution A spanned by { X',..., X}
is involutive for if [ X’, X’} is not in A, let X4+! =
[ X, X/]and y**!' = X'(y/) — X’(¥"). Then ¢ must
also satisfy the additional constraint

Xd+l((p) = yd+!

and this can be incorporated into (2.2a) by in-
creasing d by 1.

To specify a unique solution of (2.2a) for i =
l,...,d<n, we must specify the value of ¢ on an
n —d dimensional submanifold which is comple-
mentary to A. A submanifold N is complementary
to A if for each x € N T, N and A(x) are comple-
mentary subspaces of T, i.e.

T.N+A(x)=T.N,
T.NNA(x)={0}.

Given such a manifold N we repace (2.2b) by the
boundary condition
p(x)=y(x) VxeEN (2.2¢)
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where ¥(x) is a smooth function defined on N. Of
course, if N is complementary to A, this implies
that the rank of A(x) is constant around N, and
since A is involutive, by Frobenius’ theorem it is
integrable.

Proposition 3. Consider the partial differential equa-
tion (2.2a) subject to the boundary condition (2.2c),
where { X',..., X%} span an involutive distribution A
complementary to N and ¥',...,y* are smooth func-
tions defined around N, { is a smooth function on N.
There exists a unique sclution locally around x° € N
iff the integrability conditions

Xi(v) = Xy) = 3 coxt (24)

i=1

are satisfied around x° € N. Again C{/ are the
structural coefficients of A,

d
[X,Xx/]= X C/Xx~
k1

If A is a regular distribution so that 7: M —
M/A is a fiber bundle, N is a section of this
bundle, the integral manifolds of A are simply
connected, and the integrability conditions are
satisfied, then a unique global solution exists.

This proposition is proved by solving the partial
differential equation on the leaves of A, obtaining
solutions from Proposition 2. That these solutions
fit together rucely to obtain a smooth solution on
M follows from the continuous dependence of
solutions of ordinary differential equations on ini-
tial conditions.

We now turn to the proof of the lemma. As-
sume A is locally ( f,g) invariant; we first show
that so is A, its involutive closure. Define a se-
quence of distributions A* by A° = A and

ATU= A% A, AF].

Then A= U 120 AY. We show by induction that
each A* is locally ( f,g) invariant, hence implying
A is also. By assumption A° = A is locally ( f,g)
invariant, assume A* is. Let X' €A and X? € A,
then there exist m X m-matrices ['', [2and Y'! € A,
Y2 € A* (each column of Y a vector field of A or
A*) such that

[g.x]=gl"+ V"

14
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Using the Jacobi identity
[elx', x*]] =[[g. x'] x?] - [[5. X*] X?]
=[gI" + v, x?] —[gI* + v2,x']
=gl T + VI —gx) (') +[ Y, Xx?]
—gl'T? = Y'T? +gx'(T?) - [¥?, X']
EA +[A, A]+R(g).

A similar calculation holds for g°.

In light of the above we can assume A=A is
involutive and locally has a basis {X',...,X9}.
After modification of g by feedback, we can as-

sume that g'(x),...,g'(x) are linearly independent
and

A(x)NR(g(x))= GJ{(g[“(x),...,g"’(x)), (2.5a)
Ax)NR(g'(x),....g"(x)) = (0}. (2.5b)

From (1.8b) we have the existence of y/* such
that

[/, x]=3 v/*¢' modA

i=]

(2.6a)

fo}r L, j=1,....m, k=1,...,d. To uniquely fix the
¥/* we specify y/* =0 if i orj equals [+ 1,...,m.
Let ['* be the m X m matrix with i-j entry y/*, then

[g.X] =gI'* modA. (2.6b)
The m X m feedback matrix 8 will satisfy (1.7) if
[gB8.X*] =0 mod A (2.7)
or

g(T*8— Xx*(B)) =0 mod A.

Therefore we seek a solution of

XK(B)=T*8 fork=1,..,d. (2.8)

From Proposition 3 we see that a solution will
exist locally if the integrability conditions are
satisfied and we can find a complementary sub-
manifold on which to set boundary conditions.
The latter poses no problem for by Frobenius’
theorem around x° we can choose local coordi-
nates x such that x® =0 and the integral mani-
folds of A are given by x,,, = constant,...,x, =
constant. For N we take the submanifold given
locally by x, =0,...,x, =0 and impose the
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boundary conditions
B(x)=I""" Vx€EN.

Next we check the integrability condition
d
X{(T/g) — x(I')= 2 C/T'B
k=1
which is implied by
LT+ X(D)—T'TY — X/(T) =
d P
=3 CYT (2.9)
k=1

The Jacobi identity yields

[[g, x] %] - [[&. X x] =[gl X", X]]

which we compute mod A using (2.6b) and the
involutiveness of A:

d
o) x =] 3 cov
k=1
or
g(IVT — X(T') = I'TY + X(T7)) =
d
Eg( > C,ifrk).
k=1

The first / rows of the matrices multiplying g on
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each side must agree by (2.5), the last m — I rows
are zero since y,j" =0 for i=I+1,...,m, hence
(2.9) holds.

Notice that B is invertible wherever it is de-
fined, for (2.8) is just a linear ordinary differential
equation along an integral curve of X k_therefore B
does not change rank along such curves. The total-
ity of these curves emanating from N fill up an
open neighborhood of x0; therefore the rank is
everywhere equal to m.

To show the existence of a we merely need to
add a zero row and column to B of the above, with
a, = B2, i=1,...,m. If we initialize B/ =8/ as
before, then since y§¥ =0 as defined by (2.6a) we
see that B4(x) =& for all x as desired.
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