£ - P . <
o o8 A
E ea 2i. Y c.:l

}
e - el

CTYPETUTLE OF ARTINLE HEREONP Pt

THE OBSERVABILITY OF CASCADE CO\'\ECTED \’O\ILI\'EAR SYSTRMS

i

A. Isidori l
Istituto di Automatica, Universita di Ron‘a, Ro*\e, Italy ‘ ]
{

i

1

I

)

]

: A.J. Krener
! Department of Mathematics, University of California, Davis, USA

*

fSMOULD 2L A

‘ gl (R~ 43 . . .
o WDICATEO HERE C. Gori-Giorgi, S. Monaco
!

; Istituto di Automatica, Universitd di Roma, Rome, Italy

: - ! ‘
A N e o : { :

.- mem e e -y DO UV o

I . PO - .
i . Abstraci. This paper studies the observability of cascade cpnnected nonlinear
{ systems. The analysis of nonlinear observability is carried out following the
! differential geometric approach developed by Hermann and Krener and makes
large use of concepts related to the notion of (f,g) invariant distribution
introduced by the authors themselves. The basic result is a characterization
of the unobservability of the composite system in terms of a partial "match-
] ing"" between the dynamics of one system and. that of the other system modified
: by suitable state feedback. This caracterization, in the case of linear sys=
) : tems, reduces to the geometric equivalent of a hell known observablllty cri-
1 t terion for cascade connected linear systems. ’ : X
!

e
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| GEOMETRIC PROPERTIES OF CASCADE CONNECTED
i LINEAR SYSTEMS

.
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In this section we show that the notion of : J‘cl = Alx + B
(A,B)-invariant subspace (see Wonham, 1979) .
lays anatural role in the study of observa- X, =AXx, + BZCl‘
glllt)’ of cascade connected linear systems. ' . ,
o Our comments will be of some interest in in- Y, = CZXZ o
- 4 terpreting the results that will be proved in P :
I the following sectlom about nonlinear sys- with (xl,xz) € Xl x XZ' !
e tems. : | Since S; and S, are both observable, a loss
L ‘:irgggilg;r a pair of systems s1’ S; de- - of observability may happen if and only if a
LT N i ' nonzero initial state xg of S1 produces a
SRR . X, = Ajx) + Bju : . o .
MR ST i 71 1 171 ! - -(zero-input)-response which is annihilated by
T B : i y' = C.x i+ S,- This may happen with the initial state
E : 1 11 v x§ of S, being either zero or nonzero. In
i ; € -dimensi iti
- ‘: :;Ehrszec)éwg?; gy dimensional vector space), what ;fc»1 lows we shall make the additional as
RE : P I ' i sumptlon that x1 is necessarily nonzero, i.e.
. : ! X, = Azxz + Bzu2 ' ' in other terms,“we shall make the assumoticn
. i . . 14 that the unobservables of 8§, © §; are a sub-
- 3 g Y2 T CZXZ ' ' space v of X; x X, with the property that
S - e -dimensi . e e -
s with xv2 XZ (an n, dimensional vector space) Vo (Vl x {0} = {(0,0)} H)
T The two systems are cascaded connected, i.e. :
‘ ;‘ t ; - : . This makes it possible to give a nice geomet
| T u =y : . .+ Tic characterization of unobservability in
i : ’ . S, © §;. For, observe that the subspace V
W§3 assume that both S, and S, are observable must satisfy .
K and we wish to characterize the (possible)
A loss of observability in the composite system Aﬂ\1 0 .
A S, © S;, which is described by oy vEv :
-4 A} l I ! /.. B,C AZ 3
L } Lo AN 271 :
i i BN Y ~ ' |
.-'} ;-\Ui-—(!:y' W . : . 3nd :
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The subspace V can be described in the form
Vo= {mx,m,x) € X % X x ERY}
where m = dimv. Note that, the observability

of S, implies w,: - X; to be injective,
whereas the hypothesis (H) implies Myl Rm—*XZ
to be injective.

In this case, the first condition can be re-

phrased as follows: for all x € R" there ex-
ists z ER™ such that

Al’flx =z

(BZC].'H1 + Az'rrz)x = T,y
One easily realizes that this z depends lin-
early on the x, i.e. there exists a unique
matrix G such that in the above equalities

we can put z =Gx. Thus the above equalities
are replaced by the following ones

Ay =16
‘BZCITTl + Az'nz = 'nzG

The second one can be further manipulated if
we introduce an F such that.

Cm = Fmp

thus arriving at
(BZF + Az)jrz = nzG |
Starting from this, it'beasy to characterize

the loss of observability of S, 0 S1 in the
following terms

Proposition 1. Let S1 and S, be observable

and et V denote the iumobsefvables of S2 051.

Assume also that V satisfies condition “(H).

Then, the following statements are equivalent

(addimV=m>1

(bj There exist two injective linear mapping

.l . . :

nI.R -’Xl, ™yt R ->Xz, a matrix G and
a matrix F such that ’

(1) A17r1 = 'ﬂ’lG

(b2) .(A? + BZF)HZ = 'rrzG

(b3) Cl“l = Fnz

(®b4) CZ"Z =0

(c) There exist two injective linear mappings
™ S Xl, Lo - Xz, a matrix G a.m_:l
a matrix F such that . :

(1) A (Imm) € Imm

V(CZ) (/\2 + BZF) (Inmz) < Imm, '

(c3) Cl{exp(Alt)}nl = F{exp(Az +B,F) t}nz
for all t

(c4)  Imm, € kerC, S

(d) There exist a subspace Wl of Xl, a sub-
space W, of X,, with dim W =dim W, =m

(d1) Wy is Al—invaria.nt

(d2) ' W, is (A,,B,)-invariant
and there exists an F € F(WZ) such thatl

_+B.F

a3) Allwl is SiJ:]ilaI‘ to A, +B, W,

(@4) Clw1 = B‘JZ
Note, in particular, that (d3) implies the
coincidence of the eigenvalues of S1 with the

transmission zeroes of SZ {see Macfarlane and
Karcanias, 1976).

.S(IﬂE BACKGROUND MATERIAL ON NONLINEAR
SYSTEMS

In what follows we consider nonlinear systems
described by differential equations of the
form

]

x = £ + glxu ' ()

h(x) 2)

where u€ER, X €M, a C” connected manifold

n

y

of dimension n, y € R, f and g are c® com-

plete vector fields on M and h is a ¢” func-
tion from M to R.

We approach nonlinear observability along the
lines developed by Hermann and Krener (1977)
and we make use of some properties of feed-
back controlled nonlinear systems developed
by the authors themselves (1679). Nonlinear
observability will be characterized in terms
of distributions on the state space M. We
recall that a discribution A on M is a
mapping which assigns to each x € M a sub
space A(x) of thetanget space T M of M
at x.” A distribution has econstani rark m
on M if dim A(X) = m forall x€ M and is
involutive if it is closed under the Lie
bracket 2. It is well known (Hermann and

. Krener, 1977) that an involutive distributicn

A of constant rank m induces on M a pariition
tnto maximal integral submanifolds, all of

1 F(W) stands for the setofall the'friends"
of W (see Wonham, 1979).

z The Lie bracket [rl,rz

on M bot belonging to 4, i.e. such that
ti(x) € A(x) for all x € M and 1=1,2,

belongs to A.

] of two vector fields
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dimension m 3 . A distribution A is Zmvarzant
with respect to the dynamics (1) if, for all
TEA

(f,xa1 €4
{g,1] € A

Following an approach of Hermann and Krener,
nonlinear observability can be characterized
in terms of a distribution on M which is in-
variant with respect to the dynamics (1}.

We recall the following definitions. A

state <t is indistinguishable from x° (de-
noted xolxl) if for any admissible input the
corresponding outputs are identical. A state
x° is strongly ind stinguishable from xl (de

noted XOSle) if there exists a continuous
curve a: [0,1] = M such that «(0} = x°,
1

a(l) = x" and x Ia(s) for all s € {0,1]. More
over, define an involutive distribution ASI
on M as follows. Let I' denote the subalgebra
of the algebra Cw(M) of C° fur tions from M
to R generated by h, L(f+gu ) (f+gu")’
L(f+gu'")h’ ..... , and let

Bgpt xpr (VETM: (dv) v =0forallyEr}  (3)
Then we have the following result (Hermann
and Krener, 1977).

Theorem 1. If dg; has constant rank on M,

than the partition of M into maximal integral
submanifolds induced by Aoy coincides with -

the partition of M into equivalence classes
induced by the relation SI.

The distribution ASI is the maximal distribu .

tion on M invariant with respect to the
dynamics (1) and contained in the distribu-
tion _
“Ker(dh): x > (VETM: (dh) v =0} )
We note, moreover, that if

dim A5, (x) = 0 (5)

for all x € M, then the system is locally
veakly observable. Conversely, if

dim ASI(X) =m>0

3 An integral submanifold M' of A is a con-~
nected submanifold od M with the property
that TXM’ = A(x) for all xE€ M'. M' is a

maximal integral submanifold of A if it is
not property contained in any other inte-
gral submanifold of A.

4 (L,[h) (x) denotes the differentiation of h
along the direction of T at x € M.
(dy) denotes the differential of vy at
xEM. S . -

S RV

for all x € M, there exist a nontrivial parti
tion of M mto equivalence classes of strong
ly indistinguishable states, each element of
the partition being an imnersed submanifold
of M, of dimension m. We refer to that as to
strong uncbservability.

Finally, we recall the definition of an
(f,g)—invariant distribution (Isidori and
alii, 1979), which will play a central role
in the sequel. A distribution & on M is

(f,g)—invariant if there exist C functions
: MR and B: M >R such that A is invari-
ant w:th respect to the dynamics

= f(x) + g(X)u : - (©)
where ‘ ,
. :
£0 = £() + g (D)
£00 = g @)
or, what is the same, for all 1 € A
['E,‘r] € A
(g,1] €A

In particular, we shall be concerned with
(f,g)-invariant distributions contained in
the distribution ker (dh), and we shall make
use of the following result (Isidori and
alii, 1979). Let p denote the largest integer
such that for all k < p and all X €M

Lngéh(x) -

If no such integer exists, we take p .
Then we have '

Theorem 2. Let p < » and let

]
8

LL2h(x) #0 (9

for all x € M. Then the distribution

A*:xy-»{vETxM: (dh),v =0, (deh)xV 0,...
cees (dLgh) v = 0} (10)

is the unique maximal (f,g)-invariant distri
bution contained in the distribution ker(dh).

_ A* is invariant with respect to the dynamics

(5) with
0(x) =1 "”h(x) (11)
LgL fh(x) ‘ .
B(x) = _______91 a2)
Lgth(x)

{7
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OBSE;R\"ABILITY OF CASCADE CONNECTED
NONLINEAR SYSTIMS

We consides a pair of systems S, S, de-

scribed by _ : S -
x, = £ (x;) + g, (x;)u
lv 1Y 1871771 (13)
YI = hl(xl)
with X € Ml u €R, " € R, and respectivc'z—
ly by
i=f(x)-+g(x)u
o 2 YARY: 2¥2772 as
‘ Y = )
with X, € My, u, €R, Y, € R. The two systems

are cascade connected, i.e.

Y2771
In this paper we want to study the (possible)

loss of observability in the composite system
S,058
2

1
%, =’f1(xl) + g 0y (152)
x, = fo0x)) + gz(xz)hl(xl) (15b)
Y2 = Bplxp) ’
with input u = u; €R, output y =y, €R and

siate x = (xl,xz) € M1 X MZ. More precisely,
we assume that 54 and S, both satisfy the
condition (5), i.e. that

ASI,I(xl) {0} for all x € M H) »

8g1,2(xp) = (O} for all x, €M,  (HZ)~

and we want to give an interpretation of the
conditions under which there exist a non-
trivial partition of My % M2 into equivalence
classes with respect to strong indistinguisha
bility. We do this under the additional as-
sumptions

p
ngszhz(xz) # 0 for all X, M, (H3)
A; has constant rank on M, HY)

The interpretation we want to give is based
on a comparison of the output of S with the
output of a suitable system S2 related to S,.
The auxiliary system S2 is described as fol-
Yows

xz = fz(xz) +gz(x2)a(x2) + gz(xz)B(XZ)V 17}

w = a(xzj + B(xz)v (18a)
¥, = hy(x)) . (18b)
v €ER, wER and

with X, €EM

s i [--\6::-

‘1 B "2"1 .
a(xz) = - b Lf‘ hz(xz) (19)
ngLthz(xz)
Blx,) = —s T o)
Lg L (xz)

One can easily see, on the basis of Theorem
2, that the dynamics (17) of S is obtained
from that of S by means of a feedback con-
trol law Wthh makes A2 invariant (see Fig.l)

Yy alxy) + B(xzjv W

v

2 >

L Xy = £y05p) + gy D

Fig. 1

The outpu;t yp at time t of §) in the initial
condition xi under the input u) will be de-
noted by

} o
*
whereas the output w at time t of S, in the
initial condition xz under the mput v w111
be denoted by
w(t,x3,v)

The main result of the paper is the follbwing

Theorem 3. Assume the hypotheses (Hl), (HZ),
(H3), (Hd) are satisfied. Then, the composite
system 52 o S1 is strongly uncbservable if

and only if there exist an involutive distri-
bution A on M1 x Mz, of constant rank m > O

with the properties
. * ; 6
(i) (dn‘z)xA(x) SAZ(nZ (x)) forall xEMl x M2

(ii)for each input Uy to system Sl’ and for

each element N, of the partition {N Y aea
x M, by A, there exists an
input v to system S2 such that

induced on M

yl(t.xl up) = w(eE,x5,v)

for all t > 0 and for all (x],x3) € N_.

¢ The mapping m,: M; MZ -+ is defined as
wz(il,xz) =X, and dnz is the corresponding
differential.

Lo . . O T2 S SR S TSP TSR]
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Proof. Necessity. Assume S2 0 S1 is strongly

wnobservable, i.e. there exists an involutive '
distribution dgq of constant rank m > 0, in-

variant with respect to the composite dynam-

ics (15) and contained in ker(dh), where h

is the mapping (xl,xz) > hz(xz). Let T be a

vector field belonging to A and

B0 = (£1(x)),E505) g, () (D)
200 = (g;(x)),0)
’Ihén, by Theorem 1 we have
, (dh)r =0
(8L<§+§u,)xx)r =0

‘ (dL(?+§u")L(z+§u‘)h)T = 0,... ‘
on Ml x MZ' From the definition of Py the
first p2+1 of such equalities become

(dhz)'t2 =0

(orlszhz)T2 =G0
pé ..

(deth)rz =0.

where 1, = (dﬂ’z)”{. The other ones become

hl—a

d(B

Jt =0

gy g T 70
hl-c.

dL(?*Eu")L[?+§u')(T)a =0,...

The first p,*1 equalities, according to the

result expressed by (10), show that (i) is
true. From the other ones and Theorem 2 we
can deduce that the distribution A induces a
partition into equivalence classes with re-
spect to strong unobservability in the state

space M; M, of the system

%) = 500+ g (q)y
XZ = fZ(XZ) + gZ(XZ)hl(xl)
‘- h, (x)) - alx))

Blxy
Thus, for each fixed u, the output v of this
system is the same for all initial states
(xi,xg) belonging to the same maximal inte-
gral submanifold Na of A. This function v
depends uniquely on the imput uy and the sub
ranifold N, . If this function is used as an
imput to S"z‘, in the ini.tinl condition xcz",
then the output w of S,, coincides with the
output y; of §,, in the initial condition xi,

e e e ea e e o A Ak | £ e e SRS S e S e T S

SR P

subject to the inmput u,. This, being true
for all (xi,xg) on Na’ shows that (ii) hclds.

Sufficiency. Assume there exists an invo-

lutive distribution & of constant rark satis

fying (ii). Then, for each fixed u. and N,
L

~ the output Yo of the composite system S,985,,

in the initial condition (xi,xg) € Na coin-
cides with the output y, of the auxiliary
system S’;, in the initial condition xcz), sub-
ject ‘to the input v. Because of (i), the sub
set ﬂZ(Na) is containid into a maximal inte-
gral submanifold of A,. On the other hand,
for each fixed v, any state on the same maxi
mal integral submanifold Sf A; produces the
same output y,, because A, is invariant under
the dypamics (17) and contained into ker(dhz).
Thus, for each fixed uy any state (xi,xg)ENa
produces the same output y, in the composite
:ﬁzem S2 ° Sl and this is strongly uncbsery

We stress that this Theorem should not be
viewed as an observability criterion for
cascade connected ncnlinear system but, rath
er, as an interpretation of the conditions
under which a loss of observability may oC-
curr. Namely, we have shown that the compos-
jte system is uncbservable if and only if the
dynamics of Sy is (partially) "matched" by

 that of Sy, i.e. that of S, mdified by suit

able state feedback.

The condition (i) and (ii) appear to be non-
linear equivalent of the conditions that
have been discussed in the introductory Sec-
tion.
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