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i Abstract .7 :
" A deficlency of the standard state space foundation of the fixed interval smooth-
ing problem 1is the presumption that only information is available about the ini-
tial state a priori. This rules out cyclic proce~3, where x(0) is known to
equal x(T). We derive the formulas for the smoothing of stationary cyclic
' processes arising from a linear state space modeol.

'
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1. INTRODUCTION = o :

t

.In linear estimation problems such as Kalman-
';Bucy filtering, one wodels the state process by
a linear stochastic differential equation driven

“, by white noise with independent initial condi-

t}oﬁs. One assumes that the matrices of the model

"end the first and second momcnts of the driving
"ngise and initial conditions are known apriori.
No apriori assumptions are made regarding the state
at other times ecxcept those that follow implicit-

“ly from the assumption that the model fits.

‘It many situations one has a priori .aformation
of the s;afe at varicus times during the life of
the process which one would like to incoporate
directly into the model. As an exanmple consider
the estimation of a cyclic proucess observed in
white noise. The apriori information is that
that the state at time 0 equals the state at
time T. In generallsuch processeszére not
Markov aqd hence cannot be generated by a wodel

of Kalman-Bucy type. In this paper we discuss

-

. ary cyclic. processes.

.8 class of 1inear non-Markov models, necessary and
‘sufficient conditions for such models to generate

a stationary process, and thc -moothing of «<tation-

) 2. NON-MAPKOV LINEAR MODELS - :

Consider the linar system ’ :

"= Ax 4+ Bu _ (2.12)
v = VOx(0) + V'x(T) . (2.1b)
y = Cx + Dw . (3.1c)

.where x .and v are n dimenéional, u {s m
dimensfonal, y 1is p dimensional, and A,B,C,D,Vo
and VT are constant matrices of cowmpatible dimen-
sions. Such models are called acausal Tinear sys-
tems and are treated in [1],[2] and(3}. Hence-
forth ve shall assume that the boundafy value pro-
blen (2.1a,b) is well posed, i.e., that there
exists a uniqua soiution x(t) for each vector

v € 5 and integrable function u(t) € LT[O,T].
This is equivalent to the invertibility of

Fe@ 4yt AT (2.2)
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CIf v = 0 and w(t)

: o
where W(t,s) =

_or wetghing function of the system.

“of t and s;

The solution of (2.1a,b) is given by

x(0) = eMF v e(r,5)Bu(s)ds
[}

(2.3)

vhere the Graen's furbvion a(t,s) is glven by

-1
Gt,s) =| e F Ve “As

AtF—lvT A(T-5) t <s

£ > S
(2.4)

It is convenient to make a change of coordinates

" in the space of boundary values Vv, SO that F = I.

Henceforth we assume that this has been done.

= 0 then
y(t) = IT w(t,s)uls)ds

cG(t,s)s is the impluse response
A funcfion
of two variable such as W(t,s) is said to be

stationary if it only depends on the difference
ir abuse of notation w(t,s) =
W(t-s). We quote several lemmas from [3].

LEEE%..ZLL Suppose {(A,B) is controllable and
(C,A) is observable then W(t,s) is stationary
iff G(t,s) 1is,

kgg§§<2.2 G(t,s) is stationary 1ff

[V LAl = 0 and [V LAl =

- where bracket denotes the comnutator, i.e.

(vo,A) = voa-av® .

Suppose we assume that u{t) is a standard white
Gaussian noise and v is “n independent Gaussfan
randon vector of zero mean and covariance P,
then the solution of (2.1a,b) is a stochastic
process given by (2.3) where the integral is

interpreted in the sense of Wiener. This .is a

- zero me~a process with covariance Rx(t,s) given
. by

Atpeh S+[ 6(t,TIBB'G (s, 14T

R '(t,s) =
x [+] . ..(2.5)

Again from [3] we have
Temma 2.3 The model (2.1a,b) generates a stat-
ifonary process x(t) with R (t t) = R 1iff

(1 (a,V°) = [a, v =
1
(11) AR#RA' = Ve TBB'e A Ty - Oesn®
T T A )T
(111) RJV G Dppret T4y =2 >0
[+]

The process x(t) is cyclic if x(0) = x(T) or in

other words v o= —VT and P = 0.

. - 3. SMOOTHING

We assume that the rodel (2.1a,b) generates a
stationary cyclic process x{(t). The observation
process y(t) is given by (2.1c) whete w(t) is a
standard white Caussian noise independent of u(t)
and V. D is an invertible matrix. We seek
the optimal smoothed estimate 2(t) of x(t) given
the full observation history y(s), 0 s £ T,
where optimal is to be interpreted as minimizing

the covariance of the error ;(t) = x(t) - k(v).

It is wéll known [4) that the Kalman-Bucy filter

can be derived by solving a family of linear quad-
ratic regulators. This technique generalizes to
a much wider class of linear Gaussian estimation
problems [3].

that &(t) is a linear function of the observations,

From these assumptions, we know

i.e., there exists an nXp matrix valued functior
K(t,s) such that
: T
() = f K(t,s)y(s)ds
i o !
| Given K(t,s) for 0 <5, £ 2T let H(t,s) be the

_ plecewise diffarentiable nxn matrix valued funct-

" . ion satisfying

‘ 3 t¢s

e e o <H(t,s)A + K(t,8)C (3.2a)

o
' H(e,t 7y - H(e,t *y a1, (3.2b)
H(t.O) = LV H,T) = —L(t)V (3.2¢)

" where L{t) is arbitrary. Since Ve = V (3.2¢) is

_equivalment to :
H(t,0) = H{L,T)
The arguments t  and t+ denote left and right
" 1imits.

ting (3.2b,¢) particularly if t = 0 or T where

Some care w:st be exerclsed in interpre-
limiting values are to be taken. For example
H(0,0 ) and H(D,0) are H(O ,0) and H(T,T ) and
H(T,T) arve H(T , 1. For the sake of brevity we
- do not consider the questibns of existence and

" uniqueness 6f H. Using intergration by pafts
(with particular care at t = b or T) we have

R(e) = f K(t,s)(Cx(s) + D w(s))ds

(
- It + ] li_ H(t,s) + H(t, s‘A)}X(S)

+ K{t,s)D w(s)ds
= H{t, b)x(s;] :] + [ H(t,s))Ax(s)-X)s))

E + K(t s)D w(s)ds

S e e exey o




= (H{t,t ) - H(t,t ))x(t) + H(t,T)x(T)
T -H(t,0)x(0)
;_I H{t,s)Bu(s)-K(t,s)D w(s)ds .
o

T
e x(£) - L() (VTx(t) + Vox(®)) - [ H(t,s)Bu(s)
[o]

S - K(t,s)D w(s)ds
= x(t) - | H(t,s)Bu(s)-K(t,s)D w(s)ds :
P [+] e e B . AR -

Therefore we can express the error x(t)=x(t)-%(t)

as x(t) = ITH(t,s)Bu(s) - K(E,S)D w(s)ds

(o] I

and its covariance
EGX(%()") = [TH(c,s)BB'H' (t,s)
i o
+ K(t,s)DD'K'(t,s)ds.” . (3.3)
For each t , K(t,s) is the optimal control which
minimizes (3.3) where the state H(t,s) satisfles
(3.2).

" Suppose for t = 0 we have found the solutions
K{0,s) and H(0,s) to (3.2) for O <s <T. In
this case the boundary conditions (3.2b,c) on
H(0,s) reduce to

' H(0,T) - H(0,07) = I (3.9

‘ We extend these periodically to all s € £ by the

relations i
K(0,s+T) = K(0,s) (3.54)
H(0,s+T) = H(O,s) {3.5b)

~ From (3.4) we see that this implies.a jump in
¥(l,s) at multiples of T, ‘ i
H(0,§T>) - (0,517 = I .
Then we extend K and H to stationary functions
for all t and s.
K(t,s) = K(0,s-t) " -(3.6a)
H(t,s) = H(O,s-t) . (3.6b)
It is stfaightforeard to verify that K(t,s) and o
"H(t,s) are solutions to (3.2) for any 0 €t <T.

Moreover let ¢ = s-t then

T

fu(t,s)BB'H' (t,s) + K(t,s)DD'K'(t,s)ds
o .

Tt )
= [* 1(0,0)BB'R" (0,0) + K(0,0)DD'K’(0,0)do
-t

= {TH(0,0)B8"H" (0,0) + K(0,0)DD'K' (0,0)do
[+

by periodicity (3.5). Therefore if K(0,s) and
H(0,s) are the optimal solutions for t = O then

their pericdic and stationary extensions defined
by (3.5) and (3.6) are the solutions for any t.
As in Kalman-Bucy filtering we need only solve

We seek K(0,s)

and H(0,s) for O < s £ T which ninimizes the

‘one linear quadratic regulator.

cost (3.3) subject to the differential equations

(3.2a) and the boundary conditions (3.4).

Let Q(s), R(s) and S(s) be nXn matrices such that
Q is symmetric.

G ='2Q + QA" + BB' - QC'(0D") Tcg  (3.7a)

Q(0) = Q(T) (3.7b)
K = (a-qc' (o0") Toyr - (3.7¢)
R(0) - R(T) = Q(0) (3.7d)
$ = r'c'(o0") Ler . (3.7¢)
If we add the zero ﬁuantity T

(H(O,s)Q(s)H'(0,s)+H(0,s)R(s)+R'(s)H'(O,s)+€(s)§]
- o

‘T
-f-%;(H(o,s)q(s)ﬂ'(0,5)+H(O,S)R(s)+R'(S)H'(O,S)
° +5(s))ds

to the cost we obtain

ST (-H(0,5)Q(s)c' D" 14K (0,8)D-R(s) 'c'D* Ty

° -1 -1
(-H(0,s)Q(s)C'D' "+K(0,s)D-R'(c)C'D' ") 'ds

4+ Q(0} + R(T) + R'(T) + S(T) ~ S(0). (3.§)
Clearly the optimal solution is given by
K(0,5)=H(0,5)Q(s)c" (00") " M4r* (s)c' b)Y (3.9)
which we plug into (3.2a) and solve subject to
the boundary condition (3.6). We shall not
discuss the question of existence of solutions to
this equation or to (3.7). We note that
Hermann and Martin {5) have discussed the exis-
tence of perlodic solutions for the matrix

Riccati equation (3.7a,b).

We refornmulate (3.9) as

K(0,s) = H(0,5)q(s)C" (00" 7H
where a(s) is the not necessarily symmetric
matrix -

Qes) = Q(s) + H(0,8) TR (s) . (3.10)
It is straightforward to verify 5(5) also satis~-
fies the matrix Riccati differential equation
(3.75)'but it is not so easy to compute the

boundary conditions which it satisfies.

If we let a(t,s) be the periodic and stationary

extension of 6(5) then the optimal estimate is
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subject to (3.2b) and (3.2¢) - ; o

.~ i

- . .

- - oo e

B ‘' » )

- If Q( ) is constant then so is Q(t,s) and i{t,s) : it . L

is the Green's function of the boundary value

system _ . iw
= Az + £ Lo
= v°2(0) + UTz(T) . ;
. where : ,' '
A=a-dconle .

* In this case X{t) is the solution of

N

o .
e e v = e e i Mt &

——'i = A% - QC'(DD' ) . ’ .o o p
subject to
0 = VOR(0) + VIR(D) -
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