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1. INTRODUCTION

First order necessary conditions for optimality are the Pon-
tryagin Maximal Principle (PMP) or the Euler-Lagrange and Legendre-
Clebsch conditions. In many problems of practical importance,
particularly those when the control enters linearly, these condi-
tions are inconclusive for determining the optimal control. 1In
1964 Kelley [1] discovered a generalization of the Legendre-
Clebsch condition and this was extended by Robbins [2,3], Tait [4],
Goh [5,6], Kopp and Moyer [7], and Kelley, Kopp and Moyer [8]. An
excellent survey of these papers and related results is Gabasov
and Kirillova [9].

This condition, now known as the Generalized Legendre-Clebsch
Condition (GLC), was developed by studying the high order effect
of special control variations on the cost functional of the system.
In 1969 Jacobson {10] used similar techniques to develop a differ-
ent necessary condition. Many of the derivations of the GLC ex-
plicitly or implicitly assume that the problem is normal, i.e.,
there exists sufficient control variations to enable one to cancel
out undesirable lower order effects of the special control varia-
tions. When there are terminal constraints, this assumption
is necessary to insure they can be satisfied, and even without
constraints the assumption is necessary to insure the correct
form of the test. There generally has been no discussion of

when such ah assumption is valid or what to do when it is in-
valid.

In the PMP no assumption of normality is necessary; it is
taken care of by the transversality condition on the adjoint
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variable and the additivity of first order variations. The pur-
pose of this paper is to develop a High Order Maximal Principle
(HMP) which extends the PMP, includes the GLC and Jacobson's con-
dition when they apply and also includes numerous other conditions
which can be specifically constructed for the problem at hand
without assuming normality. We shall only sketch the proof to
indicate why the hypotheses are necessary; for a rigorous proof
see Krener [12].

2. FIRST ORDER VARIATIONS

The problem we wish to consider is to minimize

(2.1) Yo (x(t )

where the system equation is

(2.2) % = £(x,u)

subject to the constraints

(2.3) x(t) = x°

(2.4) yi(x(te)) =0, i=1,...,m
(2.5) u(t) €Q, t € [to,te].

For convenience x = (X ,X,,...,X_) With x = t and
0’71 n [o]
u=(u,...,u ). We assume that f in ¢ with respect to
1 n - o
XpseeesX s Upsene,ly, and a piecewise C with respect to x . In-

finite differentiability is not essential, it is only to avoid
counting the degree of differentiability needed in a particular
setting. Piecewise differentiability means that left and right
limits always exist and there are only a finite number of jumps
in any compact interval. To speed the exposition we shall ignore
the jumps, they are easily handled using standard techniques. We

xQ
restrict to piecewise C controls, u(t). The functions
yo(x),...,ym(x) are assumed to be C and the matrix (ayi/axj(x))
i=20,...,m, j =0,...,n is assumed to be of rank m + 1. Suppose

u® satisfies (2.5) and the corresponding solution t — x(t) of
(2.2) satisfies (2.3) and (2.4). To develop necessary conditions

for u® we choose some point t1 € (to,te) and modify u® by replac-
ing it with ‘another admissible control, u , in a neighborhood of

tl.

To be more precise, let s = Yi(S)X be the family of solutions
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of the differential equation d/ds Yi(s)x = f(Yi(s)x,ul) with in-
itial conditions Yi(O)X = x for i = 0,1. Consider the family of
trajectories whose locus of endpoints is

(2.6) Yo(temt)y (8)x(t -s) = Yo (et )Y (8)Y (-8)x(t ).

This locus is differentiable with respect to s and its effect

on and y. studied, yielding first order necessary conditions.
Yo ¥ y g

The above control variation was made before t it could

1§
have been made after t1 or around t1 as follows:

(2.7) v (b mt=s)v (8)x(E)) = v (£ -tV (~s)y, ()x(t )
or
(2.8) yo(te-tl—s/Z)yl(s)x(t1-s/2)
= ¥(E -tV (=s/2)v ()Y (-s/2)x(t )
and the same necessary conditions result.
Another type of control variation (2.9) is to stop short of
te or to continue past te using the same control. This is equiv-

alent to abbreviating or lengthening the trajectory at any inter-
mediate point, tl'

(2.9) Yo()x(t,) = v (€ -t )y (hs)x(t,).

A standard proof of the Maximal Principle is to consider the

convex cone K1 of vectors generated by the derivatives with re-
spect to s of all expressions of the form (2.6) through (2.9).

This cone is a measure of the controllability at x®. This is true
because the magnitude of control variation can be changed by mul-
tiplying s by a nonnegative constant, the derivative of two con-
trol variationsmade jointly at two different times is the sum of

their individual derivatives, and for two variations of type (2.6)

made at the same time with controls ul and uz, the derivative of
(2.10) is the sum of their individual derivatives.

(2.10) Yo(te-tl)vz(s)Yl(s)vo(-Zs)x(tl)-
Since we are interested in the effect that th%se variations
have on yo,...,ym we define another convex cone L™ of m+ 1

dimensional vectors by

dy. -
1 i e 1
(2.11) Ll = [axj (x )J k',

Using a fixed point argument (Halkin [11]) it can be shown that if
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u® is optimal then L1 can be separated from the m + 1 vector
(-1,0,...,0) by linear functional v = (vo,...,vm) where Yo < 0.

This linear functional on m + 1 vectors defines a linear function-
al X(te) = V[Byilaxj(xe)] on n + 1 vectors which can be pulled
back along x(t) using the adjoint differential equation and the

result is the Pontryagin Maximal Principle:

1f u® is optimal then there is nontrivial A(t) such that if
H(\,x,u) £ Af(x,u) then

(2.12) A(e) = - %% (M(£),x(t),u’(1)),

dy,
(2.13) ME) = v [3;? (xe)] with v_ < 0,
(2.14) 0 = H(A(£),x(t),u’(t)) > HO(t),x(t),u)

Vetelt ,t ] and Vu€qn,
o’’e

3. THE HIGH ORDER MAXIMAL PRINCIPLE WITH TERMINAL CONSTRAINTS

A first order control variation is inconclusive if

(3.1) g% Yo (ta-t1)Y (8)Y (-8)x(t)) = 0 at s = 0.
Let
(3.2) B(s)x = Y, (8)y, (-8)x.

We consider the effect that the second derivative has on the
cost and terminal constraints. In fact if we could include the
vector

d2

. 1 . A .
in the cone K" we would obtain a new necessary condition. This
is not possible since the vectors of K1 are first order effects.

However if we replace the parameter s by 52/2 in any one of the
variations (2.6) through (2.10) then the first derivative of the
new variation vanishes and the second derivative is the old first
derivative. ©ne might hope to construct a cone of second deriva-
tivessince the magnitude of a second order control can be changed
by multiplying s by a nonnegative constant. However in general
the joint secor.d derivative of two variations satisfying (3.1) made
at different times is not equal to the sum of their individual
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We define Kk as the convex cone generated by all vectors of
the form
k

(3.16) — v (et IB(s)x
ds

where B is of order k at xl. By replacing s by sh a con-
trol variation of order k 1is shifted to one of order k ¢« h

therefore Kk EiKk'h. This allows us to define the convex cones

k i el
K= UK and L = [3—— (x )JK. The rest of the development of
Kl %

the HMP proceeds as before using a fixed point argument. The re-
sult is the High Order Maximal Principle with terminal constraints.

1f u° is optimal then there is a nontrivial A(t) such that

(3.17) L) = - & 0,0 ,0®),
dy.
(3.18) Me) = Eﬁ (xe):] vith v_ <0,
J
(3.19) 0 = HOA(t),x(t),u’(t)) > H(A(t),x(t),u)

Vte€[t,e] and ¥ u €0,
o’ e

(3.20) if B(s)x is a control variation of order k at x1 then
dk 1
K(tl) = B(O)x™ < O.
ds
If the terminal constraints are absent then additivity of

variations is not needed and the situation is much simpler. Con-
dition (3.18) reduces to K(te) = -dyo(xe) and A(t) is defined by

(3.17). Condition (3.19) remain the same but (3.20) changes.
The first nonzero derivative of the form

dk 1
S Yoo e TE RO

must be nonpositive.

(3.21)

4, EXAMPLES

Consider the problem of minimizing y(x(te)) subject to

(4.1) X = ao(x) + ul(t)al(x),

(4.2) lu| < 1, x(t) = x°, y (x(t)) =0, i=1,...,m.
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Let uo(t) be the candidate for the optimal control and A(t) satisfy
(3.17) and (3.18).
Using a first order variation, Bo(s)x = onts)x, of type
(2.9) and condition (3.20) we obtain
(4.3) HO(£),x(8),u’ () = 0
and using a different variation, Bl(s)x = Yl(s)yo(—s)x of type
(2.6) where u1 = constant and (3.20) we obtain
(4.4) HOA(E),x(6),u%(6)) > HO(E),x(t) ,ub).
We see that (3.20) implies (3.19).
If there are no terminal constraints, by (4.3) we can apply
(3.21) to B at t ,
o e 2
Bao e e P
%) +a H—>a (%) < 0.

ox ax2

A(te)

If %)l <17 ¢ € [t .t ], then (4.4) implies that
(4.5) g_ﬁ (A (E),x(t),u’(t)) = )\(t)al(x(t)) =0,V ¢t¢ [to’te]'

To differentiate (4.5) with respect to t we note that if b(x)
is a vector valued function of x then

d
(4.6) <o A(E)b(x(E)) = M(E)[a_,b] (x(t)) + u’(EIN(E)[a),b] (x(t))

where the Lie bracket is defined by

Bbz abl
4.7 [bb, 100 =52 (0b () - 52 (0B, ()
and satisfies
(4.8) [bl9b2] = ‘[b29b1]
(4.9) [b)[b,,b,11 = [[bysb,1b,T + [b,[b,,b,11.
Differentiating (4.5) we obtain
3

4100 o a(e)[a_ a1 (x()) = 0

2
@iy =L B e)a fa,a,110x(e))

de
| + (OB [ala_,a,11(x(E)) = 0.

If the coefficient of u° is not zero then uO is determined by
(4.11). 1If it is zero then we can continue differentiating until,
perhaps, some higher derivative determines u. It can be shown
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using (4.8) and (4.9) that the first k, such that
B/Bu(dk/dtk(aH/Bu)) is not zero for all t, will be even.
Henceforth for convenience we assume that uo = 0. Jacobson's

condition [10] is based on the fact that if there are no terminal
constraints then (4.5) implies (3.21) is zero for Bl with k = 1.

Applying (3.21) with ul =+ 1 and k = 2 we obtain

3al
(4.12) Mo g™ (x(e))a (x(t)) +
2
31<X<t>>;i§‘Y0<Yo<te-t>X<t>>al<x(t>> <o.

Kelley constructed a control variation of order 2 from a
pair of variations of order one which cancel each other out. Let

.Bz(s)x = Y2(S)Yl(S)YO(—2S)X where ul =1 and u2 = -1 then
d/ds 82(0)x = 0 and dz/ds2 62(0)x = [ao,al](x). Reversing ul

and u2 gives another variation of order 2 with the opposite
second derivative, but together they yield (4.10). By the tech-
nique (3.15) of adding control variations made at the same time
we obtain 83(s)x = Yl(s)Y2(2s)Yl(s)Yo(-4s)x a variation of order
3 and the condition 3

d
(4.13) A(t) —3 B, (0)x(t) = 12x(t) [a_[a ,a ]](x(t))

ds3 3 o 0’1

- 40(0) [ay[a,a, 11 (= () < 0.

By (4.11) and u® 0 this becomes Kelley's condition

(4.14)

2l
|

= M) [a, (2 ;2,11 (x(0) > 0.

If d3/ds3 83(0)(x(t)) = 0, then 83 is a control variation of order
4 and its fourth derivative yields a new condition.

1f ul and u2 are reversed in 83 then another variation of

order 3 is obtained with third derivative, —12[ao[ao,al]](x(t))
- 4[al[ao,al]](x(t)). If [al[ao,al]](x(t)) = 0, then by adding
these two variations of order 3 a variation, 84, of order 4 is

obtained. The fourth derivative of this new variation can be
applied to (3.20) to yield a new test, if the fourth derivative is
zero then 84 is a variation of order 5 and its fifth derivative

can be applied to (3.20). Another possible way to construct a

. . 1 2, .
variation of order 5 is to reverse u” and u~ in 84 to obtain a
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different variation of order 4 and then add them. Kelley, Kopp
and Moyer [8] used this technique to obtain the GLC for this
problem. The first nonzero derivative of the form

b9 da®h om

(4.15) 17 55 =S5 22 () ,x(8) ()
dt

must be nonpositive. This appears with the opposite inequality
if Yo > 0. To derive this test an assumption of normality is

necessary even if there are no terminal constraints. No explicit
definition of normality was given by Kelley, Kopp and Moyer;
therefore the usefulness of this test is severely limited.

An alternate approach is possible if [al[ao,al]](x(t)) is a
linear combination of ao(x(t)), al(x(t)) and [ao,all(x(t)) it is
6
‘possible to reparametrize 83 by 32, 82 by 33, Bl and Bo by s,

and combine them into a variation of order > 6 where
[al[ao,al]](x(t)) is cancelled out. The general method for con-

structing new variations is to take two (or more) variations which
cancel each other, adjust their parameters so they are of the same
order and combine them. It is shown in [9] that Goh's [6] general-
ization of (4.15) can be obtained in this way for the problem

with several control variables entering linearly.
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