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ABSTRACT

The standard autonomous and time dependent control systems are first
order approximations to what are generally nonlinear phenomena in neighbor-
hoods of a point and reference trajectorv respectively. This helps to
explain mathematically the wide applicabilitv of these models. In this
paper we show that higher order approximations around a point and a refer-
ence trajectory naturally result in autonomous and time dependent bilinear
control systems respectivelv. This augurs well for the theoretical and
applied usefulness of these models which are now being extensively studied.

1. LINEARIZATION AROUND A POINT

The time evolution of many engineering processes can be effectively
modelled by an autonomous control system of nonlinear type (1.1),

x = f(x,u),

y = g(x,u), (1.1)

(s o
x(0) = x~ and Iui - ui! < ey - ‘
Here the n vector x represents the state of the system, the h vector u the

input or control, the k vector y the output, and x° and u® are initial
values of the state and control.

In general the functions f and g,which are assumed to be as smooth as
needed, may be extremely complex in their global dependence on x and u but
the actual system may operate in a relatively narrow range of x and u values
around x° and u®. For convenience we change x and u coordinates so that
x% = 0, u° = 0 and ¢y = 1 then (1.1) can be approximated by

% = £(0,0) + %ﬁ-(o,O)x + %i 0,0)u ,
x u (1.2)
- ag 3g
y = g(0,0) + v (0,0)x + Tu (0,0)u ,

x(0) =0 and |u| <1

For any admissible input u(t) let x(t), y(t) and x(t), y(t) denote the
solution of (1.1) and (1.2) respectively. In general for small t we expect
|x(t)] and |X(t)| to grow like t and therefore, ignoring errors due to the
truncation of terms in u, we expect that the right sideg of (1.1) and (1.2)
will differ by a term of order t2 from which it follows that ]x(t)éi(t)l
will grow like t3 and ly(t)J7(t)! like t2. )

If we introduce a new coordinate x, which is identically one then (1.2)
can be transformed into a linear system

X = Ax + Bu

¥ =Cx+Du , | (1.3)
x(M = (1,0,...,0), Jul <1

?
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With these restrictions (1.1)

fo(x) + ufl(x)

v = g(x,u) = g, (x) + ug, (x) 2.1)
x(0) = 0 and !u! <1 .
If we truncate after the second order terms we ohtain
. PO . 32f°(0) 3 (0) T azfl(O)
X = fo(0)+ o x+-§ x 5 x+uf1(0)+u B »hux 5 X
9x - ox
, 8,(0) ;| 3% (0) 3%,(0) 3500 (2.2)
y = go(0)+ B x+ E-x 5 x+ug1(0)+u ——5;—— xtux ——5;—— X
9x -
x(0) =0 and J|ul <1

These equations cannot be linearized

new state variables in a techni
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X = Ax + uBx
y = Cx 4+ uDx
X(O) = (l,ny- . ’n)
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the variablesx_ ,...,x ,ordered lexosraphicallv. (A similar appfoacb is
found in Brockett, f3? and [4].) For example
L[2]

= (X, X Ky yeee,X X ,x2,x X ,...,xz) and
1’7172 1"™n>72°7273 n

«131 o 3.2 2 2 0.3

1°X1%gs s s XX 5K X 5e xn)
[0]

Let x be identically the scalar 1. Then i[O] = 0 and from (2.2)
A1 AL L L 121, 1 100, 2, 0], 1, 12) (2.4)
vhere Ai and Bi are matrices of the appropriate dimensions easily computable
it (o) sl (0

o 1

from 1 and ————— respectively.
i
9x 9x

To develop a differential equation for Y[Z] consider a particular
component xyx;. By the product rule, d/dt(xixj) = iixj+xiij and since x4

r
and ij depend bilinearlv on x[ ] (1] x[2] and u it follows that

d/dt(xixj) depends bilinearlv on x[ll, x[z], x[3] and u,

x21 2 Aix[l]+A§x[2] g (31,452 uBlx [11 uB2 2 ]+uB§x[3] . (2.5)

The matrices Ai and Bi are computable from Ai and Bi. In general x[p]

satisfies a bilinear differential equation

%Pl o ap LIp-1l 0 [p) P [p+1], op Pl pp Mol op [pH1]
p-1 o) pHl p-1 P p+l (2.6)

Truncating at terms of grder 2 in the transition from (2.1) to (2.2) is

equivalent to setting %P} = 0 for p > 3 so this is assumed in (2.5) and
(2.6).

In a similar fashion the output map is expanded

[0]+C1x[1]+C2x[2]+ule[1]+uBzx[2]+uB3x[3] , (2.7

and the result is (2.3), a finite dimensional bilinear system.

y = Cox

In general the nonlinear system (2.1) gives rise to an infinite dimen-
sional bilinear system

kPl oy Azx[il + uBix[i] ,
i=p-1

z c, 1) uDix[i] , (2.8)
1=0
x(0) = (1,0,0,... ) and J|u| €1

’

of the type studied by Brockett and Fuhrmann [ 5). If (2.8) is truncated by



Ip]

setting x = 0 for np > q the result is a finite dimensional bilinear
system

q-1
el ) A?x[i] + ung[i] ,
i=p-1 (2.9)
q-1

Z C x
i=0

(1] (1]

+ uD
u ix

where x = x

0 111 o)

Py ge ey

x(0) = (1,0,...,0) and lu| <1

]

which is used in the proof of the following.

Theorem 1 (Bilinearization around a point): Consider the nonlinear control
system

Mo
i

fo(x) + ufl(x)

Ed

y go(x) + ugl(x) ,

x(0) =0 and Ju] <1

?

where x = (x7,. S SO (Vl’-"’vy) and u is a scalar. TFor any integer
q > 0 there exists a bilinear control system

X = Ax + uBx

y = Cx + uDx
x(0) = (1,0,...,0) and |u| <1

sXy) (m2m), y= (vys«++,vx) and u a scalar such that for
some constants M, T > 0 and for anv admissible control u(t) the outputs
v(t) and y(t) of the nonlinear and bilinear system satisfy

where x = (xg,..

ly(t) - v(&)] «Mt? , wtee [0,T)
Moreover i1f x(t) is the state of the nonlinear system and X(t) consists of
X1 to x,, of the state of the bilinear svstem then

lx(t) - %(e)] « MY, v e [0,7) .

The proof is based on the following.

Lemma: Consider the two control systems
1) z = hl(z,u) and (11) z = hz(z,u)

where |u| €1, z= (zo,...,zm) and z(0) = (1,0,...,0) .

Suppose there exists constants K, and T, > 0 and an integer q > 0 such that
for any solution z(t) of (i) where 0 € < Tl’

thy (z(£),u()) - hy(z(e),ulen] < kye? .

Furthermore suppose there exists constants Ky, € > 0 such that for any



u, z, z where lul ¢« 1, 1z] < g, l;l <€
!hz(z,u)—hz(z,u)s < Kz\zigl.

Then there exist M, T > 0 such that if 2(t) and ;ft) are the solution of
(1) and (1i) for the same u(t) then

lz(t)-z(e)] « M%) v ocecT

Proof of Lemma: Choose N < T < T, such that any solution z(t) and z(t) of
(1) and (1i) satisfy lx(t)] < g, ?{t)' < e for 0t < T.

t
Jz(t)-z(t)l < ( Ih, (2(s),u(s))=h, (z(s) ,u(s)) |ds
10 1 2

t
< J lhl(Z(S).U(S))-hZ(Z(S),u(S))!ds
0
t —
+ [ [, (2(s),uls))~h, (z(s),u(s)) lds
0

t
lz(t)-z(t)] < Kltq+l + X, I l2(s)-2(s)|ds

0

Choose Ml % K, such that M§+2 2 (q+l)!K1. Let

t
d(t) = [ !Z(S);;(s)!ds
Jo
and
atl  04t)’ ©  (1t)]
“P(t) = exp(Mt)- I = —5
=0 - j=q+2 *
Then ¢(t) and U(t) satisfy
M a+2
6'(e) € oy £+ Mg ()
M q+2
PHe) = sy e i

so by a standard comparison theorem [6, p. 25] &(t) € V(t) therefore

q+2
M
- = ¢ Aot
l2(6)-2(6)] = 0" (t) ¢ ogyT €7 + Myu(e)
< Mtq+1 for some M.

Proof of Theorem: Let x (X1s++0,%_) and x[p] be defined as before. If

X = f(x,u) then for any p there exists a function hg(x,u) such that

i{p] = hg(x,u). Let (zo,...,zm) = (x[ol,...,x[q-ll) then

z = hl(z,u)
Let hz(z,u) be the finite dimensional bilinear system obtained in (2.9).



Tt is straightforward to verify that these svstems satisfy the hypotheses of
the lerma. The theorem follows irmediately.

3. LINFARIZATION AND BILINFARIZATION AROUND A REFFRENCE TRAJECTORY

Consider the nonlinear control system

n

X fo(t,x) + ufl(t,x)

(3.1)

y = g(t,x)

where x 1s an n vector, y a k vector and u a scalar. The case of vector
controls 1s a straieshtforward generalization. Time arpears explicitly in
(3.1) because we intend to consider perturbations around a reference tra-
jectory which we conveniently take to be x(t) = N generated by the control
u(t) =0 for 0 € t € T. expanding the right side of (3.1) as before we
obtain a time dependent linear system,

A(t)x + uB(t)

cC(t)x (3.2)
where A(t) = 3f /3x (t,0), B(t) = 3f_/3u(t,0) and C(t) = 9e/9x (£.0). It is
well-known (for example Falkin [6]) that the error of approximating (3.1) by
(3.2) 1s proportioned to the L' norm of the control. That is there exists

an M such that if x(t) and y(t) are the solutions of (2.1) for some u(t)
and X(t) and J(t) are the corresponding solutions of (3.2) u(t) then

X

Ix(t)-x(t)] < Me?
2

and _
ly(e)-y(e)| « Me
where

T
€ = f lu(t) |at
0
is sufficiently small.

For second order apoproximations consider

afo T azfo of
X = o (t,0)x+x (t,0)x+uf (t,0)+u =— (t,0)x,
o9x 3 2 o9x
X
(3.3)
3 e 32, .
Y= s (t,0) + x —32' (t,0)x .
ox

Using Carleman's technique again we obtain a time varying bilinear system
(0] ¢

(1]

1, x[P] =0 for p > 3,

= aleeyx M eal ()x[2eupl by x O tupd 0yt |
1 2 o 1

i[Z]

Ag(t)x[2]+uBi(t)x{1]

y = Cl(t)x[1] + Cz(t)x[zl

Notice that as in (3.2) terms involving u can be truncated sooner than those
with x only without reducing the accuracy of the anproximation.



In ¢eneral ore obtains an infinite dimensional time varving bilinear
system
I 3 i-1
i[p} = z Ap(t)x’ * + uB? (t)x[ -1]
1=p i i-1

(3.5)

i=1

which when truncated vields a finite dimensional time varying bilinear
svstem

q=1 _
i[p] = z Ap(t)x[i] + up? (t)x”L 1]
Lot 1-1
P (3.6)
q-1
y = Ci(t)x[i] .
i=1

Theorem (Bilinearization around a reference trajectory): Consider the
nonlinear control system

X = fo(t,x) + ufl(t,x)

v = g(t,x)

wvhere x = (%,,...,x ), v = (y ,...,yb), u a scalar, and the reference tra-
jectory x(t)" = 0 isngenerated %v u(t)™= 0 for 6 < t < T. For anv q 2 0
there exists a bilinear control svstem

X = A(t)x + uP(t)x

C(t)x

y

where x = (ko,...,xm) (m 3> n), y = (vl,...,yk) and u a scalar such that for
some M ‘any control u(t) the outputs v(t) and V(t) of the nonlinear and
bilinear svstem satisfy

Iy -vy)! « %, for 0<t T

b

provided

T
€ = f [u(e) ldt
Jo

is sufficiently small. Moreover if x(t) is the state of the nonlinear

system and x(t) is coordinater X1 through x, of the state of the bilinear
system then

Ix(t)-x(t)| <« Me®, foroOc<tcT.
Once again the proof follows from a lemma.

Lemma: Consider the two systems
(1) z = hy(t,z,u) (11) z = h,(t,z,u)

where z = (zo,...,zm), u is a scalar and the reference trajectory
z(t) = (1,0,...,0) is generated by u(t) =0, for 0 € t < T, for both systems.

Suppose there exists an integer q > 0 and a constant Ky such that for any
solution z(t) of (1)

Ihy (£,2(6),u(e))hy (6, 2(0),u(e))] < Ky (J2() | %12 1T ucey |y



Suppose there exists § > 0 and a constant X9 such that for anv u,
lzl ¢ 6, 12l €6, 0c e

lhz(t,z,u)—hz(t,;;u)! < Kzlz-zw

Finally suppose there exists a constant K3 such that for any u lz! € § and
0<tgT

|hl(s,z,u)I < K3!u! and !hz(s,z,u)' < K3[u|

If z(t) and';(t) are the solution of (i) and (ii) for some u(t) then
lz(t)-Z(e) | < M9, 0<tgT

T
if € = J lu(t)ldt is sufficiently small.
0

Proof of Lemma: If z(t) and ;ft) arethe solutions of (i) and (ii) for some
u(t) then

t t
Iz(t)' < ( !hl(s,z(s),u(s))'ds < K [ !u(s)lds < K

Jo 34, 1€
t _ (t

lz(t)l < J ]hz(s,z(s),u(s))!ds < K3 !u(s)!ds < K3€
0 Jo

Restricted to £ small enough so that lz(e)! ¢ § and Z(e)! < §, for
0<tcgT, :

t
l2()-z(0)] < f By (s,2(),u(8))-hy (s, 2(s) ,uls)) |ds
0
t —
+ J lhz(s,z(S),u(S))-hz(s,Z(S),U(S))!ds
_ 0 |

t t
<y | 12609 [T u (o) Jasir, [ ooy 1es
0 0

t
|z(e)-Z(t)] < Kl(r+1)eq+xzf lz(s)-Z(s) |ds
0

Let
t
o(t) = j |z(s)-z(s) lds
0
and q a
(T+1)e K, (T+D) e
Y(t) = Elf;————— exp(Kyt) - —l_E;————

Then ¢(t) and Y(t) satisfy
' (t) < Kl(T+1)eq + K6 (t)
P'(t) = Kl(T+1)eq + Ryu(t)
s0 once again

|2(t)-2(t) | = " () < v'(t) < Ml
for some M and all t, 0 < t < T.



Proof of Theorem: let x = (xl,...,xn) and x[p] be defined as before. If
X = fo(t,x)+ufl(t,x) then for any p let hP(x,u) he the function such that

1
k[p] = hi(x,u). Let (zo,...,zm) = (x[o] .,x[q_l]

) then 2z = hl(z,u).

Let h,(z,u) denote the right side of finite dimensional time varying
bilinear system (3.6). It is straightfoward to verify that h; and hy
satisfy the hypothesis of the lemma.

4. CONCLUSION

These two theorems indicate that in a local sense around a point or
reference trajectorv the class of bilinear systems is dense In the class of
nonlinear systems with control entering linearly. One views this with
somewhat mixed feelings, on the one hand it implies that nonlinear behavior
can be effectivelv apnroximated by bilinear models. On the other hand it
implies that complexity of bilinear systems is almost as great as that of
nonlinear systems and that theoretical results for the whole class of

bilinear systems will be almost as difficult as for the class of nonlinear
systems.

The above methods of bilinearizine around a point and reference tra-
Jjectory are not the onlv wavs of doing this. One advantage of these
methods is that the nonlinear approxiration to the state of the nonlinear
system is easily read from the state of bilinear svstems. Fowever the
bilinear svstem will generally not be of smallest state dirension among
those bilinear systers which anproximate the nonlinear svster with a

desired order of accuracv. For an alternate approach to btilinearizing
around a point we refer the reader to r71.

Besides more accurate quantitative information that higher order bi-
linearization afford they also increase our cualitative knowledge of the
system. For example, by linearizing around a reference trajectory one is
able to deduce only first order necessary conditions for optimality, i.e.
the Pontrvagin maxiral principle. By using essentially the quadratic
bilinearization Vellev, Fopp and Maver [8] were able to develon new
necessary conditions, not implied bv the Maximal Princinle. From this we
see that higher order bilinearizations vield new qualitative information
about the boundary of the set of accessible points of a control system.

The error analysis of the above theorems did not assume any stability
properties for the nonlinear systems being approximated. In many applica-
tions these systems do have some form of stability. Further research is
needed to discover how these improve the approximations.

The above bilinearizations were accomplished using monomials in the
state variables to approximate the nonlinear behavior of the svstem. It is
possible (see [1] and [2]) to use other families of functions and the
question arises when would it be advantageous to do so.
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