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A DECOMPOSITION THEORY FOR DIFFERENTIABLE SYSTEMS*

ARTHUR J. KRENERT

Abstract. A theory analogous to the Krohn-Rhodes theory of finite automata is developed for
systems described by a finite dimensional ordinary differential equation. It is shown that every such
system with a finite dimensional Lie algebra can be decomposed into the cascade of systems with
simple or one dimensional algebras. Moreover, in some sense these systems admit no further
decomposition. No knowledge of Krohn-Rhodes theory is assumed of the reader.

Introduction. The Krohn-Rhodes theory [1] of finite automata is a very
elegant way of describing how a machine can be decomposed as the cascade of two
or more simpler machines. Moreover it gives a complete classification of the
fundamental building blocks of such cascades. We refer the reader to {2} and 3]
for extensive treatment of this and related topics. This paper develops as far as
possible a similar theory for differentiable systems, i.e., control systems defined by
a nonlinear ordinary differential equation on a finite dimensional manifold.

The first step in this program is to view each constant input as not affecting a
particular state but all possible states, that is, to consider the state transition map
defined by the input. The family of these maps forms a semigroup which acts on
the state space in the obvious fashion and this semigroup has a natural completion
to a group. One can try to lift the dynamics from the state space to the group. Fora
finite state machine, this can always be done resulting in another finite state
machine, but for a differentiable system the group of state transition maps need
not be finite dimensional. This is a major difference between the two theories.

For a differentiable system it is natural to consider the infinitesimal version of
this group, the Lie algebra of vector fields corresponding to constant inputs. This
algebra, which has no analogue in Krohn-Rhodes theory, determines the local
dynamics of the system. We shall show that if the algebra can be split into an ideal
and finite dimensional subalgebra then the system can be split into a cascade. It
follows that every system with finite dimensional Lie algebra can be decomposed
into a cascade of systems with simple or one dimensional algebras. It is also shown
that such systems admit no further decomposition into systems with less compli-
cated Lie algebras. They do however admit decompositions where the controls are
split between the elements of the cascade.

1. Nonlinear control systems. In the last few years it has become apparent
through the work of Sussman, Brockett, Hermes, Elliott, Lobry, and others that
the appropriate state space for nonlinear systems is not R". For this paper we
adopt a terminology and notation similar to that introduced by Sussmann in his
important papers on the existence and uniqueness of minimal realizations of
nonlinear systems [4], [5]. We restrict our discussion to real analytic systems for
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This allows us to define a semigroup homomorphism from U, into Diff (M)
in the obvious fashion. The range of this homomorphism is a subsemigroup § of
Diff (M) and we refer to this as the semigroup of the system 3. The smallest
subgroup G of Diff (M) containing S is called the group of the system.

Given a point x, € M, we can consider the orbits of x, under the semigroup S
and group G respectively

Sxo)={d(xo): < St
G(xo) ={¢(x0): ¢ € G}.

S(xo) is often referred to as the set of points accessible from x, under £ by controls
in %,.. Because we have assumed f(x, u) to be analyticin x it can be shown using
the Hermann-Nagano theorem [17], [7] that G (x,) is an analytic submanifold of
M. In some sense G (x,) is the natural submanifold of M on which to consider the
problem for it contains all trajectories of the system emanating from x,. Chow’s
theorem [8] tells us that every point in G(x,) can be reached from Xo along
trajectories of the system going both forward and backward in time. Moreover it is
of minimal dimension among submanifolds of M containing S (x,) because 5(x,)
has a nonempty interior in the topology of G(x,) [9], [10]. (Note the topology of
G(xo) is not necessarily its relative topology inherited from M.) If S(xq)=
M(G(x0)=M) then the system is said to be controllable (weakly controllable),
see [18]. If G(xy) # M then we redefine the Lie algebra L of X to be the smallest
subalgebra of V(Gx,) which contains all the vector fields f(-,u), uecs.

Letu(-)e %, ; then given any x,e M there exists a compact neighborhood K
of xo, an open interval I containing 0 and a map ¢, : I XK » M satisfying

d
d—t¢u(t7 x) —f(d’u(ty X), u(t)),

2.1)
¢u(0,x)=x._

Since u( - ) is only a bounded measurable function the curve — ¢, (¢, x) is
generally only absolutely continuous. For each €I the map ¢,(f, - ): K-> M is
1-1 and analytic. If it can be defined on all of M then it is an element of Diff (M).
Since we have assumed that £ is complete, if u( - ) € %, then ¢, can be defined on
RX M. However if u( - ) € U, — U, this need not be true. (See Sussmann [4, p. 14]
for a counterexample). The effect of u( - )e U,, can always be approximated by
piecewise constant controls.

APPROXIMATION LEMMA [4]. Let u(-)e U,, and ¢, : I X K -» M be its flow.
Suppose {1/ (-)}c U,. is a sequence of piecewise constant controls such that
u'(t)>u(t) for almost all te I If ¢;( - , - ) is the flow of u'(-) and J is a compact
subinterval of I then ¢; - ¢, uniformly on JX K.

The above lemma indicates why § and G can be defined without regard to the
class of admissible inputs, % as long as U, < U < U,,.

The semigroup § plays a similar role in the theory of differentiable systems as
the semigroup of a machine in the theory of finite automata. They both describe
the action of the semigroup of inputs on all states of the system/machine. There
are some important distinctions however; one is the problem of finite escape time.
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Another is that the state transition map ¢, (4, - ) is always in Diff (M) for differenti-
able systems and hence § can naturally be extended to a subgroup G of Diff (M).
On the other hand the state transition maps of a finite automaton are not
necessarily invertible. The group of the machine is generated by the invertible
ones and may not contain the semigroup of the machine.

The Lie algebra L has no analogue in the theory of finite automata; it is an
infinitesimal version of G. By this we mean L completely determines ¢, (¢, - ) for
small ¢, ‘

In both theories it is desirable to lift the dynamics from the state space to the
group/semigroup of the system/machine. That is, we view inputs as not affecting a
particular state but rather affecting all possible states. In the case of a finite
automaton this results in the semigroup of the machine becoming the new state
space. This state space is again finite and hence the new machine is again a finite
automaton.

In the case of a differentiable system, G is not always a finite dimensional
manifold and therefore the dynamics lifted to G is not described by a finite
dimensional differential equation. We define . to be finite dimensional if L is
finite dimensional. In this case G can be given the structure of a finite dimensional
real analytic manifold compatible with the group operation (Palais [6]). This
makes G into a Lie group and L can be viewed as the Lie algebra of right invariant
vector fields on G. This allows us to lift the dynamics from the state space M where
they are given by

£=flx,u), x(0)=xo
to a new state space G where they are given locally by a matrix differential
equation.
We shall elaborate on this in the next section but first we illustrate these
points with some familiar examples, the first of which is a linear system.

2: Let the state space M = R", the control set ) =R¥, the initial point be x,
and the dynamics be given by

k.
i=1

where A is n X n real matrix and b; are n-vectors.
The Lie bracket is given by

[Axv bl] = Abi; [bi7 b]] = 01
ad'(Ax)b;=A'b,  [b, ad'(Ax)b,]=0
and so the Lie algebra is finite dimensional with a particularly simple form which

characterizes a locally linear system, [11]. The zero control defines a matrix
differential equation ’

b(r) = AD(r)

with $(0) = [ the identity matrix. The solution is ®(s) =exp (tA). For any control
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u(-)e %, the flow ¢, is given by the variation of constants formula

& (t, x)=D()x + L d(t—s) Z u;(s)b; ds,

which for fixed ¢ defines an invertible affine map ¢,(s, - ):R" > R”. § and G are the
smallest subsemigroup and subgroup of the group of invertible affine motions of
R" which contain all such ¢, (¢, - ), t = 0. Lifting the dynamics from the state space
R" to G means replacing the vector differential equation (2.2) by the matrix
differential equation
X:AX+(Z u,'b,‘ A Z u,'b,‘).

Now consider a bilinear system

3: Let the state space be M =R", the control set be Q =R, the initial point be
Xo and the dynamics be given by

(2.3) = (A +3 u‘-B,-)x

when A and B; are n X n real matrices.
If C and D are n X n real matrices the Lie bracket of the vector fields Cx and
Dx is given'by the commutator [C, D]= CD-DC,

[Cx, Dx]=[C, D]x.

Therefore, L is isomorphic to the smallest subalgebra of g/(n, R) (the Lie
algebra of all # X n real matrices) containing A and B;: Each control u(-)e %
defines a matrix differential equation

2.4) a0 =(A+3 ui(t)B,-)fb,,(t)
where @, (1) € GL(n, R), the Lie group of invertible matrices in g/(n, R) and
. (t, x) =D, (t)x.

S and G are the smallest subsemigroup and subgroup of GL (n, R) containing ®,,
for each u € Q). Lifting the dynamics from M to G again means replacing the
vector differential equation (2.3) by the matrix differential equation (2.4). The
finiteness of the Lie algebra locally characterizes bilinear systems [12].

It is well known that every linear control system can be turned into a bilinear
system by the addition of an extra coordinate which is identically one, so
henceforth when we refer to bilinear systems we include linear ones.

3. Simulation. Given an initialized system I'=(M, €, f, U, N, g, xo) let &,
denote the space of all absolutely continuous functions x( - ):[0, T]> M for any
T=0 such that x(0)=x,. Similarly define %,, as the space of -all absolutely
continuous functions y( - }:[0, T]— N for any T = 0 such that y(0) = g(x1). Given
any x, € M the system X defines a pair of maps #,,: ¥ > &,, and 4, U > ¥, in
the obvious fashion:

Fo () =¢.(t,x)) and G, (u(1)=g(b.(t, x1)).
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Two points x1, x, € M are said to be indistinguishable if G (u()) = G, (u(z)) for all

u(+ )€ Up. The system I is observable if *; and x, indistinguishable implies that

X1 = x,. The system X is minimal if it is weakly controllable and observable.
Given a pair of initialized systems

=M, f, U N g xl) fori= 1,2,

the maps #,;and 9.; describe the state space and input/output behavior of the
systems. A question of some importance is when the behavior of one system
simulates the behavior of the other in either of the above senses. There are several
alternative ways of approaching this problem. In the classical theory of minimal
realizations of linear systems one assumes that ' = 02, N' = N2 and studies when
two input-output equivalent systems differ by a2 homomorphism or isomorphism
of the state space, R". A similar theory has been developed by H. Sussmann for
nonlinear systems which we shall discuss in a moment.

In the theory of finite automata the input and output spaces are allowed to
differ by encoding and decoding functions. One wishes to know when an automa-
ton can be made to simulate the input-output behavior of another automaton by a
suitable choice of encoder and decoder. For algebraic reasons it is considerably
easier to discuss when the state behavior of an automaton can be simulated by
another automaton. We describe a similar theory for nonlinear systems.

Given a pair of initialized systems $‘ and functions a P> BN N?
with @ continuous and 8 analytic we obtain induced maps (also denoted by @ and
B)a:U*>U"and B ¥ .3~ Y2z in the obvious fashion:

a(@(-NO=a() and By(-)))=B(y()).
3! simulates £* with encoder @ and decoder B if the following diagram commutes:

1
G

1 1
U — Y1
a B
92
2 x3 L2
U -z .

S!is equivalent to 37 if 3! simulates 3? with a:Q*=0" and B:N"=N? the
identity maps.

Suppose X' is weakly controllable, i.c., G(xo)=M". Given a pair a : Q%> ('
and y : M' > M? with « continuous and v analytic we say that ' is homomorphic
to 2% if the following diagram commutes:

Fh
1 *0 1
Y —l
a Y
Fh
2 *0 2
U &2

s!isisomorphic to 2 if 3" is homomorphic to £? with a : Q' = Q? the identity and
y:M'> M a diffeomorphism. If ! is not weakly controllable it is sufficient to
find y: G(xo) > M such that the appropriate diagram commutes.
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There is also a local form of the above definitions. For example suppose stis
weakly controllable, define U= {u( - yeU' :u(-) defined on [0, t] when t =T}
s! is locally homomorphic to 2° if there exists T >0, a neighborhood V' of x¢ in
M'andamapy: V- M? such that the appropriate diagram commutes.

It is difficult to give conditions for s! to simulate 2 because of the complica-
tions caused by the presence of the encoder and decoder. However if one is
interested in equivalence these difficulties are somewhat mitigated and H. Suss-
mann has proved the following generalization of the existence and uniqueness
theorem for minimal realization of linear systems.

Sussman's THEOREM [S]. Every initialized analytic system is equivalent to a
minimal system. Any two equivalent minimal systems are isomorphic. For related
results see [18]. .

We now focus in one the question of when 2! is homomorphic to 37, Suppose
3! has the accessibility property and is homomorphic to 3. Thenitis easy to show
that the Jacobian vy.

N
y.lx )—axl( )

must define a homomorphism v, : L'- L? of the Lie algebras L' of £'. Further-
more, the maps a and y.(x 'Y must satisfy the following commutative diagram

ot
Q' ToM'
a Yuxh
Fiveh, )
5 T.:M’

where T..M' is the tangent space to M" at x".
Suppose ug, Uy, ", WE O’ such that

-
flic, augy= 2 Af (x', a(w));
i=1
then the linearity of y+(x') implies that

!
Flyixh, u) =% AP (y(x'), uo).

In particular if a(uo) = e (u;) then f>(x*, uo) = f2(x*, u,) for every x’ € G*(xp). It
follows that the map f'( - Jau))—f*(-, u) has a well-defined linear extension
from span {f'(+,a(u)):ue 0% to span {f*(-,u):uce Q%)

Let a(L?) denote the subalgebra of L' generated by (-, a(u)) for each
u e Q2 Let L, denote the isotropy subalgebra of L' at xh, ie.,

Ly={h(-)eL :h(x5)=0}

and let a(L )= LsNa(L?).

If 1" and L * are arbitrary Lie algebras we say that L* divides L " if there exists
a subalgebra L < L' and a Lie algebra homomorphism of L onto L>. If L' is the
Lie algebra of system =’ we say L? G-divides " if there exists a continuous map
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a: ("> Q' such that the map f'(-,a(u))—f(-,u) generates a Lie algebra
homomorphism of a(L?) onto L2 If in addition this homomorphism carries
a(L?)y into L§ then we say L* Z-divides L".

THeEOREM 1 (Krener [11]). ' is locally homomorphic to 3° if L* S-divides
L'. Moreover if L* S-divides L' and G'(xd) is simply connected then 3! is
homomorphic to 3°.

Suppose L* 2-divides L' but G '(x¢) is not simply connected; then we can ask
if there is any way to lift £' to a system that is simply connected. The answer is yes;
suppose for convenience G'(x)=M". Then M" has a unique simply connected
covering manifold M with covering map 7 : M > M". Given any x € M we can find
a sufficiently small neighborhood V of x such that the map m:V->M'is a
diffeomorphism, and so the Jacobian 7, is invertible. This allows us to lift the
dynamics from M' to M by defining

fOx, )= m ' (x)f (r (x), u)

forx € M and u € @ ='. We choose any initial point x, € 7~ '(x4) and by Chow’s
theorem we know that G(x,) = M. The result is a system = = (M, Q, £, xo) which is
called the simply connected cover of X' and is homomorphicto £' undera : Q!> Q
the identity and 77 : M > M" the covering map. If 3" is locally homomorphic to 3?
then X is homomorphic to 32,

For example consider the following system: S': M"' = S the unit circle with
angular coordinate 8, Q=R, 8°=0 and 6 = u. The simply connected covering
space of §' is R and so the simply connected coverof S'isX: M =R, Q=R, x°=0
and ¥ = u.

Suppose L G-divides L' but does not -divide L', then we can ask if there is
any way to lift X' to a different system such that L? $-divides L. The answer is yes
if the Lie algebra L' of ' is finite dimensional. The group G' of ' is then a finite
dimensional Lie group (Palais [6]) and by Ado’s theorem L' is isomorphic to some
subalgebra L of g/(m, R) for some m possibly different from n' = dimension M".
(For bilinear systems L' is already a subalgebra of g/(n', R).) For each u € ', let
F(u) be the matrix corresponding to f'( - , u) under this isomorphism. Let H be
the subgroup of GL(m, R) corresponding to L; then some neighborhood of the
identity in G' isisomorphic as a Lie group to some neighborhood of the identity in
H. This isomorphism can be viewed as defining H-valued local coordinates on G
in which the dynamics of X' is described by

(3.1 X=Fu)X

where X e Hc GL{(m, R).

If H and G' are globally isomorphic as in the case of bilinear systems then the
matrix differential equation describes the lifted dynamics throughout G'. For
bilinear systems the action of G' = H on the state space M' =R"' is the natural
linear action, however H and G' globally isomorphic does not necessarily imply
that the action of G' < Diff (M") on M" is linear in any coordinates.

If H and G' are only locally isomorphic then this isomorphism can be used to
define H-valued coordinates in a neighborhood of every ¢ € G'. In these coordi-
nates the dynamics is locally given by a matrix differential equation similar to
(3.1). We define a new system Z= (M, Q, f, ¢o) where M=G', 0=, the
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dynamics f is given locally by (3.1) and ¢, is the identity of G',ie., po: M' > M
the identity map. ¥ is called the group cover of 3",

2 is homomorphic to 3" under @ : Q' > € the identity and y: G' > M' given
by ¥(¢) = ¢(x,) for ¢ € G'. Notice that the Lie algebra L if 3 is isomorphic to the
Lie algebra L' of 3" but the 1sotropy subalgebras need not be. If L.? G-divides L
then L* S-divides L for L,=0.

Recall that G is the not necessarily closed subgroup of Diff (M) generated by
the flows of constant controls. Suppose u( - )& U and for some t, the map ¢, (t, )
defined by (2.1) is a diffeomorphism of M". The Approximation Lemma implies
that ¢, (¢, - ) e closure G'; however by lifting the dynamics to G' we have shown
that ¢, (¢, - ) e G'.

Finally suppose L* divides L' but does not G-divide L', then we can ask if
there is any way to lift 3' to a different system I such that L> G-divides L. The
answer is again yes provided L' is finite dimensional. Let 3 = (M, Q, £, xo) where
M=M',Q=L" xy=x}and f(x, h(-))=h(x) for x € M" and h(-)eL'. Define
a:Q'>Q by a(u)=f"(-,u) and y:M~>M" the identity; then clearly ¥ is
homomorphic to £'. X is called the fully controllable cover of $' and if 3 = 3" then
3! is said to be fully controllable. Notice that in a fully controllable system the
dynamics is linear in the controls.

4. Cascades. Suppose X' = (M’ (1, f' x{) are control systems for /=1, 2.
Henceforth we assume %' = %¢, and therefore do not mention it explicitly. Let
v:M'XQ'>Q? be an analytic map of x', continuous with respect to u'. We
define the cascade 3' &), £? of these two systems with linking map v as the
system

(MM, Q' 1 D, f2, (x4, x3)
where A
frOuf et 2 u)= (', u), e vl u))).
'O, 2%isa parallel cascade if v is a function of «, alone and a series cascade if v
only depends on x ',

Cascades are a way of combining two or more systems to obtain a more
complicated system. We would like to study when this technique can be used to
represent a given system as the homomorphic image of a cascade of “stimpler”
systems. Of course any system is the homomorphic image of a cascade consisting
of itself followed by an arbitrary system but this can hardly be called a cascade of
“simpler” systems.

We must make rigorous the notion of “simpler”’; the obvious choice is that 3
is “simpler” than 3 if 3 is homomorphic to 3'. However this is not the appropriate
definition for if ¥ is actually a cascade, £' ©), 32, then it is easy to see that X is
homomorphic to X' but it need not be homomorphic to $2. Therefore we are
forced to a weaker definition—3' is “simpler” than X if ¥ is not a homomorphic
image of 2. A similar definition is used by Krohn and Rhodes.

A system X has a nontrivial cascade decomposition if there exists ', ¥ and v
such that 3! G, is homomorphic to I but neither ' nor ? alone is
homomorphic to =.

We leave it to the reader to verify the following.
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LEMMA. Suppose T is homomorphic to $'(27); then I @.2°C'0, 3) s
homomorphic to ' &, 3? for some linking map w.

CoroLLARY. Suppose $' S, 3% js homomorphic to 2 and 3* Q. 3* is
homomorphic 1o X' (3%). Then ¥°G), 3* 0,2 3'6,32°0, 3% is homo-
morphic to X..

We describe a way for decomposing a system into cascades which is based on
atechnique used by E. Wichmann[13]and K. T. Chen [19]and originally due to S.
Lie [20]. Let 2= (M, Q, f, x,) and suppose the Lie algebra L of () is a semidirect
sum,

L=L"+["2

(L is a semidirect sum of L' and L 2} itl'isa subalgebraof L, [ *isanideal of L and
L isthe directsumof L ' and L% as vector spaces. We exclude the trivial case where
citheris0.) Foreach « € , define f'(-, u)e L'and g(-,u)eL’by requiring that

fCLow=F'C u)+g(-, u).

Consider the control system st= (M1, Q' ', x}) where M'=M,Q0'=Q and
X0 =xo. Let G' be the group of 3. Clearly the Lie algebra of X'is L.
Define a second system $£2= (M, Q% f?, x2) where M? =M, Q*=G! x,
2 _
Xg=xyand

Flx ¢, u) =+ (x)g((x), w),

forxeM, ¢ € G'and u € Q. There is a problem with this definition for in general
the control set Q% is not finite dimensional since G' is not. However if we assume
that L' is finite dimensional then G' is embeddable in some R' by the Whitney
theorem and hence 27 is a control system according to our definition.

Moreover if L' is finite dimensional then we can redefine X' so it equals its
group cover. This allows us to form the cascade 3! @, * where the linking map
v: G x>0 is the identity.

For a fixed control u(-)e %, let x(f) be the trajectory in 3, &(t, - ) be the
trajectoryin £' and x*(¢) be the trajectoryin 3°. We claim x(1)=¢(t, x*(1)) and we
show this by noting that x(0) =x0=¢(0, x*(0)) and using (2.1) we see that both
satisty the same differential equation

%(b(t, x*(0) =Bt (), u()+ b, x*())x(1)

= fUb(t x*(1)), u(0))+ g (b (1, xX(1)), u(r))
=f(p(1, x*(1)), u(r)).

Therefore £' &), 3% is homomorphic to I under a : (} > (), the identity, and
v:G' XM’ > M given by y(, x) = ¢ (x). Since the Lie algebras of ' and 32 are
L' and L” it follows that neither system is homomorphic to ¥ and hence the
cascade decomposition is nontrivial.

Ifg( -, u)isindependent of u then 2, ©®, ’isaseries cascade. On the other
hand suppose L is a direct sum of L' and [.2 (that is, both are ideals of ). From
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[L,L*JeL'NL*=0 it follows that for every ¢eG', fix, ¢, u)=
¢\ (gl (x), u) =g(x, u). Therefore f? is independent of ¢ and 3'Q), 2% is a
parallel cascade. We sum this up in the following:

THEOREM 2. If the Lie algebra of a system is the semidirect sum of a finite
dimensional subalgebra and an ideal then it has a nontrivial cascade decomposi -
tion. If itis the direct sum of two ideals, then it has a parallel cascade decomposition.

A particular application of the above result is when the system is finite
dimensional, as in the case of a bilinear system. By Levi’s theorem L is a
semidirect sum of semisimple subalgebra L' and a maximal solvable ideal L2
Therefore X has a cascade decomposition 3' &), 32,

Every finite dimensional semisimple Lie algebra L' is a direct sum

L1=L“+"'+L”

of simple ideals L. Therefore by repeated application of the above theorem 3!
can be decomposed into the parallel cascade of a family of systems LY, i =
1, -+, each with a simple Lie algebra, L. Recall a Lie algebra is simple if it is
not Abelian and contains no nontrivial ideals; therefore the £' admit no further
decomposition using Theorem 2. However as we show by example in a moment
systems whose Lie algebra is simple can admit nontrivial cascade decompositions.

We now turn to the system 3> whose Lie algebra L? is solvable. This implies
that[L?, L?]is a proper ideal of L? and hence one can find a linear subspace L** of
codimension one in L which contains [L?, L?]. Since L?? contains[L?, L?]itisan
ideal of L?, and since it is of codimension one any vector field in L2\L?? generates
a one dimensional subalgebra L*' such that L?= [ ?'+.?? is a semidirect sum.

Using Theorem 2, 2* can be decomposed into the cascade of a one dimen-
sional system 3*' and a system $?* with solvable Lie algebra of one lower
dimension. By induction 3? is cascade decomposition of a family of one dimen-
sional systems.

Moreover there are, up to isomorphism, only two one dimensional systems,
those on the circle and line described in § 3. Therefore we have shown the
following.

THEOREM 3. If the Lie algebra L of 2 is finite dimensional then S admits a
decomposition into the parallel cascade of systems with simple Lie algebras followed
by a cascade of one dimensional systems.

This result is somewhat stronger than that of Brockett [14] since all the
component systems of Theorem 3 are either simple or one dimensional. In
Brockett’s work the component systems are reductive. The one dimensional
algebra and all simple algebras are reductive but gi/(n,R) is not simple but
reductive.

Theorem 3 is highly reminescent of the Krohn-Rhodes theorem which states
that every finite state machine can be broken up as a cascade of machines with
simple groups and flip-flops. The system with simple Lie algebras are analogous to
machines with simple groups but the analogy breaks down between one dimen-
sional systems and flip-flop machines, since flip-flops correspond to the nongroup
part of the machine. ~

Recall that in § 1 we suggested that time varying systems be made autonom-
ous by the introduction of time as another state variable. Unfortunately this can
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make the Lie algebra of a time varying bilinear system infinite dimensional and
therefore not amenable to the application of Theorem 3. Instead suppose we
consider time as another control variable and view the time varying bilinear
system as the cascade of a trivial system and the bilinear system with the time
control.

=hoxl=1,

k
3% B =Aug) i+ Y uB(ug)x’
i=1
where the linking map is uo=x"'. Then we can see Theorem 3 to decompose 3°
since its Lie algebra is contained in g/(n, R) and hence is finite dimensional.
Actually the above technique can be used to generate a cascade decomposi-
tion even if L is not a semidirect sum. (For example see [19].) Instead of splitting
the Lie algebra of X between X' and 3%, we split the controls. Let K denote the
subspace of V(M) which is the span {f( - , «): u € 1} and suppose K admits a direct
sum decomposition (as a real vector space)

K=K'+K".
For each u € Q, define f'(-,u)e K" and g( -, u)e K* by requiring that
G w)=F1C u)+g(-,u).

Define 3" as before; if its Lie algebra L' generated by K ' is finite dimensional then
we can also define 2* and the cascade 3! &, 32. The same argument as before
shows that £' @, 22 is homomorphic to .

We ask whether this is a nontrivial cascade decomposition. The Lie algebras
L"'and L? could each be equal to L so we must check if I’ is homomorphicto X. If
the decomposition of K is nontrivial then K ' is a proper subset of K so L could not
possibly G-divide L'. This implies that $" is not homomorphic to X.

On the other hand the generators of L2 are contained in the orbit of K2 under
the group G' acting by conjugation. The Campbell-Baker-Hausdorff formula
shows that this is equal to the orbit of K* under the Lie algebra L' acting by
bracketing. Therefore if this orbit does not contain K then we can conclude that L
does not G-divide L* and hence £ is not homomorphic to X.

THEOREM 4. Let K be the linear span of the vector fields corresponding to
constant controls of a system X and suppose K is a direct sum of linear subspaces K*
and K*. If the Lie algebra L generated by K' is finite dimensional and orbit of K*
under L does not include K then 3 admits a nontrivial cascade decomposition.

Now we use this theorem to exhibit a system whose Lie algebra is simple but
admits a nontrivial cascade decomposiition. 2: Let M = SL (2, R) the group of real
2 X 2 matrices of determinant 1, (} = R’, the initial point be any identity matrix and
the dynamics be given by

where

101 _lo OI
Bz—o ol’ 33_1 ol
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Proof. One way follows from Theorem 3,s0 suppose the Lie algebra L of X is
one dimensional or simple. Let ' @, 2 be a finite cascade decomposition of T
where the 2'’s are finite dimensionable systems. If L is one dimensional then it
clearly divides any nontrivial Lie algebra and at least one L' must be nontrivial.
Therefore we restrict to the case where L is simple.

If  is simulated by ' @), 2° then X can be simulated by the cascade of the
fully controllable covers of ' and 2 using the above lemma (in § 4). Since 3’ and
its fully controllable cover have the same Lie algebra L' it is with no loss of
generality that we assume that each 3 is fully controllable. Therefore the controls
of X' enter linearly and the dynamics of the cascade must look like

i =Zua,(x"),
= Svi(u, x 1)b-()cz).

For each ue ' and each j, v;(u, - ) is a scalar-valued function of x' and any
vector field h'( - )e L' acts on it by partial differentiation. Let P denote the orbit
of {v;(«, - ):Vj and u € Q} under the action of L. In general this is a real infinite
dimensional vector space.

Consider the product P ® L? consisting of all finite linear combinations of
elements of L? with coefficients from P. In an obvious fashion this can be identified
with the subalgebra of V(M1 X M?) consisting of vector fields whose projection in
the M' direction are 1dent1cally zero. Similarly L' can be identified with the
subalgebra of V(M'xM?) consisting of vector fields whose projections in M°
direction are identically zero. It follows that

L'G, L*cL'+P®RL?

where the right side is the semidirect sum of the subalgebra L' and ideal P ® L2

Let Q denote the subspace of P consisting of all functions which actually
appear in the expansion of a vector field of L' &, L>. Each such vector field
involves only a finite number of functions of P and since L' G, L% is finite
dimensional it follows that Q is also finite dimensional. Moreover

L'®, L’cL'+Q0® L%

Since Q is a finite dimensional space of functions on M and L is a Lie algebra of
vector ﬁelds onM?, Q ® L’ asa Lie algebra, is a direct sum of a finite number of
copies of L.

Since the cascade is homomorphic to 3 there exists a Lie algebra
homomorphlsm yo:L'O,L?> L. Let m. denote the projection 7r.:L'+
OXL*->L'; by restricting 7. we obtain the following diagram:

Y

L'G,L? L

Ll
Let [ =ker o restricted to L'@), L7 and J = y.(I); these are ideals in L'G),L?
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and L respectively. Since L is simple there are only two possibilities, /=0 or
J=L.

Suppose J=0; then ker w.<ker y.. The first homomorphism theorem
implies that there exists a natural homomorphism of (L 'S, L% onto L, ie.,
L divides L'.

Suppose J =L ; then we can conclude that y.:I->L is onto. Moreover
I<Q ® L? so we conclude‘that L divides Q ® L. Since this is a direct sum of a
finite number of copies of L2, using the first homomorphism theorem as before
shows that L divides L>. Q.E.D.

Remark. For the reader familiar with Krohn-Rhodes theory, L'+ Q ® L>
plays the role of the wreath product. Notice that the choice of Q depends on the
linking map and there is not one choice that works for all possible linking maps.

6. Conclusion. We would like to suggest two areas where extension of the
current line of research might prove fruitful. One nice thing about cascade
decomposition of systems is that it exposes the dynamic relations between the
state variables. For example from Theorem 3 we know that a system with a finite
dimensional solvable Lie algebra admits a cascade decomposition of one dimen-
sional systems. When described in local coordinates this amounts to a lower
triangular form for the dynamics. Kelley [15] has suggested that this form would
be useful in applying singular perturbation techniques to nonlinear problems.

A second area of research would be in introducing dynamic compensation or
state variable feedback as has been done in the linear case by numerous authors.
(We refer the reader to [16] for an excellent treatment and bibliography.)

The feedback law v : M x ) (} would in general be a nonlinear function so
that the dynamics becomes

£ =f(x, vix, u)).

To a certain extent we have already considered this by allowing the control
law of the second system of the cascade to depend on the control and state of the
first system, that is, we have allowed state variable feedforward.

Such a dynamic compensator v completely changes the Lie algebra of the
system as we have defined it. (If L were redefined as the Lie algebra generated by
f(-, u(+)) for all analytic u : M - € it would not change.) it would be of interest to
know when two systems are equivalent under dynamic compensation or when a
given system is equivalent to a simpler type of system, i.e., cascade, a bilinear, or a
linear system.
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