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Given two control svstems where the control enters linearly, a sufhcient
condition is derived that one svstem locally approximates the other, i.e.,
there exists a map between the state spaces which carries the trajectory of the
first svstem for anyv control into the trajectory of the second system for the
same control with an error that grows like a power of ¢.

1. INTRODUCTION

We consider the two control systems

h

&= dx, u) = Z ua(x), (L.1)

i=0
N0) = 9, u(t)e,

and
)

¥o=3(y ) =) ub(y), (1.2)

i=0
¥0) =%  u(t)ef,

where & = (x;,..., %), 3 = (¥} 1o Yub Q{®)seres an(%), Bo(3),e.ry bp(y) are
C~* vector fields, u(t) == (#y(t),-.., #,(2)) is a measurable control and

Q={u:lu{<1,i=0,.,h}.

We intend to give a sufficient condition for the existence of a C* map,
A x> v, an integer, g, and real numbers, M and T > 0, such that for any
solutions, x(¢) and ¥(¢), of (1.1) (1.2) corresponding to the same control, we
have

M) — ¥(0)] < M (13)

for t € [0, T']. Notice that this implies a similar result for the subsystem of
(1.1) and (1.2) obtained by constraining #,(¢) to be identically 1.
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126 ARTHUR J. KRENER

This paper is an extension of our earlier work [1], which gave necessary
and sufficient conditions for A(x(t)) = y(¢) for small £. That result has been
extended by Sussmann [2]. We conjecture that our sufficient conditions is
also necessary.

2. PRELIMINARIES

If a,(x), a;(x) are m-dimensional vector fields, we define the Lie bracket,
[a; , a;](x) another m-dimensional vector field by

fecs a)0) = 52 () ae) — 5% (3) a0 @

where (da;/0x)(x) is the matrix of partial derivatives.
Let (2, x) — «,(t)x denote the flow or family of integral curves of a,(x), that is,

% 2 ()x = aa(t)x), (2.2)
o,(0)x = .

A more standard notation is o,(t, x) since «,(t) is not a linear operator on x
but we will be concatenating these flows and so o,(z)x will be more convenient.

For fixed ¢, the map & — «(—?)x is a diffeomorphism from a neighborhood
of «,(t) x° onto a neighborhood of x° and has a tangent map denoted by
a(—1), . The derivative of the vector valued curve # i a,(—£), a;(a,(2) ) at
t =0is [a;, a;](x°), [3, p. 17]. Therefore the Taylor series of this curve is
given by the Campbell-Baker—Hausdorff formula,

w00 9) = ¥ Fad¥a)aeh) £ o0y @3)
where )
ada;) a; = a; and ad*(a;) a; = [a;, ad*Y(a;) a;]. (2.4)

The order of a bracket of ay,..., a, is defined as follows: a; is of order 1,
[a;, a;]is of order 2 and in general [a;[--[a;,_, ,a;]...]] is of order k. A linear
map [: R™ — R™ preserves brackets of (1.1) and (1.2) to order p if

flag[ las,_y s @i, 1 1) = [y [Bsy 5 b1 1100%)  (2.5)

forl <<A<Cp, 04 <A

A C% map A : x> y preserves solutions of (1.1) and (1.2) to order p if there
exists a T > 0 and A such that for any solutions, x(¢) and y(2), of (1.1) and
(1.2) using the same control, we have

| A=) — ¥(B)] < M2 (2.6)
for te[0, T).
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The rank of (1.1) at a° is the dimension of the span of q, ,..., @, and their
brackets evaluated at x? . Henceforth we shall assume that the rank of (1.1)
at 2% is m, if this is not true then possibly the system (1.1) can be restricted to a
submanifold of x space where this rank condition will hold (see [1]).

Turoreyy.  If there exists a linear map 1: R™ — R" which preserves brackets
of (1.1) and (1.2) to order p then there exists a C* map X: R™ — R" which
preserves solutions of (1.1) and (1.2) to order .

3. Bouxps ox x(#) axp i(w, u)

Before proving this theorem it is necessary to obtain uniform bounds on
x(t) and Z(x, ). These are most conveniently expressed after a change of
coordinates. 'To define the new coordinates we choose from aqy,..., a;
a maximal set of vector fields which are linearly independent at 12, relabeling
them ¢, ...., ¢, . From the brackets of order 2 of a4, ,..., @, , we choose a maxi-
mal set of vector fields, relabeled ¢; . ,..., ¢;., such that ¢, ,..., ¢;, are linearlv
independent at % . Continuing on in this fashion eventually, because of the
rank assumption, we obtain a set of vector fields ¢ ,..., ¢,, which are linearlv
independent at % and hence span R . Let (i) denote the order of ¢; ; from
the way these vector fields were chosen any bracket of q ,..., a, of order ¢
is a linear combination at x° of {c,(x): (1) < o}.

Let (1, x) > o,(2)x be the flow of ¢; and s = (5 ,..., 5,,). Define a map
s = x(s) by

x(8) = a,,(5.,) -+ aq(sy) &0 3.1)
Since éx 5,0y = ¢,(x%), this map has an inverse x> s(x) defined in some

compact neighborhood, B, of a® In this neighborhood, s,
coordinates. Under this change of coordinates (1.1) becomes

yeees Spy ATE

N

D R

§ =35 4) = = (3(5)) Y uaa(s)). (3.2)

o i=0

Let {5 = max{| s |,..., | 5, |} and choose M, N such that if |s| < M
then x(s) € B and | §(s, u)} << N for all ue Q. Let T = M/N. Any solution,
s(1), of (3.2) satisfies

[s(t)) < Nt,  for tel0, TJ. (3.3)

Because of the special character of the s coordinates a stronger conclusion can
be reached, namely that for any solution of (3.2),

[5(1) < M1 and | s(f)] < Mo (3.4)
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for some new constant A and for ¢ € [0, T]. This is shown by an inductive
argument.
The core of the argument is to demonstrate that if for t € [0, T] and

(Mo, 66 <v—1,

1 R | < .
VSRS A, 86 = (3-3)
for some M and v == 1 then for some N
. N, 6(i) < v,
| S,—(S, u) = | N1, 0(i) = v + 1. (36)

Once this is shown then anv solution, s(t), of (3.2) satisfies (3.3) and hence
(3.5) with » = 2. This implies (3.6) which, when integrated, yields (3.5)
with v = 3, and so on until (3.4) is demonstrated. Of course the constants
M and N are constantly changing during the argument but the interval
{0, 7] remains fixed.

To show that (3.5) implies (3.6) we proceed by induction on v, starting with
y=1. If |s| < M, then by compactness there exists N such that
| §(s, #)] < N. Assume (3.5) implies (3.6) up to v — 1 so that for every M
there exists an N such that if for ¢ € [0, T] and

M, 66 <v—2,

50 < e o) S e 1 (3.7)
then
. . {Noo-1, (i) <v—1
[ $:(s, u), < I Nt-2, 6(i) > v. (3.8)

For some M assume (3.5). The unit vector in s; direction at x(s) is given in the
x coordinate system by

22 () = S (Sp)se 77 o‘i+1(5i+1)>|<Ci(°‘z'(5i) REACYEY! (3.9)

and §(s, %) in the x coordinate system is given by (1.1). The coefficients of
(1.1) in terms of (3.9) for i = I,..., mare precisely $,(s, #),..., $m(S, #)-

Let g(s, #) and g,(s) denote the pull backs of (1.1) and (3.9) to x° by means
of the linear isomorphism ay(—$y)x *** %u{—5m)s - Then

go(s, u) — Z $a(s, u) gs) = z) S'i(S, u) gi(s)‘ (310)
L)< 85w

Since ¢;(x%),..., ¢, (&%) form a basis, there exists functions o,(s, #),-.-, om($, #),
linear in u such that

gols, 1) — Y. dds, W) gls) = i (s, #) c(x0). 3.11)

(i< i=1
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Together they vield

m

Y (s wgds) = Y ols 1) cfx), (3.12)

8(i) v i=1

and subtracting 3 (55, $,(s, #) c;(x®) from both sides we have

Z $:(s, u)(gs) — e(2)

i) zv

o(s, u) c(x%) — Z (o(s, u) — 8,5, w)) c;(x%).  (3.13)

8(i) <y 8(i) >y

Since ¢,(x%) is precisely the constant term in the Taylor series of g,(s) given
by repeated application of the Campbell-Baker-Hausdorff formula, then
(3.5) implies that for some N and ¢ [0, T7]

| £5) — ci(=®)] < N (3.14)

This, together with (3.8), implies that for some N

Y Sl w)(gi(s) — e(x?)| < Net (3.15)

() v

for all u € Q. Since ¢;(x9),..., ¢,,(x°) are linearly independent, applying (3.15)
to (3.13) vields for some new N,

oi(s, u) — $i(s, )] < Nt (3.16)
for all w € 2 and 6(i) = v. Therefore (3.6) follows from (3.8) and (3.16) if
Lol W)l < Net, o 6() > v (3.17)

Expanding gq(s, #) and g,(s, ) in a power series by repeated application of
the Campbell-Baker-Hausdorff formula, we have

gwm%zi (2 wJM)

i=0 ~01

( Zu; kLadf1 (Cm)) a(x%) + O(| s |*+) (3.18)

and

0 = (3 45 ate)

ky=0

(” (m)wﬁ+auww (3.19)

—ot‘




130 ARTHUR J. KRENER

Since g, is of order 1, the coeflicient of a bracket of order ¢ < pin (3.18) is
the sum of monomials of the form KA, -y s, =& where K,l e, is a
constant and 8(r;) + -~ + 6(r,) = ¢ — 1. Because s satisfies (3.5), we can
conclude that there exists an N such that the coefficient is bounded by
Nee 1 if 1 < < v, and by Nel, if v 4+ 1 << ¢ < p. There are only a
finite number of brackets of order <{ u and u enters linearly so an N can be
found which works for all brackets in (3.18) and all « € £2.

Similarly, since ¢; is of order 6(z), there exists a new N such that the coefh-
cient of a bracket of oder @ in (3.19) is bounded by Nto=%, if 0(1) < ¢ <
v — () — 1 and by N1, if v + 8(f) < ¢ < . By the induction hypothesis,
(3.8), and the above remarks we see that the coefficient of a bracket of order ¢
in the series expansion of the left side of (3.11) is bounded by Nto=%, if
1 <p<Lvand by N1 if v 41 <o < p.

Since each bracket of order g is a linear combination at x? of {¢(x%): 0(z) < ¢}
we conclude that
(N7o-1, 1 < 63G) < v,
INt—1, 0(2) = v,

l 01'(3, ”)j g

(3.18)

as was desired.

4. Proof. Having verified (3.4) we proceed with the proof of the theorem.
Each ¢; is of the form [q, [*[a; ., 4 111, so let

d; = [bil[“' [bik,l » bil] ]]
If (¢, y)— Bi(t)y is the flow of d;, define y(s) = Bralsm) =+ Bu(sy) »° and
AMx) == y(s(x)) for s€ B.

The tangent map, X, = 8y/éx, maps tangent vectors at x(s) to tangent
vectors at ¥(s) and in particular

ox 1%
Ao (5) = 5 (9). @.1)

A tangent vector at x(s) can be pulled back to a tangent vector at a% by
ay(—$)  *** 0 —Sm)s then mapped into a tangent vector at 3° by the linear
map [ and finally pulled out to a tangent vector at ¥(s) by Bm(sm)x =" Bi(s1) « -
Let 7 denote this map

7 == BonlSp) s 7 Palse)x lou(—51)5 (=) + (4.2)

The two maps ), and = are almost the same in the following sense, if for
some M
s, < Mo for i=1,.,m (4.3)

then for some N

f cx ox )
‘ )\,k —E—;l— (S) — T gi— (s) < Npu—8U+1, (44)
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This can be easily shown by comparing the Taylor series of
1(11(—5’1)* o am(_sm)* 6x/33i

with the Taylor series of B(—s;)x = Bu(—Sm)x ©¥/[0s; using the assumption
that [ preserves brackets to order p and noting that the coefficient of a bracket
of order ¢ in both these series is bounded by Nz*=¢®, Then use the fact that
s(B3) is compact to obtain a bound on the norms of the linear maps

ﬁm(sm)* BI(SI)* for se S(B)
If x(z) is the solution of (1.1) for u(¢) and s(t) = s(x(¢)) then

n éx

5(0) = 3. 5i0) 5o (), (45)
where s(¢) and $(¢) satisfy (3.4). Therefore
Sy = (. Cx ox
D) = 0] = | X0 (M £ 60) — m e ()] < Mee (46)

for some M and t € [0, 7.
Next we show that

h h

73 wn) aw(0) — Y ) BOGEN)| < M, (47)

=0 =0
for some M by comparing the Taylor series of

lag(—= 1)+ otm(—Sm)s 21(2) ai(x(2))

and By(—s1)« B —5m) 5 > #:(t) b(y(x(¢))) once again using the assumption
that / preserves brackets to order pu, noting that the coefficient of a bracket of
order ¢, in both these series, is bounded by Nt*—! and bounding the norms
of B,(s,)« ** By(81) - From (4.6) and (4.7) we have

n R
2 Y ) afs() — Y ult) OGO < Mee, (4.8)
Now let v(¢) be the solution of (1.2) for u(¢), then
t I h
FAG() — () < fo A Z u(7) a(x(v)) — z_: ul(7) b(¥(7))| dr

S § () (7)) — X (r) A o7

+ [ Suo060) - b0 d. @9
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The first integral is bounded by M#“+1 from (4.8); as for the second, since
each b,(y) satisfies a Lipschitz condition on the compact set, A(B), we can
find an N such that for all u € 2,

Z u(b(y") — b(»%)
Hence (4.9) becomes

< Niyt—32l. (4.10)

t
[ Ax(2)) — 3(2)] << Meu+t 4 Nf | (7)) — y(7)| dr. 4.11)
0
Choose K such that K > N and K#*2 > (n + [)!M and let

10 = [ 1) = 5(0)] dr. (“.12)
Then

(i) < putt - Kf(2). (4.13)

Kwu+
(w+ D! +1)'

By a standard comparison theorem [4, p. 25], f(¢) < g(2) where g(t) is the
solution of

gt = 1441 + Kg(t) (4.14)

Kur
(k= 1)'
satisfying g(0) = f(0) = 0. The solution of (4.14) is

casy (Kty ¢ (Kt)

gty =€kt — Y = ) (4.15)

=0 J* j=ut2

and so
| A1) — 3(0)] = 1) < e 1 4 KF(2)
- (v + 1)'
KI.H— w1
S oo T K
<K Y (Kt) < My
J=utl

for some new M and t€ [0, T]. Q.E.D.

5. CONCLUSION

This theorem points out that the Lie brackets of 4y ,..., a; evaluated at x°
determine the local behavior of (1.1) in the same fashion as the partial deri-






LOCAL APPROXIMATION OF CONTROL SYSTEMS 133

vatives of a function determine its local behavior. More precisely, the linear
relationships between these brackets determine the local behavior of (1.1) up
to an affine transformation of x space. Furthermore, (1.1) approximately
covers (1.2) if the low order brackets of (1.2) evaluated at y° have all the linear
relations that the low order brackets of (1.1) at x® have. This allows us to
construct a system of lower dimension locally approximating (1.1) by intro-
ducing linear relations among the brackets of (1.1).

Inequality (3.4) is of independent interest for it gives bounds on the set of
points locallv accessible from x0.
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