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Control Bifurcations
Arthur J. Krener, Fellow, IEEE, Wei Kang, Senior Member, IEEE, and Dong Eui Chang

Abstract—A parametrized nonlinear differential equation can
have multiple equilibria as the parameter is varied. A local bifur-
cation of a parametrized differential equation occurs at an equi-
librium where there is a change in the topological character of
the nearby solution curves. This typically happens because some
eigenvalues of the parametrized linear approximating differential
equation cross the imaginary axis and there is a change in stability
of the equilibrium. The topological nature of the solutions is un-
changed by smooth changes of state coordinates so these may be
used to bring the differential equation into Poincaré normal form.
From this normal form, the type of the bifurcation can be deter-
mined. For differential equations depending on a single parameter,
the typical ways that the system can bifurcate are fully understood,
e.g., the fold (or saddle node), the transcritical and the Hopf bifur-
cation. A nonlinear control system has multiple equilibria typically
parametrized by the set value of the control. A control bifurca-
tion of a nonlinear system typically occurs when its linear approx-
imation loses stabilizability. The ways in which this can happen
are understood through the appropriate normal forms. We present
the quadratic and cubic normal forms of a scalar input nonlinear
control system around an equilibrium point. These are the normal
forms under quadratic and cubic change of state coordinates and
invertible state feedback. The system need not be linearly control-
lable. We study some important control bifurcations, the analogues
of the classical fold, transcritical and Hopf bifurcations.

Index Terms—Control bifurcation, fold control bifurcation,
Hopf control bifurcation, normal form, transcritical control
bifurcation.

I. INTRODUCTION

THE theory of normal forms and bifurcations of a parame-
trized dynamical system is well known [15]. One considers

a smooth vector field

(1.1)

depending on a parameter . The equilibria of the vector field
are those such that . Perhaps the most
important property of an equilibrium is its stability. In the first
approximation, this is determined by the stability of its linear
approximating system around

(1.2)

If all the eigenvalues of lie in the open left
half plane then the system (1.1) is locally asymptotically stable
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around the . If one or more eigenvalues lie in the open
right-half plane then the system (1.1) is unstable. If all the eigen-
values lie in the closed left-half plane but some are on the imag-
inary axis then the first approximation is not decisive, (1.1)
may be locally asymptotically stable or unstable, depending on
higher degree terms.

The topological character of the equilibria can change at a
critical value of the parameter, perhaps two branches of equi-
libria cross or a branch loses or gains stability. Such a state
and parameter is called a bifurcation point of the parametrized
vector field. A local bifurcation takes place at a parameter value
where the system loses structural stability with respect to param-
eter variations, i.e., the phase portrait around the equilibrium at
the critical parameter value is not locally topologically conju-
gate to the phase portraits around the equilibria at nearby param-
eter values. If the local linearizations at two equilibria have no
poles on the imaginary axis, the same number of strictly stable
and the same number of strictly unstable poles then the local
phase portraits are topologically conjugate. Therefore a bifur-
cation is characterized mathematically by one or more eigen-
values of the linearized system crossing the imaginary axis. We
restrict our discussion to local bifurcations which we refer to as
bifurcations.

A standard approach to analyzing the behavior of the param-
etrized ordinary differential equations (ODE) (1.1) around a bi-
furcation point is to treat the parameter as an additional state
variable with dynamics and to compute the center mani-
fold of the extended dynamics through the bifurcation point and
the dynamics restricted to this manifold [15]. The center mani-
fold is an invariant manifold of the differential equation which
is tangent at the bifurcation point to the eigenspace of the neu-
trally stable eigenvalues. In practice, one does not compute the
center manifold and its dynamics exactly, in most cases of in-
terest, an approximation of degree two or three suffices. If the
other eigenvalues are in the open left-half plane, then this part of
the dynamics is locally asymptotically stable and therefore can
be neglected in a local stability analysis around the bifurcation
point. The bifurcation point will be locally asymptotically stable
for the complete dynamics iff the dynamics on the center mani-
fold is locally asymptotically stable. Of course, at some nearby
equilibria the dynamics may be unstable.

The next step is to compute the Poincaré normal form of the
center manifold dynamics. From its normal form the bifurcation
is recognized and understood. Familiar examples are the fold (or
saddle node), the transcritical and the Hopf bifurcations. The
first two of these depend on the normal form of degree two and
the last one depends on the normal form of degree three. The
fold and Hopf bifurcations are the only ones that are generic and
of codimension 1, i.e., robust with respect to perturbations and
depend on a single parameter, so these are the most important.
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The study of bifurcations of differential equations with con-
trol was initiated by Abed and Fu [1], [2]. They considered sys-
tems where the parameter is distinct from the control

(1.3)

They assumed that the uncontrolled system undergoes
a bifurcation at a critical value of the parameter and they
studied the stabilizability of the system by quadratic and cubic
feedbacks. More general problems of both bifurcation and chaos
for control systems are addressed in [3]. In [7], a variety of
feedback design methods are introduced for the control of
bifurcation and chaos, including the delay or stabilization of
bifurcation, and the activation of chaos by feedback control.
A survey of theories, methods, and applications of bifurcation
control can be found in [8].

Kang [12] studied the degree two normal forms and bifur-
cations of control systems with (1.3) and without a parameter
(1.4). A control system does not need a parameter to bifurcate,
the control can play the same role. The equilibria of a controlled
differential equation

(1.4)

are those values of such that . The equi-
libria are conveniently parametrized by or one or more state
variables. Two key facts differentiate bifurcations of a control
system (1.4) from that of a parametrized system (1.1). The first
is that for the latter the structural stability of the equilibria is
the crucial issue but for the former the stabilizability by state
feedback is the crucial issue. A control system (1.4) is linearly
controllable (linearly stabilizable) at if the local linear
approximation

(1.5)

is controllable (stabilizable). If the linear approximation is sta-
bilizable, then the nonlinear system is locally stabilizable. If
the linear approximation is not stabilizable, then the nonlinear
system may or may not be locally stabilizable, depending on
higher degree terms.

A control system (1.4) is locally, parameterically, smoothly
stabilizable at an equilibrium if there exists a continuous
feedback

(1.6)

which locally, asymptotically stabilizes the system to any
nearby equilibrium . The feedback must be smooth with
respect to the current state and continuous with respect to the
target equilibrium . A control bifurcation of (1.4) takes
place at an equilibrium which is not locally, parameterically,
smoothly stabilizable. An equilibrium which is linearly stabi-
lizable is also locally, parameterically, smoothly stabilizable
but the converse need not hold, e.g.,

Notice that this is different from the bifurcation of a param-
etrized system (1.1) which take place at an equilibrium where
there is a loss of structural stability with respect to parameter
variations. Frequently this loss of structural stability is caused
by a loss of linear stability, one or more eigenvalues of (1.2)
crossing the imaginary axis. To emphasize this distinction we
will refer to the bifurcation of a parametrized system (1.1) as a
classical bifurcation.

The other difference between control and classical bifurca-
tions is that when bringing the control system into normal form,
a different group of transformations is used. For classical bifur-
cations, we use parameter dependent change of state coordinates
and change of parameter coordinates but for control bifurcations
we use change of state coordinates and state dependent change
of control coordinates (invertible state feedback) to simplify the
dynamics. Such transformations leave unchanged the property
of being locally, parameterically, smoothly stabilizable.

After extending Kang’s work on the normal forms of de-
gree two, scalar input control systems, we consider degree three
normal forms. Similar results for discrete time systems can be
found in [5], [16], and [14]. Kang studied the control theoretic
analogue of the transcritical bifurcation. We extend this to a
study of the control theoretic analogues of the fold and the Hopf
bifurcations. We will study the stabilizability of these around the
bifurcation point. We will also discuss the parametrized stabi-
lizability of the parametrized family to nearby equilibria by a
parametrized control law. A preliminary version of these results
was presented in [6] and related work can be found in [19] and
[9].

II. QUADRATIC NORMAL FORMS

The normal form of control systems is developed in this paper
in a different way from that usually found in the literature. In-
stead of an existence proof, the derivation of normal forms in
this paper is constructive. The normal form can be constructed
based on two fundamental operations, namely pull up and push
down. Furthermore, multiple uncontrollable modes are consid-
ered in this paper, which is a larger family of system than those
addressed in [12] and [13]. Consider a smooth control
system (1.4) where is dimensional, is one dimensional
and . It is well known that by linear change of state
coordinates and linear state feedback, the system can be brought
to the form

(2.1)

where and are and dimensional, is
in Jordan form, are in controller (Brunovsky) form,, and

is a vector field which is a homogeneous poly-
nomial of degree in its arguments. The linear change of coor-
dinates that brings to Jordan form may be complex in which
case some of the coordinates are complex. The complex co-
ordinates come in conjugate pairs. The corresponding are
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complex valued and come in conjugate pairs. Alternatively, one
can use real Jordan forms.

A pair is in controller form if

. . .
. . .

...

We are interested in the normal forms and invariants of the
quadratic part of the system under the group of quadratic change
of coordinates and an invertible quadratic feedback

(2.2)

(2.3)

These transformations are only considered where they are
invertible, that is, locally around . It is known
that the uncontrollable eigenvalues of the linearization of a
control system are invariant under linear change of coordinates
and linear feedback. Similarly, the quadratic invariants derived
in this section are numbers associated with a control system
that are invariant under quadratic transformation (2.2)–(2.3).
We need notation to describe some of the invariants. Let
be first order partial differential operators in and

be a smooth function. The Lie bracket is
the partial differential operator defined by

It is a simple calculation to show that is also a first order
partial differential operator. The iterated Lie bracket is defined
for by

Define the first-order partial differential operators

(2.4)

(2.5)

where is the right side of (2.1).
The following theorem extends a result of [12] and [11] to

general systems with multiple uncontrollable modes.
Theorem 2.1: Consider (2.1) where is in Jordan form,

are in Brunovsky form and the input is scalar. There
exist a quadratic change of coordinates (2.2) and a quadratic
feedback (2.3) which transforms the system into the quadratic
normal form

(2.6)

where denotes a polynomial vector
field homogeneous of degree in and homogeneous of de-
gree in . The vector field is in the quadratic normal
form of Poincaré [15]

(2.7)

where is the th unit vector in space and is the th
component of . The other vector fields are as follows:

(2.8)

(2.9)

(2.10)

where for notational convenience we have defined .
The vector field, , is in quadratic controller form [11].

If is diagonal the normal form is unique, that is, each
system in linear normal form (2.1) can be transformed into
only one such quadratic normal form (2.6)–(2.10) by quadratic
change of coordinates (2.2) and quadratic feedback (2.3). This
follows from the fact that when is diagonal the numbers
in the above, for the indicated indices, are
moduli, i.e., continuous invariants of (2.1) under quadratic
change of coordinates and quadratic feedback. Let if

and , otherwise. The moduli are as follows:

for

and (2.11)

for (2.12)

where

for (2.13)

(2.14)

where

for (2.15)

Remarks: If some of the eigenvalues of are complex then
a linear complex change of coordinates is required to bring it to
Jordan form. In this case some of the coordinates of are com-
plex conjugate pairs and some of the coefficients in the normal
form are complex. These complex coefficients occur in conju-
gate pairs so that the real dimension of the coefficient space of
the normal form is unchanged.

Regardless of whether the Jordan form of is diagonal
or not, the numbers are moduli, i.e., invariants under
quadratic changes of coordinates and invertible feedbacks.
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Below we shall give an example where is not diagonal and
the normal form is not unique as not all the are invariants.
The linearly controllable part of the system is assumed to be in
controller form, which is preferred for feedback design.

The linear change of coordinates and feedback that carries
a system into linear normal form (2.1) are not unique. The
coordinate can be multiplied by an invertible diagonal matrix
and the coordinates can be multiplied by a nonzero scalar
without changing the linear normal form (2.1). These extra de-
grees of freedom do affect the quadratic and higher terms. Tall
and Respondek [19] analyzed this for systems where there are
no linearly uncontrollable modes.

The assumption of smoothness is used only in the defi-
nitions of (2.13) and (2.14) and the proof that they are moduli.
It could be replaced by smoothness with sufficiently large
so that the bracketed expressions (2.13), (2.14), which involve
partial derivatives, can be calculated. The rest of the theorem
requires only smoothness.

Proof: We can expand the change of coordinates and feed-
back as follows:

These do not change the linear part of the dynamics. The
quadratic part of the dynamics is changed to

where , so each of the six terms
can be considered separately

We start by showing that can be brought into
the aforementioned form. There are two basic operations, pull
up and push down, which are used to achieve this. Consider a
part of the dynamics

where , recall .
The indicates other quadratic terms and higher terms. The
other quadratic terms will not be changed by the operations that
we will do. The higher terms may be changed but we are not
interested in them.

If we can pull up the quadratic term by defining

then the dynamics becomes

and all the other quadratic terms remain the same. Notice that
in each of the new quadratic terms the two indices are closer
together than the two indices of the original quadratic term.

If we can pull up the quadratic term by defining

then the dynamics becomes

and all the other quadratic terms remain the same. Notice that
the two indices of the new quadratic term are identical.

Notice also that in either case if then we can still pull
up and there is no dynamics to be concerned with so a
term disappears.

By pulling up all the quadratic terms until the two indices are
equal, we obtain

(2.16)

which is almost the normal form (2.10). We need to show that
can be eliminated for .

This is accomplished by the other operation on the dynamics,
push down. Consider a piece of the dynamics

where and . Define

yielding

and all the other quadratic terms remain unchanged. Notice that
if then we can absorb any quadratic terms into the
control using feedback. The terms in (2.16) where

can be pushed down repeatedly and absorbed in the control.
The result is (2.10).

We defer to later the proof that the numbers in (2.10) are
given by (2.14) and are invariants.
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The basic operations, pull up and push down, are slightly dif-
ferent. Consider a part of the dynamics

where .
If , we can pull up the quadratic term by defining

then the dynamics becomes

and all the other quadratic terms remain the same. The symbol
denotes if

and denotes if

Again, if , we can still pull up and one of the terms
disappears. So by pulling up all quadratic terms until , we
obtain

Repeated pushing down eliminates this term. Consider a part
of the dynamics

where . Define

yielding

and all the other quadratic terms remain unchanged. Since
we can continue to push down until and the

quadratic term can be absorbed into the control using feedback.
The result is

Consider a part of the dynamics

where .

Repeated pushing down eliminates this term. Define

yielding

and all the other quadratic terms remain unchanged. The
quadratic terms can be pushed down repeatedly until
and they can be absorbed in the control via feedback. The result
is

This is just the quadratic normal form of Poincaré as described
in the Introduction and are invariants when is diagonal.
See [4], [10], [15], or [20]. To see this, consider a part of the
dynamics

where .
If , then define

so that

We repeat the process until and .
Next, we show that the numbers (2.11) are invariants

when is diagonal. Clearly, is possibly changed only
by . Therefore, we need only consider coordinates
changes of the form

where because more general
ones are just compositions of these. This coordinate change only
affects a piece of the quadratic part of the dynamics (2.1)

is transformed to

Clearly, this change only potentially changes when
, and .

For a system in normal form (2.6), it is straightforward to
verify that the of (2.7) is given by (2.11)
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Consider a part of the dynamics

where .
If , then we can pull up by defining

so that

We can continue to pull up until . The result is (2.8).
Next, we show that the numbers (2.12) are invariants

when is diagonal. Clearly, they are potentially changed only
by . Therefore we need only consider coordinates
changes of the form

where because more general
ones are just compositions of these. This coordinate change only
affects a piece of the dynamics (2.1),

is transformed to

This potentially affects only if and . The sum
(2.12) is unchanged regardless of .

For a system in normal form (2.6), it is straightforward to
verify that the of (2.8) is given by (2.12)

Consider a part of the dynamics

where .
If , then we can pull up by defining

then

If , then we can pull up by defining

then

We can continue to pull up until the two indices are the same.
The result is (2.9).

We show that the numbers as given by (2.13), (2.14)
are invariants under quadratic change of coordinates (2.2) and
quadratic feedback (2.3) regardless of the Jordan form of .

Under the quadratic feedback the control is transformed from
to . Let be defined by (2.5) and

(2.17)

By the chain rule

It is straightforward to show by induction that for

(2.18)

(2.19)

and

Therefore, for and

For and

We have shown that (2.13) and (2.14) are invariant under
quadratic feedback (2.3). Since they are also
invariant under quadratic change of coordinates (2.2). In other
words, for the indicated ranges of indexes

and

It remains to show that if a system is in quadratic normal form
(2.6) then are given by (2.13), (2.14). Let

where denotes the right-hand side of (2.6).



KRENER et al.: CONTROL BIFURCATIONS 1237

By induction, one can show that for

Then, for

which confirms (2.13) and (2.14).
Remarks: It is not essential that be in Brunovsky

form, all they need to be is in controller companion form, i.e.,

. . .
. . .

... (2.20)

The quadratic normal form (2.6)–(2.10) remains the same but
the moduli (2.11)–(2.14) are different.

According to (2.11), is simply the coefficient of the term
. It was proved by Poincaré that the coefficient of
is invariant under quadratic change of coordinates

if . It is called a resonant term.
In the aforementioned normal form, the quadratic terms

which are not removable have been pulled up as far as possible,
i.e., either to or . One can also push down the
unremovable terms in to obtain the following normal form
[11]:

where

(2.21)

It may not be possible to push down the quadratic terms in
because of resonances.

The normal form is not unique when is not diagonal, for
example, suppose and

Since every quadratic term is resonant but obvi-
ously any quadratic term in can be pushed down into .

III. CUBIC NORMAL FORMS

The following theorem is new.
Theorem 3.1: Consider a smooth control system (2.1)

where is in Jordan form, are in Brunovsky form and
the input is scalar. There exist a quadratic and cubic change of
coordinates and a quadratic and cubic feedback

(3.1)

(3.2)

which transforms (2.1) into the cubic normal form

(3.3)

where the quadratic part is as in the previous theorem. Further-
more, is in the cubic normal form of Poincaré [15]

(3.4)

The other cubic vector fields are as follows:

(3.5)

(3.6)

(3.7)
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(3.8)

(3.9)

If is diagonal, then the normal form is unique, that is, each
system in quadratic normal form (2.6) can be transformed into
only one such cubic normal form (3.3)–(3.9) by cubic change of
coordinates (3.1) and cubic feedback (3.2). This follows from
the fact that the numbers in the above,

for the indicated indexes, are moduli, i.e., continuous
invariants of the system (2.6) under cubic change of coordinates
and cubic feedback. Let if and

, otherwise. The moduli are as follows:

for and

(3.10)

for (3.11)

for and

(3.12)

for and

(3.13)

for and

(3.14)

for

and (3.15)

where are the partial differential operators (2.4), (2.5).
Remarks: If some of the eigenvalues of are complex, then

a linear complex change of coordinates is required to bring it to
Jordan form. In this case, some of the coordinates of are com-
plex conjugate pairs and some of the coefficients in the normal
form are complex. These complex coefficients occur in conju-
gate pairs so that the real dimension of the coefficient space of
the normal form is unchanged.

Regardless of whether the Jordan form of is diagonal or
not, the numbers are moduli, i.e., invari-
ants under cubic change of coordinates and feedback.

The linear and quadratic change of coordinates and feedback
that carries the system into quadratic normal form (2.6) are not
unique. These extra degrees of freedom do affect the cubic and
higher terms. Tall and Respondek [19] have analyzed this for
systems where there are no uncontrollable modes.

The assumption of smoothness is used only in the def-
initions of (3.12)–(3.15) and the proof that they are moduli. It
could be replaced by smoothness with sufficiently large
that the bracketed expressions (3.12)–(3.15) can be calculated.
The rest of the theorem requires only smoothness.

Proof: We can expand the change of coordinates and feed-
back as follows:

These do not change the linear and quadratic parts of the dy-
namics. The cubic part of the dynamics is changed to

where , so each of the eight terms
can be considered separately

Consider a part of the dynamics

where , recall .
The stands for other cubic terms and higher degree terms.
The other cubic terms will not be affected by the operations that
we do and we ignore the higher degree terms.

If , we can pull up the cubic term by defining

then the dynamics becomes

and all the other cubic terms remain the same. Notice that the
two largest indices of the new cubic terms are closer together
than those of the original cubic term.
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Similarly, if we can pull up the cubic term by
defining

In the new terms generated by (3.16), the two largest indices of
the new cubic terms are identical.

Different from the quadratic normal form, we have to con-
sider the case in which . We can pull up the cubic
term by defining

then the dynamics becomes

and all the other cubic terms remain the same. Notice that all the
indexes of the new cubic term are identical.

In any case, if then we can still pull up and there is no
dynamics to be concerned with so a term disappears.

By pulling up all the cubic terms until their two largest in-
dexes are identical, we obtain

(3.16)

which is almost the normal form (3.9).
By pushing down, we can make for

. Consider a piece of the dynamics

If , define

yielding

and all the other cubic terms remain unchanged. Notice that if
then we can absorb the cubic terms into the control

using feedback. The terms in (3.16) where
can be repeatedly pushed down and absorbed in the control.

The result is (3.9).
We defer to later the proof that is given by (3.15) and is

an invariant

Consider a part of the dynamics

where .
If , we can pull up the cubic term by defining

then the dynamics becomes

and all the other cubic terms remain the same. Recall that the
symbol denotes if

and denotes if

If , we can pull up the cubic term by defining

then in the new terms generated by the transformation, the two
largest indices of are identical.

By pulling up all the cubic terms until , we obtain

(3.17)

which is almost the normal form (3.8).
By pushing down, we can make for .

Consider a piece of the dynamics

If , define

yielding

and all the other cubic terms remain unchanged. Notice that if
then we can absorb the cubic terms into the control

using feedback. The terms in (3.17) where
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can be repeatedly pushed down and absorbed in the control.
The result is (3.8).

We defer to later the proof that is given by (3.14) and is
an invariant

Consider a part of the dynamics

where .
If , we can pull up the cubic term by defining

then in the new terms generated by the transformation, the
largest index of is . So by pulling up all cubic
terms until , we obtain

Repeated pushing down eliminates this term. Consider a part
of the dynamics

where . Define

yielding

and all the other cubic terms remain unchanged. We can
continue to push down until and the cubic term
can be absorbed into the control using feedback. The result is

This part is similar to the proof of . The cubic term can be
pushed down repeatedly by

until and it can be absorbed in the control via feedback.
The result is

This is just the cubic normal form of Poincaré and when is
diagonal are invariants; see [4], [10], [15], or [20]

Consider a part of the dynamics

where .
If , then we can pull up by defining

so that

We can continue to pull up until . The result is (3.5).
Next, we show that the numbers (3.11) are invariants

when is diagonal. Clearly, they are potentially changed only
by . Therefore, we need only consider coordinates
changes of the form

where
because more general ones are just compositions of these. This
coordinate change only affects a piece of the dynamics (2.6)

is transformed to

A simple calculation shows that (3.11) is unchanged

Consider a part of the dynamics

where .
If , then we can pull up by defining

so that

We can continue to pull up until . The result is (3.6).
We defer to later the proof that is given by (3.12) and is

an invariant
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Consider a part of the dynamics

where .
If , then we can pull up by defining

If , then we can pull up by defining

We can continue to pull up until . The result is (3.7).
Assume that the system in quadratic normal form (2.6)

with coordinates . We show that the numbers
as given by (3.12)–(3.15) are invari-

ants under cubic change of coordinates (3.18) and cubic
feedback (3.19)

(3.18)

(3.19)

Under the cubic feedback (3.19), the control is transformed from
to . Let and . By the chain rule

It is straightforward to show by induction that for

and

so

Therefore, for and

For and

Hence, for and

For and

Since , by the chain rule

Hence, for and

For and

We have shown that (3.12)–(3.15) are invariant under cubic
feedback (3.19). Since they are also invariant
under cubic change of coordinates (3.18).

It remains to show that if a system is in cubic normal form
(3.3) then are given by (3.12)–(3.15). De-
fine the partial differential operators

where is the right side of (3.3).
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By induction, one can show that for

Then, for

which confirms (3.12)–(3.15).
Remarks: Again, it is not essential that be in

Brunovsky form, all they need to be is in controller companion
form, i.e.,

. . .
. . .

... (3.20)

The cubic normal form (3.3)–(3.9) remains the same but the
moduli (3.10)–(3.15) are different.

In the aforementioned normal form, the cubic terms which
are not removable have been pulled up as far as possible, i.e.,
to move the two largest indices in together. One
can also push down the unremovable terms down to obtain the
following normal form:

where the quadratic terms are given by (2.21) and
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It may not be possible to push down the cubic terms in be-
cause of resonances.

IV. CONTROL BIFURCATIONS

Control systems with or without parameters have continuous
families of equilibria. These families can be parametrized by
the set value of the control, by the value of one or more states or
by any parameters in the dynamics. A control bifurcation takes
place at an equilibrium where there is a loss of local, parameteric
stabilizability, see the Introduction. The theory of normal forms
enables us to analyze how the simplest control bifurcations can
occur.

The constants in the above normal forms
are called moduli. Fortunately, many moduli do not affect the
stabilizability of the equilibrium. Recall that in the bifurcation
theory of a parametrized system of ODEs, the interesting part
of the dynamics is that restricted to the center manifold. This
leads to a great reduction in the dimension of the ODE that
must be studied. A similar fact holds true when studying
control bifurcations. In most applications one will ultimately
use state feedback in an attempt to stabilize the system so the
coordinates that are linearly stabilizable and their associated
moduli can be ignored to a large extent. If there are modes
which are neutrally stable and are not linearly stabilizable,
then the particular choice of feedback will influence the shape
of center manifold of the closed-loop system and the dynamics
thereon. It might be possible to achieve asymptotically stable
center manifold dynamics by the proper choice of feedback
although it will not be exponentially stable. One can also
reduce the number of moduli by considering weaker forms of
equivalence than smooth change of coordinates and invertible
smooth feedback. We now discuss some important bifurcations
of control systems. Some of this has already been established
by Kang [12].

A. Fold Control Bifurcation

Just as with classical bifurcations, the simplest control bifur-
cation is the fold. This control bifurcation has not been studied
before. It is the only control bifurcation that is generic when the
control is one dimensional. The uncontrollable part of the state
is one dimensional and unstable, . Because the
linearly controllable part of the quadratic normal form (2.6) is in
Brunovsky form, the equilibria are most conveniently pa-
rametrized by . The equilibria are given
by

Note that the original control system has no parameter in
it. The parameter is introduced as the parametrization of the
equilibrium set. The one-degree of freedom of the equilibrium

set is introduced by the control input in the system. The local
linearization around is

where , and
.

If the transversality condition is satisfied, then about
any equilibrium except ; the system is linearly control-
lable hence stabilizable. However, it is not locally, parameteri-
cally, smoothly stabilizable at . Consider a parametrized
family of feedbacks of the form

(4.1)

One would like to find a continuous family of feedbacks
that makes the family of equilibria asymptotically stable, i.e.,
for each small , the closed-loop system
is asymptotically stable to . The lowest degree terms of
more general smooth feedbacks will be like (4.1).

Clearly, the subsystem is stabilizable for all by proper
choice of and this gain can be chosen independent of . The
question is can we find which stabilizes the coordinate
for all small .

Since the linear approximations are stabilizable for , it
is certainly possible to find a stabilizing feedback at each such

. The linear approximation at has an uncontrollable, un-
stable mode so it is not possible to stabilize it. However, is it pos-
sible to stabilize the approximations for with a feedback
that is continuous through ? The answer is no for systems
with a fold control bifurcation. For any continuous feedback,
the closed-loop system will be unstable in some neighborhood
of .

The closed-loop linear approximation

is clearly unstable at since . Furthermore if the
feedback stabilizes the subsystem then is
a simple positive root of the characteristic polynomial of the
closed-loop system when . Hence, there is a positive root
of the characteristic polynomial for small .

By using higher and higher gain, it is possible to stabilize the
system closer and closer to . But if the feedback (4.1) is
continuous in , at best it will stabilize only over an interval of
values of that lies wholly to the left or right of . If a
smooth family of feedbacks does stabilize the system for some

close to zero, the parametrized closed loop system generically
undergoes a classical fold bifurcation (also called a saddle-node
bifurcation) at some closer to zero.

We illustrate this with a simple example in normal form
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The equilibria are . Under the feed-
back , the closed-loop linear approx-
imation is

where . This is asymptotically
stable iff the trace is negative and the determinant is positive,
which yields the inequalities .
Clearly, there is no bounded that satisfies these for all
small .

If we choose and then the closed-loop
linear approximation is stable for and unstable for

. It undergoes a fold bifurcation at . If we
choose and then the closed loop linear
approximation is stable for and unstable for

. It undergoes a fold bifurcation at .
To see this, consider the closed-loop nonlinear system under

the former feedback, and , in coordinates
centered at the bifurcation,

It is convenient to reparametrize by . The center
manifold is given by

and the center manifold dynamics is

or in the variables

the familiar form of a fold bifurcation.

B. Transcritical Control Bifurcation

Kang [12] studied this control bifurcation but not under this
name. This is the degenerate case where again , but

. Hence, this control bifurcation is not of codimension
one. Kang showed that the local behavior is determined by the
roots of quadratic form

If this form is positive or negative definite, then there is only an
isolated equilibrium which is unstabilizable. If it is indefinite but
not degenerate, there are two curves of equilibria which cross.
For example, suppose and all the
other nonlinear terms are zero. Then, the equilibria are

Let be one smooth curve of equilibria, e.g., ,
the local linearizations around it are

where , and .
Suppose we close the loop with the smooth feedback

(4.2)

where are constants chosen to stabilize the branch of
equilibria

(4.3)

for . The linear approximations of the closed-loop dy-
namics around these equilibria are

which has a zero eigenvalue at . If then zero
is an eigenvalue for all which contradicts our assumption that
the feedback (4.2) stabilizes the equilibria for . Hence,
we assume that , then the determinant of the full
system matrix changes sign at so there is a change of
stability and the closed-loop system is unstable at the equilibria
where .

The closed-loop system has another branch of equilibria. If
, then these equilibria are given by

(4.4)

and the linear approximations of the closed-loop dynamics
around these equilibria are

which has a zero eigenvalue at . The determinant of the
full system matrix changes sign at . The linear approx-
imating dynamics is stable for and unstable for
so the two branches (4.3), (4.4) of equilibria exchange stability
at and the closed-loop system undergoes a transcritical
bifurcation.

If , then the closed-loop system has only
one branch of equilibria (4.3) and the linear approximating dy-
namics has a zero eigenvalue for all .

If , then the closed loop system has
two branches of equilibria; (4.3) where the linear approx-
imating dynamics has a change of stability at and
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where the linear
approximating dynamics has a zero eigenvalue for all .

The three-state Moore and Greitzer [18] model of an axial
flow compressor provides an example of a transcritical bifur-
cation. Feedbacks have designed to stabilize this model (see,
for instance, [17]). In [13], it is proved that the Moore–Greitzer
three-state model is equivalent to the following normal form:

where is a constant. The eigenvalue of the uncontrollable
mode is zero and its equilibrium set consists of two branches.
Based on its normal form, it is proved in [13] that the system
undergoes a transcritical bifurcation under linear feedback.

C. Hopf Control Bifurcation

This control bifurcation has not been studied before. The un-
controllable modes are a nonzero complex conjugate pair

where . The equilibria
are given by

where is a complex conjugate pair.
The local linearization around is

where and

where , and are complex conjugate pairs.
The local linearization is uncontrollable at . If the

transversality condition, , is satisfied then the local lin-
earization is controllable at all small . (This transversality
condition should not be confused with the familiar transversality
condition of the classical Hopf bifurcation.) If , then the
system is stabilizable about any equilibrium so it does not un-
dergo a control bifurcation. If , then the system is not
stabilizable when . If , then the system is not lo-
cally, parameterically, smoothly stabilizable. The cases
are called Hopf control bifurcations.

If then it requires larger and larger gain to stabilize the
system closer and closer to . But if the feedback ((4.1))
is continuous, it will stabilize only for some small or
for some small but not both. At the poles of the
closed loop system are and the poles of .

The latter can be made stable but the former are unstable. If
the feedback is bounded then as the poles converge to
the poles of the closed loop system at . The system is
controllable for so the poles can be placed arbitrarily by
feedback. The poles associated primarily with the subsystem
can be kept stable but the two poles associated primarily with
the subsystem will cross into the right half plane at some
small value(s) of . Depending on the choice of feedback, they
will cross one at a time as real poles, cross together through or
cross together as a nonzero complex conjugate pair. If they cross
separately as real poles then generically the closed loop system
undergoes a classical fold bifurcation as the first pole crosses.
If they cross together as a nonzero complex conjugate pair then
generically the system undergoes a classical Hopf bifurcation.
If they cross together through zero the situation can be quite
complicated and will not be discussed here.

If and the feedback (4.1) is continuous, then gener-
ically the system undergoes a Hopf bifurcation at . We
illustrate this with an example

The equilibria are

and the linear approximations are

where .
The linear approximations are controllable except at .

We choose the feedback which
place the poles at when . Near the
poles of the closed-loop linear approximations are

(4.5)

The closed-loop dynamics is

The first Lyapunov coefficient (see [15, (10.50)]) is
. This and (4.5) imply that the closed-loop system un-

dergoes a supercritical Hopf bifurcation at . For small
the origin is locally exponentially stable. For small

the origin is unstable but there is a locally asymptotically stable
limit cycle nearby. At , the origin is locally asymptotically
stable but not locally exponentially stable.
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V. CONCLUSION

We have presented the normal form to degree 3 of a smooth
control system around an equilibrium point under the group
of smooth coordinate changes and invertible smooth feedback.
From these normal forms we were able to identify the simplest
control bifurcations, the fold control bifurcation, the transcrit-
ical control bifurcation and the Hopf control bifurcation. We
emphasize the distinction between a control bifurcation and a
classical bifurcation. Bifurcation control is different from a con-
trol bifurcation. The former refers to the modification by feed-
back of a classical bifurcation of the uncontrolled
system. Of course, these concepts are closely related and when
a system with a control bifurcation is modified by smooth feed-
back the result is a classical bifurcation.
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