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1 Introduction

We consider the class Ck(X × U , IRn) of control systems of the form

ẋ = f(x, u) (1.1)

where x ∈ X , an open subset of IRn, u ∈ U , an open subset of IRm and f is
Ck where 0 ≤ k ≤ ∞. The equilibrium set Z of the control system is the set
of all (x0, u0) ∈ X ×U such that f(x0, u0) = 0. We are interested in studying
control bifurcations, i.e., equilibria that are more difficult to stabilize than
most of their neighboring equilibria. In order to do so we need to study the
singular equilibria of all possible control systems. The set of all equilibria of
all smooth systems is infinite dimensional. It is most convenient to pose this
study in a k-jet space which is finite dimensional.

A linear system of the form

ẋ = Fx+Gu (1.2)
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is controllable if the smallest F invariant subspace containing the columns of
G is IRn. A controllable linear system can be steered from any state to any
other state in any t > 0.

The linear part of the nonlinear system (1.1) around the equilibrium
(x0, u0) is the system

ẋ = F (x− x0) +G(u− u0) (1.3)

where

F =
∂f

∂x
(x0, u0), G =

∂f

∂u
(x0, u0).

If this linear system is controllable then the nonlinear system can steered
from any nearby state to any other nearby state in any t > 0.

The generic equilibrium of (1.1) has a controllable linear part so if an
equilibrium is not linearly controllable then it is more difficult to control
than most of its neighboring equilibria and hence a control singularity. But
as we shall see there are linearly controllable equilibria that are more difficult
to control than most of their neighboring equilibria. Hence they are also
control singularities. The goal of this paper is to study and classify the low
codimension control singularities of nonlinear control systems.

The set of all equilibria of all control systems like (1.1) is infinite dimen-
sional but the nature of control singularity frequently depends on the low
degree terms of the Taylor series of f at the equilibrium. Therefore instead
of studing the infinite dimensional object we study the Taylor series through
degree k of all possible systems at all possible equilibria. The latter is called
the system k-jet space which we introduce in the next section. In Section 3
we define the extended contollability indices and in Section 4 we study the
action of the linear feedback group.

2 Equilibria in the k-Jet Space of Systems

The system k-jet space Sk(X × U , IRn) is the space of all tuples of the form(
(x, u), f(x, u), f (1)(x, u), . . . , f (k)(x, u)

)
(2.1)

where f ∈ Ck(X × U , IRn) and

f (j)(x, u) =
∂jf

∂(x, u)j
(x, u).
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Frequently when there is no chance of ambiguity we shall use the short-
ened notation Sk. The terminology is a bit misleading, this is not a collection
of systems but is a vector bundle with base X × U and fiber a real linear
space of dimension N(n,m, k) where

N(n,m, k) = n

(
n+m+ k

k

)
.

Moreover the notation (2.1) is very convenient but can be misleading. Each

f (j)(x, u) = (f
(j)
1 , . . . , f (j)

n )′ and each f
(j)
i is actually a symmetric tensor of

degree j in n+m indices. There is a natural projection of Sk onto S l when
k ≥ l ≥ 0.

A system (1.1) realizes a point in Sk if it has those derivatives at X ×U .
Any point in Sk can be realized by a polynomial system of degree k but there
are many other realizations.

It is more convenient to work with the systems jet space Sk(X × U , IRn)
which is finite dimensional than the space of systems Ck(X × U , IRn) which
is infinite dimensional, particularly when studying a system locally around
a particular (x, u) such as an equilibrium. The equilibrium set Z(f) of a
system (1.1) is the set of all pairs (x, u) ∈ X × U such that f(x, u) = 0.

The equilibrium set Ek(X × U , IRn) ⊂ Sk(X × U , IRn) is the space of all
tuples of the form (

(x, u), 0, f (1)(x, u), . . . , f (k)(x, u)
)
. (2.2)

Again when there is no chance of ambiguity we shall use the shortened nota-
tion Ek. The equilibrium set Ek is also a vector bundle with base X ×U and
fiber a real linear space of dimension N(n,m, k) − n. Clearly Ek is a sub-
bundle of Sk and it is carried onto E l, 0 ≤ l ≤ k by the natural projection.
Notice that Z(f) ⊂ X × U and depends on the system (1.1) but Ek ⊂ Sk

and we don’t need a system to define it.
A k-jet in Ek is a control singularity it is more difficult to control than

most of its neighboring tuples in Ek. Our goal is to study the classes of
control singularities that are of low codimension in Ek. In particular we will
classify all of codimension one or two.

There is another jet bundle that is of interest. The feedback k-jet bundle
Kk is the set of all tuples of the form(

x, κ(x), κ(1)(x), . . . , κ(k)(x)
)

(2.3)
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where κ : x 7→ u is Ck mapping from X to U and

κ(j)(x) =
∂jκ

∂xj
(x).

The maps κ(x) are feedbacks and Kk is a fiber bundle with base X and fiber
U × IRM(n,k) where

M(n, k) = m

(
n+ k
k

)
−m.

Given an equilibrium (x0, u0) of the system (1.1), a typical goal is to find
a smooth feedback such that the closed loop system

ẋ = f(x, κ(x)) (2.4)

u = κ(x) (2.5)

is locally asymptotically stable to (x0, u0). Frequently the stability of the
closed loop system can be decided by its k-jet at x0 for small k. And the
k-jet of the closed loop system can be computed from the k-jet of the system
at (x0, u0) and the k-jet of the feedback at x0 assuming that κ(x0) = u0.

Therefore we say an equilibrium k-jet with base point (x0, u0) is stabiliz-
able if there exists a feedback k-jet with base point x0 so that every realiza-
tion of the former makes every realization of the latter locally asymptotically
stable to (x0, u0).

3 Extended Controllability Indices

Given an equilibrium (x0, u0) of the system (1.1) we can define its tuple of
controllability indices (also called Kronecker indices) as follows. Define

F =
∂f

∂x
(x0, u0), G =

∂f

∂u
(x0, u0)

then the controllability matrix of this pair is[
G FG . . . F n−1G

]
.

This is an n× nm matrix of rank r, 0 ≤ r ≤ n. The span of the columns of
this matrix is an F invariant subspace of dimension r denoted by V . If r = n
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then the pair F,G is said to be controllable and the system (1.1) is said to
be linearly controllable at (x0, u0).

Starting from the left, we delete columns of the controllability matrix
which are linearly dependent on the columns to the left. At the end of this
process, we obtain an n × r matrix of rank r which after reordering of the
columns is of the form[

G.1 FG.1 . . . F r1−1G.1 . . . G.m FG.m . . . F rm−1G.m

]
where G.j denotes the jth column of G and r = r1+ · · ·+rm. After reordering
the columns of G we can assume that r ≥ r1 ≥ r2 ≥ · · · ≥ rm ≥ 0. The
controllability indices of the equilibrium (x, u) is the m tuple (r1, . . . , rm).

We define the extended controllability indices of the equilibrium (x0, u0)
as the m+1 tuple (r0, r1, . . . , rm) where r0 = n−r. The interpertation of this
is as follows, r0 is the number of state dimensions that can’t be controlled
by linear effects and rj is the number of dimensions that can be controlled
by the linear effects of uj with the least number of overall integrations. Even
if the equilibrium is linearly contollable, it is difficult to control if it has any
large controllablity indices.

A m + 1 tuple of nonnegative integers (s0, s1, . . . , sm) is an admissible
tuple of controllability indices for a system with n dimensional state and m
dimensional control if n ≥ s1 ≥ s2 ≥ · · · ≥ sm ≥ 0 and s0 + s1 + · · ·+ sl = n.
The set of all such admissible indices is partially ordered as follows. The tuple
(r0, . . . , rm) is smaller than the tuple (s0, . . . , sm) if they are not identical and

k∑
i=0

ri ≤
k∑

i=0

si

for k = 0, . . . , rm.
The easiest equilibrium of a system with n states and m inputs to control

is the one where (r0, r1, . . . , rm) is as small as possible. For then r0 = 0
so there are no uncontrollable states and the control of the n states is as
evenly distributed as possible over the m controls. The larger the extended
controllabilities indices are, the more difficult it is to control the system.

In a similar fashion we can define the extended controllability indices of
a point of Ek. We define Ck(r0, r1, . . . , rm) as the subset of Ek with extended
controllability indices (r0, r1, . . . , rm). The tuple of extended controllability
indices of a generic system with n dimensional state and m dimensional input
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is the smallest admissible tuple, i.e., r0 = 0 and rj, 1 ≤ j ≤ m is as close to
n
m

as possible. Let l be the largest integer not exceeding n
m

, then the generic
m + 1 tuple of extended controllability indices is (0, l + 1, . . . , l + 1, l, . . . , l)
where the numbers of l and l + 1 indices are chosen to make the sum of the
indices equal to n. Let Ck∗ = Ck(0, l + 1, . . . , l + 1, l, . . . , l) then this is a
generic subset (open and dense) of the equilibrium set Ek. Therefore we call
this tuple the generic tuple of extended controllability indices of system with
n states and m inputs.

The singular subset of Ek is in the compliment Ckc of Ck∗. An element
of this set is more difficult to control than most of its neighbors because
it always has neighbors with smaller extended controllability indices. A 1-
jet in Ck(r0, r1, . . . , rm) can be perturbed to any 1-jet with smaller extended
controllability indices. We are interested in studying particular types of
singularities, those of low codimension in Ek.

4 Linear Feedback Group and Linear Nor-

mal Form

The linear feedback group acts on systems and so it acts on system k-jets.
An element of the linear feedback group is of the form[

T 0
K L

]
(4.1)

where T is an n×n invertible matrix, K is an m×n matrix and L is an m×m
invertible matrix. Together they define a linear change of state coordinates
and a linear feedback on (1.1)

x− x0 = Tz
u− u0 = Kz + Lv

(4.2)

which takes the equilibrium at (x0, u0) of the system (1.1) to the equilibrium
at (0, 0) of

ż = f̄(z, v) = T−1f(x0 + Tz, u0 +Kz + Lv). (4.3)

This induces a mapping from Ek to Ek. The k jet(
(x0, u0), 0,

∂f

∂(x, u)
(x0, u0), . . . ,

∂kf

∂(x, u)k
(x0, u0)

)
(4.4)
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goes to (
(0, 0), 0,

∂f̄

∂(z, v)
(0, 0), . . . ,

∂kf̄

∂(z, v)k
(0, 0)

)
(4.5)

If the linear part of the k-jet is [F G] then it is changed to

[
F̄ Ḡ

]
= T−1

[
F G

] [ T 0
K L

]
.

Given any system (1.1) there is an element of the linear feedback group
which takes the linear part of the system into linear normal form. A system

ż = Az +Bv +O(z, v)2 (4.6)

is in linear normal form at the equilibrium (z, v) = (0, 0) if

A =

[
A0 0
0 A1

]
, B =

[
0
B1

]
(4.7)

where the r0× r0 matrix A0 is in real Jordan form and the pair consisting of
the r × r matrix A1 and the r ×m matrix B1 is in Brunovsky form.

The former means that A0 is a block diagonal matrix with diagonal blocks
of the form 

Λ1 I 0 . . . 0
0 Λ2 I . . . 0

. . . . . .

0 0 0
. . . I

0 0 0 . . . Λs

 (4.8)

where Λi is a scalar

Λi = ai

or a 2× 2 matrix of the form

Λi =

[
ai −ωi

ωi ai

]

with ωi 6= 0
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The latter means that

A1 = Diag



0 1 0 . . . 0
0 0 1 . . . 0

. . .

0 0 0 . . . 1
0 0 0 . . . 0



rj×rj

B1 = Diag



0
0
...
0
1



rj×1

for those rj > 0. If rτ+1 = . . . = rm = 0 then m− τ identically zero columns
are added on the left of B1.

An equilibrium 1-jet in normal form is(
(0, 0), 0,

[
A0 0 0
0 A1 B1

])
(4.9)

where A0, A1, B1 are as above.
As an example consider the scalar input system

ż0 = az0 +O(z, v)2 (4.10)

ż1 = A1z1 +B1v +O(z, v)2 (4.11)

where the z0 ∈ IR, z1 ∈ IRn−1 and

A0 = a 6= 0

A1 =



0 1 0 . . . 0
0 0 1 . . . 0

. . .

0 0 0 . . . 1
0 0 0 . . . 0



r1×r1

B1 =



0
0
...
0
1



r1×1

.

(4.12)
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Its 1-jet at the origin is(
(0, 0), 0,

[
a 0 0
0 A1 B1

])
(4.13)

This equilibrium 1-jet is the simplest example of a control singularity and
is called a fold. The subset F ⊂ Ek of fold singularities is the set of all 1-jets
of the form (

(x0, u0), 0,

[
F00 F01 G0

F10 F11 G1

])
(4.14)

whose normal form is (4.13) for some a 6= 0. We shall show that F is of
codimension one in Ek.

There is also a nonlinear feedback group that acts on (1.1). It includes
the linear feedback group. It consists of Ck changes of state coordinates and
state feedback of the form

x = θ(z)
u = κ(z, v)

(4.15)

where (z, v) 7→ (x, u) is a local diffeomorphism. This induces a corresponding
action on points of Ek. The nonlinear feedback group is stratified. There are
near identity transformations of degree d which are of the form

x = z + θ[d](z)
u = v + κ[d](z, v)

(4.16)

where the superscript [d] indicates a polynomial vector field homogeneous of
degree d. These do not form a subgroup as the composition of two such
transformations typically has terms of degree d through d2. A near identity
transformation of degree d does not change the d− 1 jet but it does modify
the d-jet and higher jets. This allows one to bring the higher degree terms
to normal form [2]

5 The Codimension of Orbits

of the Linear Feedback Group

Control singularities are invariant under the linear and nonlinear feedback
groups. If the original system (1.1) has a control singularity at an equilibrium

9



(x0, u0) then the transformed system has the same type of control singularity
at the transformed equilibrium.

A class of linear control singularities is most conveniently defined by con-
ditions on the 1 jet of the system in normal form For such singularities, we
are only interested in the action of the linear feedback group. The fold F
above is a linear control singularity.

To compute the codimension of a class of linear control singularities we
proceed as follows. As we said before the singular class is most conveniently
defined by certain conditions on the linear normal form at the equilibrium
(0, 0). The normal form may depend on one or more parameters. For the
fold singularity there is one parameter a. All other elements of the singular
class are obtained by a linear feedback transformation acting on a singularity
in normal form.

Hence we must study the action of the linear feedback group

z = Tx (5.1)

v = Kx+ Lu (5.2)

on systems in linear normal form (4.6). We partition (4.1) compatibly with
(4.7)

[
T 0
K L

]
=

 T00 T01 0
T10 T11 0
K0 K1 L

 (5.3)

The result is a new system

ẋ = Fx+Gu+O(x, u)2

where [
F G

]
= T−1

[
A B

] [ T 0
K L

]
[
F00 F01 G0

F10 F11 G1

]
=

[
S00 S01

S10 S11

] [
A1 0 0
0 A1 B1

]  T00 T01 0
T10 T11 0
K0 K1 L


with S = T−1.

Tannenbaum [3] has descibed the action of the group of linear changes
of state coordinates, i. e. K1 = 0, L = I, acting on linearly controllable

10



systems, r0 = 0. But we are interested in the full feedback group acting on
possibly linearly uncontrollable systems.

When computing the codimension of an orbit of this action, it is simpler to
compute the codimension the infinitesmal action which is a linear calculation.
Consider a curve T = T (µ), K = K(µ), L = L(µ) in the linear feedback
group parameterized by µ ∈ IR where T (0) = I, K(0) = 0, L(0) = I. Let ′

denote differentiation with respect to µ at µ = 0 then[
F00 F01 G0

F10 F11 G1

]′
=

(
T−1

[
A B

] [ T 0
K L

])′

=

[
A0T

′
00 − T ′

00A0 A0T
′
01 − T ′

01A1 −T ′
01B1

A1T
′
10 − T ′

10A0 +B1K
′
0 A1T

′
11 − T ′

11A1 +B1K
′
1 −T ′

11B1 +B1L
′

]

This action splits into four mappings

T ′
00 7→ F ′

11 = A0T
′
00 − T ′

00A0, (5.4)

T ′
01 7→

[
F01 G0

]′
=
[
A0T

′
01 − T ′

01A1, −T ′
01B1

]
, (5.5)[

T ′
10

K ′
0

]
7→ F ′

21 = A1T
′
10 − T ′

10A0 +B1K
′
0, (5.6)[

T ′
11 0
K ′

1 L′

]
7→

[
F11 G1

]′
=
[
A1T

′
11 − T ′

11A1 +B1K
′
1, −T ′

11B1 +B1L
′
]
.

(5.7)

Each mapping is from a real vector space to another. For each we wish
to compute the codimension of its range and find a maximal set of linearly
independent vectors which are transverse to the range.

The first linear mapping (5.4) is the action of infinitesmal linear changes

of the uncontrollable coordinates. It goes from IRr2
0 to IRr2

0 . This is the same
mapping that occurs when studying dynamical systems without controls. It
is never an isomorphism and the codimension of its range depends on A0.
An analysis of this map can be found in Wiggins [4] on page 315. We state
the results for the cases where A0 is 1× 1 or 2× 2.

If A0 is 1 × 1 then the map (5.4) is identically zero so the range is of
codimension one. A 1× 1 matrix transverse to the range is 1.

If A0 is 2× 2 then there are several possibilities. We enumerate those of
codimension two.
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If A0 has distinct, nonzero real eigenvalues then the range of (5.4) is of
codimension two. Two matrices transverse to the range are[

1 0
0 0

]
,

[
0 0
0 1

]
.

If A0 has two complex eigenvalues whose real and imaginary parts are
both nonzero then the range of (5.4) is of codimension two. Two matrices
transverse to the range are[

1 0
0 1

]
,

[
0 −1
1 0

]
.

If A0 is a 2× 2 Jordan block

A0 =

[
a 1
0 a

]

where a 6= 0 then the codimesion is also two. Two matrices transverse to the
range are [

1 0
0 1

]
,

[
0 0
1 0

]
.

Next consider the linear mapping (5.5). This is a mapping from IRr0r

to IRr0(r+m) which is clearly not onto. But it is one to one which we now
demonstrate for the case m = 1. The general case follows similarly. Let
X = T ′

01 and X·,j denote the jth column of the matrix X. Suppose

A0X −XA1 = 0

XB1 = 0

then these equations become

A0X·,j −X·,j−1 = 0

X·,r = 0

so X = 0. Therefore the range of the mapping (5.5) has codimension r0.
One choice of r0 independent r0× (r+ 1) matrices transverse to the range is[

F01 G0

]
=

[
ei 0 . . . 0

]
, i = 1, . . . , r0 (5.8)
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where ei is the ith vector in IRr0 .
Next consider the linear mapping (5.6). This is a mapping from IRrr0+mr0

to IRrr0 which we now show is onto. Let X = T ′
10 and Xi,· denote the ith row

of the matrix X. If m = 1 then for 1 ≤ i ≤ r1 − 1

(A1X −XA0 +B1K
′
0)i,· = Xi+1,· −Xi,·A0

(A1X −XA0 +B1K
′
0)n,· = −Xn,·A0 +K ′

1

Hence we choose X1,· arbitrarily, then for for 2 ≤ i ≤ r1 we choose Xi,· to
arbitrarily fix the i− 1th row and K ′

1 to arbitrarily fix the rth row. The case
when m > 1 follows similarly.

Finally we look at the linear mapping (5.7). This is a mapping from

IRr2+mr+m2

to IRr2+rm This is the infinitesmal action of the linear feedback
group acting on the controllable part of the system. The controllability in-
dices are a complete set of invariance for the feedback group action. Any lin-
ear controllable system can be transformed into the Brunovsky normal form
with the same controllability indices. Hence the codimension of the range of
the mapping (5.7) is same as the codimension of the set of all (F11, G1) with
the same tuple of controllabity indices (r1, . . . , rm). If the tuple (0, r1, . . . , rm)
is the smallest admissible tuple of extended controllability indices for systems
with r dimensional state and m dimensional control then the map (5.7) is
onto. Otherwise the codimension is the number of admissible tuples of con-
trollability indices of a system with r states and m inputs that are smaller
than (r1, . . . , rm).

We consider the cases where the codimension is one or two. Let (r1, . . . , rm)
be the smallest admissible tuple for a system with r states and m inputs. The
next smallest admissible tuple is

(r1 + 1, r2, . . . , rm−1, rm − 1)

so for A1, B1 with this tuple of controllability indices, the range of the map
(5.7) is of codimension one. An r × (r + m) matrix transverse to range is
zero except for its (1, r1 + . . .+ rm−1 + 2) entry which is one.

If m = 2 the next smallest admissible tuple is

(r1 + 2, r2 − 2)

so for A1, B1 with this tuple of controllability indices, the range of the map
(5.7) is of codimension two. An r × (r + 2) matrix transverse to range is
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zero except for its (1, r1 + 2) entry which is one. Another r× (r+m) matrix
transverse to range is zero except for its (2, r1 + 2) entry which is one.

If m = 3 the next smallest admissible tuple is

(r1 + 1, r2 + 1, r3 − 2)

so for A1, B1 with this tuple of controllability indices, the range of the map
(5.7) is of codimension two. An r × (r + m) matrix transverse to range is
zero except for its (1, r1 + r2 + 3) entry which is one. Another r × (r + m)
matrix transverse to range is zero except for its (r1 + 2, r1 + r2 + 3) entry
which is one.

If m ≥ 4 the next smallest admissible tuple is

(r1 + 1, r2 + 1, r3, . . . , rm−2, rm−1 − 1, rm − 1)

so for A1, B1 with this tuple of controllability indices the range of the map
(5.7) is of codimension two. An r×(r+m) matrix transverse to range is zero
except for its (1, r1 + . . .+ rm−2 +3) entry which is one. Another r× (r+m)
matrix transverse to range is zero except for its (r1 + 2, r1 + . . .+ rm−1 + 1)
entry which is one.

6 Versal Deformations

Given a class of control singularities G ∈ Ek, one would like to study the types
of equilibrium k jets that can be obtained by small perturbations. A family
of control singularities is always invariant under the action of the feedback
group.

Let G ⊂ Ek which is invariant under the action of the feedback group. A
Ck versal deformation of G is a Ck parametrized subset of Ek of the form

φ : P → Ek

φ : µ 7→ φ(µ) = ((x, u), 0, φ(1)(µ), . . . , φ(k)(µ))
(6.1)

defined for µ in some neighborhood P of 0 ∈ IRp, which intersects G at µ = 0
and which is transversal to G. The versal deformation is said to be miniversal
if the dimension p is minimal among all versal deformations. The minimal p
is the codimension of G.

A Ck versal feedback for a versal deformation (6.1) is a mapping

ψ : P → Kk

ψ : µ 7→ ψ(µ) = ((x, u), 0, ψ(1)(µ), . . . , ψ(k)(µ)).
(6.2)
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A versal feedback is stabilizing if at each µ ∈ P , ψ(µ) stabilizes φ(µ).

7 Low Codimension Linear Control Singular-

ities of Scalar Input Sytems

7.1 Fold Control Singularities

The simplest example of a control singularity is a fold and the class of all fold
singularities is of codimension one as we now show. Recall that an equilibrium
1-jet (4.14) is a fold singularity if its normal form is (4.14) for some a 6= 0.
The reason for the terminology will be discussed later. We complete the
above analysis to understand the infinitesmal action of the linear feedback
group on A,B (4.12). The range of the linear mapping (5.5) is of codimension
one so from (5.8) we obtain a nonzero n × (n + 1) matrix transverse to the
orbit of A,B under the linear feedback group. The linear mapping (5.4) is
identically zero so there is another linearly independent n × (n + 1) matrix
transverse to the orbit of A,B under the linear feedback group.

But perturbations in one of these directions can be accomplished by vary-
ing a and so it is not transverse to F . Therefore F is codimension one set of
control singularities and a miniversal deformation of it is

µ 7→
[
F (µ) G(µ)

]

F (µ) =



a µ 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0

. . .

0 0 0 0 . . . 1
0 0 0 0 . . . 0


, G(µ) =



0
0
0

0
1


Now we see why the fold terminology. The controllabilty matrix of the

versal deformation in reverse order is

[
F (µ)n−1G(µ) . . . F (µ)G(µ) G(µ)

]
=

[
µ 0
0 I

]
.
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Notice that all these 1-jets are controllable except for µ = 0 and the control-
lability reverses orientation (folds over) at µ = 0.

There are two subclasses of fold singularities, those where a < 0 and those
with a > 0. There is an important distinction between these subclasses. The
former are linearly stabilizable, i.e., there exists a linear feedback u = Kx
so that all the poles of the linear part of the closed loop dynamics A + BK
are in the left half plane. In fact the versal deformation of a fold singularity
with a < 0 is versally stabilize by a versal linear feedback of the form

((x, u), 0, [K0, K1])

where K0 = 0, A1 +B1K1 is Hurwitz.
But if a > 0 then the closed loop dynamics will always have at least one

unstable eigenvalue a.

7.2 Transcontrollable Singularities

A transcontrollable singularity is a degenerate fold where a = 0. This means
that the stabilizability of a system realizing this 1-jet is decided by its higher
order terms. The class of transcontrollable singularities denoted by T C is of
codimension two and a versal deformation of it is

(µ1, µ2) 7→
[
F (µ1, µ2) G(µ1, µ2)

]

F (µ1, µ2) =



µ1 µ2 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0

. . .

0 0 0 0 . . . 1
0 0 0 0 . . . 0


, G(µ1, µ2) =



0
0
0

0
1


Notice that a transcontrollable singularity can be perturbed into a fold

by changing µ1 from zero and can be perturbed into a linearly controllable
1-jet by changing µ2 from zero.

7.3 Two Real Roots Control Singularities

There are two other classes of control singularities of codimension two for
scalar input systems. They are the class of two real roots control singularities
and the class of two complex roots control singularities.
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We denote the class of two real roots control singularities by T RR. These
are equilibrium 1- jets that have the linear normal form (4.13) where n ≥
2, m = 1, r0 = 2, r = r1 = n− 2,

A0 =

[
a1 0
0 a2

]
,

A1, B1 are in Brunovsky form and a1 6= a2, a1a2 6= 0.
The linear mapping (5.4) is of rank two so there are two linearly inde-

pendent n× (n+ 1) matrices transverse to the orbit of A,B under the linear
feedback group. The range of the linear mapping (5.5) is of codimension
two so from (5.8) we obtain two additional linearly independent n× (n+ 1)
matrices transverse to the orbit of A,B under the linear feedback group.

But perturbations in the first two of these directions can be accomplished
by varying a1, a2 and so they are not transverse to T RR. Therefore T RR
is of codimension two and a miniversal deformation of it is

(µ1, µ2) 7→
[
F (µ1, µ2) G(µ1, µ2)

]

F (µ1, µ2) =



a1 0 µ1 0 . . . 0 0
0 a2 µ2 0 . . . 0 0
0 0 0 1 . . . 0 0

0 0 0 0
. . . 0 0

. . .

0 0 0 0 . . . 0 1
0 0 0 0 . . . 0 0


, G(µ1, µ2) =



0
0
0
0

0
1


.

When a1 = a2 and/or a1a2 = 0 then we obtain classes of singularities
that are of higher codimension. Some of these are discussed below. When
a1 < 0, a2 < 0, the singularity can be stabilized by a linear feedback and the
versal deformation can versally stabilized by

((x, u), 0, [K0, K1])

where K0 = 0, A1 + B1K1 is Hurwitz. But if an ai > 0 then the singularity
is not stabilizable.
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7.4 Two Complex Roots Control Singularity

The class T CR of two complex roots control singularities is of codimension
two. These are equilibrium 1- jets that have the linear normal form (4.13)
where n ≥ 2, m = 1, r0 = 2, r = r1 = n− 2,

A0 =

[
a −ω
ω a

]
,

A1, B1 are in Brunovsky form and a 6= 0, ω 6= 0.
The linear mapping (5.4) is of rank two so there are two linearly inde-

pendent n× (n+ 1) matrices transverse to the orbit of A,B under the linear
feedback group. The range of the linear mapping (5.5) is of codimension
two so from (5.8) we obtain two additional linearly independent n× (n+ 1)
matrices transverse to the orbit of A,B under the linear feedback group.
But perturbations in the first two of these directions can be accomplished by
varying a, ω and so they are not transverse to T CR. Therefore T CR is of
codimension two and a miniversal deformation of it is

(µ1, µ2) 7→
[
F (µ1, µ2) G(µ1, µ2)

]

F (µ1, µ2) =



a −ω µ1 0 . . . 0 0
ω a µ2 0 . . . 0 0
0 0 0 1 . . . 0 0

0 0 0 0
. . . 0 0

. . .

0 0 0 0 . . . 0 1
0 0 0 0 . . . 0 0


, G(µ1, µ2) =



0
0
0
0

0
1


.

When a = 0 and/or ω = 0 then we obtain classes of singularities that are
of higher codimension. When a < 0 then the singularity can be stabilized by
a linear feedback and the versal deformation can versally stabilized by

((x, u), 0, [K0, K1])

where K0 = 0, A1 + B1K1 is Hurwitz. But if an a > 0 then the singularity
is not stabilizable.
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7.5 Double Root Control Singularity

The set DR of double root control singularities is of codimension three.
These are equilibrium 1- jets that have the linear normal form (4.13) where
n ≥ 2, m = 1, r0 = 2, r = r1 = n− 2,

A0 =

[
a 1
0 a

]
,

A1, B1 are in Brunovsky form and a 6= 0.
The linear mapping (5.4) is of rank two so there are two linearly inde-

pendent n× (n+ 1) matrices transverse to the orbit of A,B under the linear
feedback group. The range of the linear mapping (5.5) is of codimension
two so from (5.8) we obtain two additional linearly independent n× (n+ 1)
matrices transverse to the orbit of A,B under the linear feedback group. But
perturbations in one of these directions can be accomplished by varying a
and so it is not transverse to DR. Therefore this is codimension three control
singularity and a miniversal deformation of it is

(µ1, µ2, µ3) 7→
[
F (µ1, µ2, µ3) G(µ1, µ2, µ3)

]

F (µ1, µ2, µ3) =



a 1 µ2 0 . . . 0 0
µ1 a µ3 0 . . . 0 0
0 0 0 1 . . . 0 0

0 0 0 0
. . . 0 0

. . .

0 0 0 0 . . . 0 1
0 0 0 0 . . . 0 0


, G(µ1, µ2, µ3) =



0
0
0
0

0
1


When a < 0 then the singularity can be stabilized by a linear feedback

and the versal deformation can versally stabilized by

((x, u), 0, [K0, K1])

where K0 = 0, A1 + B1K1 is Hurwitz. But if an a > 0 then the singularity
is not stabilizable.
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7.6 Multiple Distinct Roots Control Singularity

The setMDR of multiple distinct roots control singularities is a generaliztion
of T RR and T CR. It is charatcterized bym = 1, 1 ≤ r0 ≤ n, r = r1 = n−r0
and A0 in Jordan form with distinct real and/or complex roots. If a root is
real it must be nonzero, if it is complex then it must have nonzero real and
imaginary parts. Its codimension is r0, the number of linearly uncontrollable
modes.

The linear mapping (5.4) is of rank r2
0 − r0 so there are r0 linearly inde-

pendent n× (n+ 1) matrices transverse to the orbit of A,B under the linear
feedback group. But perturbations in these directions can be achieved by
varying the r0 eigenvalues of A0 so they don’t affect the codimension.

The range of the linear mapping (5.5) is of codimension r0 so from (5.8)
we obtain r0 linearly independent n × (n + 1) matrices transverse to the
orbit of A,B under the linear feedback group. Therefore MDR is a control
singularity of codimension r0 and a miniversal deformation is of the form

µ 7→
[
F (µ) G(µ)

]
=

[
A0 F01(µ) 0
0 A1 B1

]

where

F01(µ) =


µ1 0 . . . 0
µ2 0 . . . 0
...

...
...

µr0 0 . . . 0

 .

WhenA0 is Hurwitz then the singularity can be stabilized by a linear feedback
and the versal deformation can versally stabilized by

((x, u), 0, [K0, K1])

where K0 = 0, A1+B1K1 is Hurwitz. But if an A0 has an unstable eigenvalue
then the singularity is not stabilizable.

7.7 Multiple Repeated Roots Control Singularity

The set MRR of multiple repeated roots control singularities is a general-
iztion of DR. It is charatcterized by m = 1, 1 ≤ r0 ≤ n, r = r1 = n − r0
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and A0 consists of a single Jordan block (4.8) of size r0 × r0 with the real
eigenvalue a 6= 0 repeated r0 times. Its codimension is 2r0 − 1.

The range of the map (5.4) has codimension r0 which we now show. Let
T00 = S and ()ij denote the i, j component of the enclosed matrix, then

(A0S − SA0)ij = Si+1,j − Si,j−1

under the convention

Si,j = 0, if either i < 1 or i > r0,

Si,j = 0, if either i, j < 1 or i, j > r0.

We shall consider A0S − SA0 by diagonals. Let l = j − i index the
diagonals. First we consider the main and lower diagonals where 1 − r0 ≤
l ≤ 0. If 1 ≤ s ≤ r0 + l − 1 then

(A0S − SA0)s−l,s = Ss−l+1,s −
s−1∑
j=1

(A0S − SA0)j−l,j .

Going down the main and lower diagonals, (A0S − SA0)s−l,s can be set ar-
bitrarily by choice of Ss−l+1,s until we get to the last row. The entries in the
last row are then determined by

(A0S − SA0)r0,r0+l =
r0+l−1∑

j=1

(A0S − SA0)j−l,j .

Next we consider the upper diagonals where 1 ≤ l ≤ r0 − 1. If 1 ≤ s ≤
r0 − l then

(A0S − SA0)s,l+s = Ss+1,l+s − S1,l −
s−1∑
i=1

(A0S − SA0)i,l+i .

Going down the upper diagonals, (A0S − SA0)s,l+s can be set arbitrarily by
choice Ss+1,l+s.

So the range of the map (5.4) has codimension r0 and a set of r0 × r0
marices transverse to the range

F00 =


0
...
0
ei

′

 , i = 1, . . . , r0
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where ei is the ith unit column vector in IRr0 . One of these transverse direc-
tions can be achieved by varying a.

The range of the map (5.5) has codimesion r0. Therefore MRR is a
control singularity of codimension 2r0− 1 and a miniversal deformation is of
the form

µ 7→
[
F (µ) G(µ)

]
=

[
F00(µ) F01(µ) 0

0 A1 B1

]

where µ = (µ1, . . . , µ2r0−1) and

F00(µ) =



a 1 0 . . . 0 0
0 a 1 . . . 0 0

. . . . . .
. . . . . .

0 0 0 . . . a 1
µ1 µ2 µ3 . . . µr0−1 a



F01(µ) =


µr0 0 . . . 0
µr0+1 0 . . . 0

...
...

...
µ2r0−1 0 . . . 0


.

When a < 0 then the singularity can be stabilized by a linear feedback
and the versal deformation can versally stabilized by

((x, u), 0, [K0, K1])

where K0 = 0, A1 + B1K1 is Hurwitz. But if an a > 0 then the singularity
is not stabilizable.

8 Low Codimension Linear Control Singular-

ities of Multiple Input Sytems

In this section we present the classes of control singularities of codimensions
one and two for systems with more than one input
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8.1 Exchange of Control Singularity

The generic equilibrium 1-jet of a system with n states and m ≥ 2 inputs
has the smallest admissible extended controllability indices (s0, s1, . . . , sm) =
(0, l+1, . . . , l) where l is the greatest integer not exceeding n/m the number of
l+1 indices is such that s1+ · · ·+sm = n. The next smallest admissible tuple
of extended controllability indices is (r0, r1, . . . , rm) = (0, s1 + 1, . . . , sm− 1).
In other words the first input has one more state to control and the last
input has one less. We are assuming that sm > 0, if not then the last input
with nonzero index has one less state to control. The class C(r0, r1, . . . , rm) is
singular and of codimension one. We give a versal deformation when m = 2
and n = 4 so (r0, r1, r2) = (0, 3, 1).

F (µ) =


0 1 0 µ
0 0 1 0
0 0 0 0
0 0 0 0

 , G(µ) =


0 0
0 0
1 0
0 1


If µ 6= 0 the perturbation has the generic extended controllability indices

(s0, s1, s2) = (0, 2, 2).

8.2 Double Exchange of Control Singularity

This takes three different forms depending on wheteher m = 2, m = 3 or
m ≥ 4. If m = 2 the next smallest tuple of admissible extended controllabilty
indices after the exchange of control singularity is (r0, r1, r2) = (0, s1 +2, s2−
2). The class C(r0, r1, r2) is singular and of codimension two. We give a
versal deformation when n = 6 so (r0, r1, r2) = (0, 5, 1).

F (µ1, µ2) =



0 1 0 0 0 µ1

0 0 1 0 0 µ2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0


, G(µ) =



0 0
0 0
0 0
0 0
1 0
0 1


If µ2 6= 0 the perturbation has the generic extended controllability indices

(s0, s1, s2) = (0, 3, 3). If µ2 = 0 but µ1 6= 0 the perturbation has the extended
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controllability indices of an exchange of control singularity (s0, s1+1, s2−1) =
(0, 4, 2).

If m = 3 the next smallest tuple of admissible extended controllabilty
indices after the exchange of control singularity is (r0, r1, r2, r3) = (0, s1 +
2, s2 + 1, s3 − 2). The class C(r0, r1, r2) is singular and of codimension two.
We give a versal deformation when n = 6 so (r0, r1, r2, r3) = (0, 3, 3, 0).

F (µ1, µ2) =



0 1 0 µ1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


, G(µ1, µ2) =



0 0 0
0 0 0
1 0 0
0 0 µ2

0 0 0
0 1 0


If µ1µ2 6= 0 the perturbation has the generic extended controllability

indices (s0, s1, s2, s3) = (0, 2, 2, 2). If µ1 = 0 but µ2 6= 0 the perturbation
has the extended controllability indices of an exchange of control singularity
(s0 + 1, s1, s2, s3 − 1) = (0, 3, 2, 1).

If m ≥ 4 the next smallest tuple of admissible extended controllabilty in-
dices after the exchange of control singularity is (r0, r1, r2, r3, . . . , rm−2, rm−1, rm) =
(0, s1+1, s2+1, s3, . . . , sm−2, sm−1−1, rm−1). The class C(r0, r1, r2, r3, . . . , rm−2, rm−1, rm)
is singular and of codimension two. We give a versal deformation when n = 8
and m = 4 so (r0, r1, r2, r3, r4) = (0, 3, 3, 1, 1).

F (µ1, µ2) =



0 1 0 0 0 0 µ1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 µ2

0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,
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G(µ1, µ2) =



0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


If µ1µ2 6= 0 the perturbation has the generic extended controllability in-

dices (s0, s1, s2, s3, s4) = (0, 2, 2, 2, 2). If µ1 6= 0 but µ2 = 0 the perturbation
has the extended controllability indices of an exchange of control singularity
(0, s1 + 1, s2, s3, s4 − 1) = (0, 3, 2, 2, 1). If µ2 6= 0 but µ1 = 0 the perturba-
tion has the same extended controllability indices (0, s1 + 1, s2, s3, s4 − 1) =
(0, 3, 2, 2, 1).

8.3 Multiple Fold Control Singularity

This singularity occurs when there are n states, m inputs and one uncon-
trollable mode r0. The controllability indices (r1, r2, . . . , rm) are generic,
A0 = a 6= 0 and A1, B1 is in Brunovsky form for a system with m inputs.
When r1 = r2 = . . . = rm then this singularity is of codimension one. Here
is a versal deformation when m = 2 and (r0, r1, r2) = (1, 2, 2).

F (µ) =


a µ 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 , G(µ) =


0 0
1 0
0 0
0 1

 .

If µ 6= 0 then the extended controllability indices are (0, 3, 2)
When r1 = r2 + 1 then this singularity is of codimension two. Here is a

versal deformation when (r0, r1, r2) = (1, 2, 1).

F (µ) =


a µ1 0 µ2

0 0 1 0
0 0 0 0
0 0 0 0

 , G(µ) =

 0 0
1 0
0 1


If µ2 6= 0 then the extended controllability indices are (0, 2, 2). If µ2 = 0 but
µ1 6= 0 then the extended controllability indices are (0, 3, 1).
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9 Control Bifurcations

In this section we discuss the relationship of control singularities to control
bifurcations [2]. Recall that the equilibrium set Z of a system (1.1) is the
set of all (x0, u0) such that

0 = f(x0, u0). (9.1)

Since the equilibrium condition (9.1) consists of n smooth equations in n+m
unknowns, we expect Z to be m dimensional smooth surface in X ×U . But
this surface may have singularities. Additionally there may be equilibria in Z
that are more difficult to stabilize than some of their neighboring equilibria.
Frequently both happen on the same subset of equilibria. These equilibria
that are relatively more difficult to stabilize are called control bifurctaions.
The k-jet of the equilibrium can determine the type of control bifurcation.

The equilibrium set Z determines a subset ZE ⊂ Ek consisting of the
k-jets of all (x0, u0) ∈ Z. We shall see that control bifurcations can occur
when ZE intersects one of the singular classes discussed above.
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