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Abstract

In this paper we derive the controlled center dynamics
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crete time systems with fold and period-doubling con-
trol bifurcations.
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1 Introduction

Center manifold theory plays an important role in the
study of the stability of nonlinear systems when the
equilibrium point is not hyperbolic. The center man-
ifold is an invariant manifold of the differential (dif-
ference) equation which is tangent at the equilibrium
point to the eigenspace of the neutrally stable eigen-
values. In practice, one does not compute the center
manifold and its dynamics exactly, since this requires
the resolution of a quasilinear partial differential (non-
linear functional) equation which is not easily solvable.
In most cases of interest, an approximation of degree
two or three of the solution is sufficient. Then, we de-
termine the reduced dynamics on the center manifold,
study its stability and then conclude about the stabil-
ity of the original system [5]. This theory combined
with the normal form approach of Poincaré was used
extensively to study parameterized dynamical systems
exhibiting bifurcations [20].

For nonlinear systems with control bifurcations (see
[16]) a similar approach was used for the analysis and
stabilization of systems with one or two uncontrollable
modes in continuous and discrete-time [13, 16, 7, 10,
8, 17, 9]. This approach was generalized to systems
with any number of uncontrollable modes by introduc-
ing the Controlled Center Dynamics in continuous time
[11], and in discrete time [12]. The Controlled Cen-
ter Dynamics is a reduced order control system whose
stabilizability properties determine the stabilizability
properties of the full order system. The approach based
on the controlled center dynamics can also be viewed
as a reduction technique for some classes of controlled
differential (difference) equations. After reducing the
order of these equations, the synthesis of a stabilizing
controller is performed based on the reduced order con-
trol system.

In this paper, we continue the study in [12] by deriving
the controlled center dynamics and stabilizing discrete
time systems with a fold control bifurcation, i.e. sys-
tems with an uncontrollable mode whose modulus is
slightly greater than one, and systems with a period
doubling control bifurcation. We shall, also, introduce
the discrete-time version of the bird foot bifurcation
introduced in [15].

The paper is organized as follows: In section §2, we
review the results on the controlled center dynamics, in
sections §3 we apply this technique to stabilize systems
with a fold and a period doubling control bifurcations.
We shall treat the bird foot bifurcation for maps in the
appendix.

p. 1



2 Review of The Controlled Center Dynamics

Consider the following nonlinear system

ζ+ = f(ζ, v) (2.1)

the variable ζ ∈ IRn is the state, v ∈ IR is the input
variable. The vectorfield f(ζ) is assumed to be Ck for
some sufficiently large k.

Assume f(0, 0) = 0, and suppose that the linearization
of the system at the origin is (A,B),

A =
∂f

∂ ζ
(0, 0), B =

∂f

∂ v
(0, 0),

with

rank([B AB A2B · · · An−1B]) = n− r, (2.2)

and r > 0. Let us denote by ΣD the system (2.1) under
the above assumptions.

The system ΣD is not linearly controllable at the ori-
gin, and a change of some control properties may occur
around this equilibrium point, this is called a control
bifurcation if it is linearly controllable at other equilib-
ria [16].

From linear control theory, we know that there exist
a linear change of coordinates and a linear feedback
transforming the system ΣD to

x+
1 = A1x1 + f̄1(x1, x2, u),

x+
2 = A2x2 + B2u + f̄2(x1, x2, u),

(2.3)

with x1 ∈ IRr, x2 ∈ IRn−r, u ∈ IR, A1 ∈ IRr×r is in the
Jordan form and its eigenvalues are on the imaginary
axis, A2 ∈ IR(n−r)×(n−r), B2 ∈ IR(n−r)×1 are in the
Brunovskỳ form, i.e.

A2 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 , B2 =


0
0
...
0
1

 ,

and f̄k(x1, x2, u), for k = 1, 2, designates a vector field
which is a homogeneous polynomial of degree d ≥ 2.

Now, consider the feedback given by

u(x1, x2) = κ(x1) + K2x2, (2.4)

with κ a smooth function and K2 =[
k2,1 · · · k2,n−r

]
.

Because (A2, B2) is controllable, the eigenvalues in
the closed-loop system associated with the equation
of x2 can be placed at arbitrary given points in the

complex plane by selecting values for K2. If one of
these controllable eigenvalues is placed outside the
unit disk, the closed-loop system is unstable around
the origin. Therefore, we assume that K2 has the
following property.

Property P : The modulus of the eigenvalues
of the matrix Ā2 = A2 + B2K2 is less or equal than
one.

Let us denote by F the feedback (2.4) with the
property P.

The closed loop system (2.3)-(2.4) possesses r eigen-
values on the unit circle, and n− r eigenvalues strictly
inside the unit disk. Thus, a center manifold exists. It
is represented locally around the origin as

W c = {(x1, x2) ∈ IRr×IRn−r|x2 = π(x1), |x1| < δ, π(0) = 0}.

This means that π and κ satisfy the nonlinear func-
tional equation

Ā2π(x1) + B2κ(x1) + f̄2(x1, π(x1), κ(x1) + K2π(x1))
= π(A1x1 + f̄1(x1, π(x1), κ(x1) + K2π(x1)))

(2.5)
The center manifold theorem ensures that this equation
has a local solution for any smooth κ(x1). The reduced
dynamics of the closed loop system (2.3)-(2.4) on the
center manifold is given by

x+
1 = f1(x1;κ) (2.6)

where

f1(x1;κ) = A1x1 + f̄1(x1, π(x1), κ(x1) + K2π(x1))

According to the center manifold theorem, we know
that if the dynamics (2.6) is locally asymptotically sta-
ble then the closed loop system (2.3)-(2.4) is locally
asymptotically stable.

The part of the feedback F given by κ(x1) determines
the controlled center manifold x2 = π(x1) which in turn
determines the dynamics (2.6). Hence the problem of
stabilization of the system (2.3) reduces the problem
to stabilizing the system (2.6) after solving the equa-
tion (2.5), i.e. finding κ(x1) such that the origin of the
dynamics (2.6) is asymptotically stable. Thus we can
view κ(x1) as a pseudo control.
But the equation (2.5) need not be solved exactly, fre-
quently it suffices to compute the low degree terms of
the Taylor series expansion of π and κ around x1 = 0.
Because κ starts with linear terms

κ(x1) = K1x1 + κ[2](x1) + . . . (2.7)

π starts with linear terms

π(x1) = π[1]x1 + π[2](x1) + . . . (2.8)
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The equation (2.5) implies that

Ā2π
[1] + B2K1 = π[1]A1, (2.9)

and

Ā2π
[2](x1) + B2κ

[2](x1)
+f̄

[2]
2 (x1, π

[1]x1,K1x1 + K2π
[1]x1) =

π[2](A1x1) + π[1]f̄
[2]
1 (x1, π

[1]x1,K1x1 + K2π
[1]x1),

(2.10)
and so on.
For any κ[k](x1), these linear equations are solvable for
π[k](x1) because |σ(Ā2)| < 1 = |σ(A1)|.
The degree k equations are

Ā2π
[k](x1) + B2κ

[k](x1) + f̃
[k]
2 (x1)

= π[1]f̃
[k]
1 (x1) + ζ [k](x1) + π[k](A1x1)

(2.11)

where f̃i(x1) = f̄i(x1, π(x1), κ(x1) + K2π(x1)), and

ζ(x1) =
k−1∑
i=2

π[i](A1x1 + f̃1(x1)).

Notice that f̃
[j]
i (x1) only depends on π[1](x1), . . . ,

π[j−1](x1) and κ[1](x1), . . . , κ[j−1](x1).

For 1 ≤ i ≤ n− r− 1, the ith row of these equations is

π
[k]
i+1(x1) = π

[k]
i (A1x1) + ζ

[k]
i (x1)− f̃

[k]
2,i (x1)

+
r∑

j=1

π
[1]
i,j(x1)f̃

[k]
1,j(x1).

(2.12)
The (n− r)th row is

κ[k](x1) = π
[k]
n−r(A1x1) + ζ

[k]
n−r(x1)− f̃

[k]
2,n−r(x1)

+
r∑

j=1

π
[1]
n−r,j(x1)f̃

[k]
1,j(x1)−

n−r∑
i=1

k2,iπ
[k]
i (x1)

(2.13)
Notice that π

[k]
1 (x1) determines π

[k]
2 (x1), . . . , π

[k]
r (x1),

κ[k](x1). Therefore we may change our point of
view. Instead of viewing κ[k](x1) as determining
π

[k]
1 (x1), . . . , π

[k]
r (x1), we can view π

[k]
1 (x1) as determin-

ing π
[k]
2 (x1), . . . , π

[k]
r (x1), κ[k](x1).

In other words, instead of viewing the feedback as de-
termining the center manifold, we can view the first co-
ordinate function of the center manifold as determining
the other coordinate functions and the feedback.
Alternatively we can view π1 as a pseudo control and
write the dynamics as

x+
1 = A1x1 + f̄1(x1;π1). (2.14)

We shall call this dynamics the Controlled Center Dy-
namics.
Now let us write explicitly the solution of equations
(2.9) and (2.10).

2.1 Linear Center Manifold
Suppose the entries in K2 are K2,1,K2,2, · · · ,K2,n−r.
Then the characteristic polynomial, p(λ), of the matrix
A2 + B2K2 is defined by

p(λ) = det
(
λI(n−r)×(n−r) −A2 −B2K2

)
= λn−r −K2,n−rλ

n−r−1 − · · · ,K2,2λ−K2,1

(2.15)
The linear part of the feedback (2.4) is given by

u(x1, x2) = K1x1 + K2x2 + O(x1, x2)2. (2.16)

Theorem 2.1 ([12]) Given the feedback F , the center
manifold (2.8) is given by

x2 = π[1]x1 + O(x2
1)

with the components of π[1] uniquely determined by

π
[1]
1 = K1p(A1)−1

π
[1]
i = π

[1]
1 Ai−1

1 , for i = 2, · · · , n− r
(2.17)

where π
[1]
i is the ith row vector in π[1].

The matrix p(A1) is always invertible as discussed in
[12].

Now, consider the following change of coordinates

x̃2,i = x2,i − π
[1]
1 Ai−1

1 x1, i = 1, · · · , n− r (2.18)

then,

x̃+
i = x̃i+1, i = 1, · · · , n− r

x̃+
n−r =

n−r∑
i=1

k2,ix̃i

Hence the coefficient K1 has been removed from the
x2−part of the dynamics (2.3)-(2.16) by a change of
coordinates. With K1 = 0, we deduce from (2.17) that
π[1] = 0. So, the linear terms of the center manifold
have been removed.

Proposition 2.1 Given any feedback (2.16) satisfying
Property P, and the change of coordinates (2.18), then
the center manifold is given by

x̃2 = O(x2
1) (2.19)

2.2 Quadratic Center Manifold
In the next, we derive the quadratic center manifold.
Under a linear change of coordinates (2.18), the system
is transformed into

x+
1 = A1x1 + f

[2]
1 (x1, z2 + π[1]x1, κ

[2](x1)) + O(·)3
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x̃+
2 = A2(x̃2 + π[1]x1)− π[1]A1x1

+B2(K1x1 + K2x̃2 + K2π
[1]x1 + κ[2](x1))

+f
[2]
2 (x1, x̃2 + π[1]x1, u(x1, x̃2 + π[1]x1))

−π[1]f
[2]
1 (x1, x̃2 + π[1]x1, u(x1, x̃2 + π[1]x1))

+O(x1, x̃2, u)3

in which u is the feedback defined by (2.4). Define a
quadratic vector field f̄

[2]
2 (x1, x̃2) by

f̄
[2]
2 (x1, x̃2) =

f
[2]
2 (x1, x̃2 + π[1]x1,K1x1 + K2x̃2 + K2π

[1]x1)

−π[1]f
[2]
1 (x1, x̃2 + π[1]x1,K1x1 + K2x̃2 + K2π

[1]x1)

(2.20)

Then from (2.18) and (2.20), the equation (2.3) is
equivalent to

x+
1 = A1x1 + f

[2]
1 (x1, x̃2 + π[1]x1, u(x1, x̃2 + π[1]x1))

+O(x1, x̃2)3

x̃+
2 = A2x̃2 + B2(K2z2 + α[2](x1, x̃2 + π[1]x1))

+f̄
[2]
2 (x1, x̃2) + O(x1, x̃2)3

(2.21)

In the (x1, x̃2) coordinates, the center manifold has the
form (2.19). It satisfies the center manifold equation

Ā2π
[2](x1) + B2κ

[2](x1) + f̄
[2]
2 (x1, 0) = π[2](A1x1)

Let us adopt the following matrix notations,

π
[2]
i (x1) = xT

1 Qix1

f̄
[2]
2,i(x1, 0) = xT

1 Rix1

κ(x1) = xT
1 Lx1

(2.22)

where Qi, R and L are symmetric r × r matrices. Let
S be the operator defined by

SA1(Q) = AT
1 QA1 (2.23)

for all symmetric r × r matrices Q.

Theorem 2.2 ([12]) If

x2 = π[1](x1) + π[2](x1) + O(x1)3

is the center manifold of (2.3), then π[2](x1) is uniquely
determined by the following equations:

π
[2]
i (x1) = xT

1 Qix1, for i = 1, 2, · · · , n− r

where

Q1 = p(SA1)
−1

L + Rn−r +
n−r∑
i=2

i−2∑
j=0

K2,iSj
A1

(Ri−j−1)


and

Qi = Si−1
A1

(Q1)−
i−2∑
j=0

Sj
A1

(Ri−j−1)

in which SA1 is the operator defined by (2.23); Ri is
from the quadratic dynamics and it is defined by (2.22)
and (2.20); L is from the quadratic feedback and it is
defined by (2.22).

We can also show that the operator p(SA1) is always
invertible [12].

There are some special cases in which the center man-
ifold is simpler. For instance, if (2.21) is in quadratic
normal form (see [17]), then f̄

[2]
2 is independent of x1.

In this case, f̄
[2]
2 (x1, 0) = 0. Therefore, Ri = 0. Under

the feedback

u = K2x2 + xT
1 Qfbx1

the center manifold of (2.21) is

x2 = π[2](x1)

where π
[2]
i (x1) = xT

1 Qix1, Q1 = p(SA1)
−1(Qfb), and

Qi = Si−1
A1

(Q1).

3 Stabilization of Systems with a Fold or
Period Doubling Control Bifurcation

In this section we use the precedent results to stabilize
systems with a fold or period doubling control bifur-
cation i.e. those where the system has a single uncon-
trollable mode, λ ∈ IR, such that, |λ| > 1 or λ = −1,
respectively.

When there is only one uncontrollable mode λ /∈ {0, 1}
in (2.3), we know, from [6, 17], that there exists a cubic
change of coordinates and feedback bringing the system
to its cubic normal form

z+
1 = λz1 + γz1z21 +

r+1∑
i=1

δiz
2
2i + γ̄z2

1z21 +
r+1∑
i=1

δ̄iz1z
2
2i

+
r+1∑
i=1

r+1∑
j=i

ε̄ijz21z2jz2i + O(z1, z2, v)4,

z+
2 = A2z2 + B2v + O(z1, z2, v)2,

(3.24)
with z2,r+1 = v. We know also that this system ex-
hibits a control bifurcation provided the transversality
condition δ̃ =

∑r+1
i=1 (1 + λi−1)δi 6= 0 is satisfied [17].

Let δ̂ =
∑r+1

i=1 δi.
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Suppose that we use the piecewize linear feedback

v = K1z1 + K2z2, (3.25)

with K1 =
{

k̄1, z ≥ 0
k̃1, z < 0

.

Theorem 3.1 Consider the system (3.24). If γδ̃δ̂ 6= 0,
then the feedback (3.25) practically stabilizes the system
(3.24) around the origin when λ > 1 or λ < −1. The
feedback asymptotically stabilizes the system around the
origin when λ = −1.

Proof: Let us write λ as λ = (1 + ε)sign(λ), with
ε is a slightly positive number. If we consider ε as an
extra state whose equation is ε+ = ε, the term εz1 will
be considered of order two. Then, the linear part of
the closed loop system (3.24)-(3.25) has the form

ε+ = ε,
z+
1 = sign(λ)z1 + O(z1, z2, ε)2,

z+
2 = Ā2z2 + O(z1, z2)2.

(3.26)

Hence, for the closed loop system (3.24)-(3.25), a center
manifold exists. It is defined by z2 = π(ε, z1). Since
there is no linear term in ε in the z1−subdynamics of
the system (3.26), the linear part of the center manifold
can be written as

z2 = π[1]z1.

¿From (2.17), the components of π[1] are given by

π
[1]
i = π

[1]
1 , i = 2, . . . , r,

K1 = p(sign(λ))π[1]
1 ,

(3.27)

since A1 =
[

1 0
0 sign(λ)

]
for the dynamics in the

(ε, z1, z2) space. Thus, the controlled center dynam-
ics is

z+
1 =

{
λz1 + Φ(π̄[1]

1 )z2
1 + O(z1)3, z1 ≥ 0,

λz1 + Φ(π̃[1]
1 )z2

1 + O(z1)3, z1 < 0.

with Φ(X) = X(γ + δ̂X), π
[1]
1 = k̄1

p(sign(λ))
, and π̃

[1]
1 =

k̃1
p(sign(λ))

.

Since γ 6= 0 and δ̂ 6= 0, there are two distinct solutions
for the equation Φ(π[1]

1 ) = 0, hence Φ(π[1]
1 ) changes its

sign. So we can choose π
[1]
1 and π̃

[1]
1 such that Φ(π[1]

1 ) =
−Φ(π̃[1]

1 ) = −Φ0, with Φ0 > 0 if λ > 1, and Φ0 < 0 if
λ < 1. In this case, the controlled center dynamics will
have the form

z+
1 = λz1 − Φ0|z1|z1 + O(z1)3, (3.28)

which is the normal form of the supercritical bird foot
bifurcation for maps, as discussed in the appendix.

For λ such that λ /∈ {0, 1}, we have three equilibrium
points: the origin and z̄∗ = λ−1

Φ0
, z̄∗∗ = −λ−1

Φ0
= −z̄∗.

The origin is unstable for λ > 1 or λ < −1, and the
two other equilibrium points are stable. Thus, the so-
lution converges to z̄∗ or z̄∗∗. Hence, by making z̄∗

sufficiently close to the origin, i.e. by choosing Φ0 suf-
ficiently large, we shall have practical stability for the
origin of the controlled center dynamics. We can show
that this implies practical stability of the origin of the
system (3.24).

When λ = −1, the controlled center dynamics (3.28)
reduces to

z+
1 = −z1 − Φ0|z1|z1 + O(z1)3.

If we use the Lyapunov function V (z1) = z2
1 , then

∆V = V (z+)− V (z) = 2Φ0|z1|z2
1 + O(z3

1).

Hence choosing Φ0 < 0, permits to ensure that the
origin is asymptotically stable.

Now let us consider the quadratic feedback

v = K1z1 + K2z2 + κ[2](z1) (3.29)

instead of the feedback (3.25). The coefficient K2 is
such that |σ(A + B2K2)| < 1.

Theorem 3.2 Consider the system (3.24). If γδ̃ 6= 0,
then the feedback (3.29) with K1 = 0 practically stabi-
lizes the system (3.24) around the origin when λ > 1 or
λ < −1. It asymptotically stabilizes the system around
the origin when λ = −1.

Proof: Adopting the same approach as prece-
dently we show the existence of a center manifold in
the (ε, z1) plane. The feedback (3.29) shapes the linear
and quadratic parts of the center manifold

z2 = π[1]z1 + π[2](z1)

which in turn shape the quadratic and cubic parts of
the controlled center dynamics given by

z+
1 = λz1 + Φ(π[1]

1 )z2
1 + O(z3

1).

Since the equation Φ(X) = 0 admits zero as a solution,
we can choose the solution π

[1]
1 = 0, which gives K1 = 0

from (3.27). Then, by choosing π
[2]
1 (z1) = cz2

1 arbitrar-
ily, we deduce that the controlled center dynamics is
given by

z+
1 = λz1 + γcz3

1 + O(z1)4. (3.30)
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Since |λ| > 1, the origin is unstable. If we choose c such
that (1 − λ)γc > 0, the two equilibrium points ẑ∗ =√

1−λ
γc and ẑ∗∗ = −

√
1−λ
γc are stable. The controlled

center dynamics (3.30) has the form of a system with
a supercritical pitchfork bifurcation. Since the solution
converges to one of the equilibrium points ẑ∗ or ẑ∗∗, the
origin of the controlled center dynamics can be made
practically stable by having the equilibrium points ẑ∗

and ẑ∗∗ sufficiently close to the origin. We can show
that this implies practical stability of the origin of the
system (3.24).

When λ = −1, the controlled center dynamics (3.30)
reduces to

z+
1 = −z1 + γcz3

1 + O(z4
1).

We see that choosing c such that γc > 0 permits to
ensure that the origin is asymptotically stable.

The piecewize linear feedback (3.25) is more robust
than the quadratic feedback (3.29). Indeed, using the
quadratic feedback (3.29) requires having the exact
solutions of the equation Φ(π[1]

1 ) = 0. If there ex-
ists a small uncertainty on the invariants γ and δi

(with i = 1, · · · , r + 1), the quadratic terms gener-
ated by the uncertainty in the controlled center dy-
namics (3.30) will be a source of instability of the
system. Using the piecewize linear feedback (3.25)
does not necessitate the exact solutions of the equa-
tion Φ(π[1]

1 ) = 0, as we just have to find π
[1]
1 and π̃

[1]
1

such that Φ(π[1]
1 )Φ(π̃[1]

1 ) < 0. Thus the piecewize linear
feedback is more robust.

4 Appendix: The Birdfoot Bifurcation for
Maps

In this section we introduce the discrete-time version
of the “bird foot bifurcation” (see [15] for a treatment
of the continuous-time case).
Consider a dynamical system

x+ = µx− Φ0x|x|+ O(x3), (4.31)

with x ∈ IR, µ ∈ IR a parameter, and Φ0 ∈ IR \ {0}
a constant. The fixed points of the system are the
solutions of the equation

((1− µ) + Φ0|x|)x = 0.

Provided (µ − 1)Φ0 > 0, the dynamical system has
three fixed points: the origin, x∗ = µ−1

Φ0
, and x∗∗ =

−µ−1
Φ0

= −x∗. If µ = 1, the dynamical system has the
origin as the only fixed point.

Let us consider the Lyapunov function V (x) = x2, then

∆V = V (x+)−V (x) = (µ2−1)x2−2Φ0µ|x|x2+O(x4).

If |µ| < 1, then ∆V < 0 and the origin is an asymptoti-
cally stable equilibrium point. If |µ| > 1, then ∆V > 0
and the origin is an unstable equilibrium point.
When Φ0 > 0 (resp. Φ0 < 0), the equilibrium points
x∗ and x∗∗ appear when µ > 1 (resp. µ < 1). They are
unstable when the origin is asymptotically stable, and
are asymptotically stable when the origin is unstable.
As for the pitchfork bifurcation, we have an exchange
of the stability properties, at µ = 1, between the origin
and the two equilibrium points x∗ and x∗∗.
If µ = 1, the origin is the only equilibrium point. It is
asymptotically stable when Φ0 > 0, and unstable when
Φ0 < 0. If µ = −1, the origin is asymptotically stable
when Φ0 < 0, and unstable when Φ0 > 0.

When Φ0 > 0, we shall call the bifurcation a supercrit-
ical bird foot bifurcation. When Φ0 < 0, we shall call
the bifurcation subcritical bird foot bifurcation.

References
[1] Abed, E. H. and J.-H. Fu (1986). Local Feedback
stabilization and bifurcation control, part I. Hopf Bi-
furcation. Systems and Control Letters, 7, 11-17.

[2] Abed, E. H. and J.-H. Fu (1987). Local Feedback
stabilization and bifurcation control, part II. Station-
ary Bifurcation. Systems and Control Letters, 8, 467-
473.

[3] Abed, E.H., Wang, H.O. and R.C. Chen (1992).
Stabilization of period doubling bifurcation and impli-
cations for control of chaos, Proc. of the 31st IEEE
Conference on Decision and Control, 2119 -2124.

[4] Aeyels, D. (1985). Stabilization of a class of non-
linear systems by a smooth feedback control. Systems
and Control Letters, 5, 289-294.

[5] Carr, J. (1981). Application of Centre Manifold
Theory. Springer.

[6] Hamzi, B., J.-P. Barbot and W. Kang (1998).
Bifurcation and Topology of Equilibrium Sets for Non-
linear Discrete-Time Control Systems, Proc. of the
Nonlinear Control Systems Design Symposium (NOL-
COS’98), pp. 35-38.

[7] Hamzi, B., (2001). Analyse et commande des
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