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Abstract

In this paper, we introduce the Controlled center dynamics for nonlinear discrete time systems with uncontrollable linearization. This is
a reduced order control system whose dimension is the number of uncontrollable modes and whose stabilizability properties determine the
stabilizability properties of the full order system. After reducing the order of the system, the synthesis of a stabilizing controller is performed
based on the reduced order control system. By changing the feedback, the stability properties of the controlled center dynamics will change, and
thus the stability properties of the full order system will change too. Thus, choosing a feedback that stabilizes the controlled center dynamics
allows stabilizing the full order system. This approach is a reduction technique for some classes of controlled differential equations.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Center manifold theory plays an important role in the study
of the stability of nonlinear systems when the equilibrium point
is not hyperbolic. The center manifold is an invariant mani-
fold of the differential (difference) equation which is tangent at
the equilibrium point to the eigenspace of the neutrally stable
eigenvalues. In practice, one does not compute the center man-
ifold and its dynamics exactly, since this requires the resolution
of a quasilinear partial differential (nonlinear functional) equa-
tion which is not easily solvable. In most cases of interest, an
approximation of degree two or three of the solution is suffi-
cient. Then, we determine the reduced dynamics on the center
manifold, study its stability and then conclude about the stabil-
ity of the original system [29,22,6,19]. This theory combined
with the normal form approach of Poincaré [30] was used ex-
tensively to study parameterized dynamical systems exhibiting
bifurcations (see [33] and references therein).

For continuous-time nonlinear systems with uncontrollable
linearization, a similar approach was used for the analysis
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and stabilization of systems with one or two uncontrollable
modes [4,1,2,5,8,21,13,17]. The procedure to stabilize these
systems is based on using a quadratic feedback where the lin-
ear part is used to asymptotically stabilize the linearly control-
lable part, and the quadratic part is used to change the stability
properties of the restriction of the original control system on
the center manifold. This approach was, then, generalized to
the general class of nonlinear systems with any number of un-
controllable modes in [14] by introducing the controlled center
dynamics. The controlled center dynamics is a reduced order
control system whose dimension is the number of uncontrol-
lable modes and whose stabilizability properties determine the
stabilizability properties of the full order system. After reducing
the order of the system, the synthesis of a stabilizing controller
is performed based on the reduced order control system. By
changing the feedback, the stability properties of the controlled
center dynamics will change, and thus the stability properties
of the full order system will change too. Thus, choosing a feed-
back that stabilizes the controlled center dynamics allows sta-
bilizing the full order system. Thus, this approach can also be
viewed as a reduction technique for some classes of controlled
differential equations.

For discrete-time systems, a similar approach was used for
one real or complex uncontrollable mode in [10,11,26,12,18].
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The object of this paper is to generalize this methodology to
the case of discrete-time systems with any number of uncon-
trollable modes. We will focus on the case of unparameterized
systems, as the methodology generalizes easily to the case
of parameterized systems with any number of uncontrollable
modes by considering the parameters as an extra-state, i.e. sat-
isfying the equation �+ = �, where � denotes the parameter.
Let us also denote that when dealing with controlled dynamical
systems, it becomes difficult to parallel both the studies referred
either to differential or difference nonlinear equations even if
many analogies can be set. This is due to the fact that the study
of difference equations induces compositions of functions and
also because some phenomena appear only in discrete-time. For
example, the period-doubling bifurcation appears in monodi-
mensional systems only in discrete-time.

The paper is organized as follows: In Section 2, we define
the controlled center dynamics, and show how a feedback will
affect it, then, in Sections 3 and 4 we apply this technique to
stabilize systems with a transcontrollable bifurcation, fold, and
period-doubling control bifurcations. We shall treat the bird
foot bifurcation for maps in the appendix. Preliminary results
of this work have been published in [16,15].

2. The controlled center dynamics

Consider the following nonlinear system

�+ = f (�, v) (2.1)

the variable � ∈ Rn is the state, v ∈ R is the input variable,
and �+ = �(k + 1), for k ∈ N. The vectorfield f (�) is assumed
to be Ck for some sufficiently large k.

Assume f (0, 0) = 0, and suppose that the linearization of
the system at the origin is (A, B),

A = �f

��
(0, 0), B = �f

�v
(0, 0),

with

rank([B AB A2B · · · An−1B]) = n − r , (2.2)

and r > 0. Assume also that the system has n − r eigenval-
ues strictly inside the unit disk, and r eigenvalues on the unit
circle. Let us denote by �U the system (2.1) under the above
assumptions.

The system �U is not linearly controllable at the origin, and
a change of some control properties may occur around this
equilibrium point, this is called a control bifurcation if it is
linearly controllable at other equilibria [25].

From linear control theory, we know that there exist a linear
change of coordinates and a linear feedback transforming the
system �U to

x+
1 = A1x1 + f̄1(x1, x2, u),

x+
2 = A2x2 + B2u + f̄2(x1, x2, u), (2.3)

with x1 ∈ Rr , x2 ∈ Rn−r , u ∈ R, A1 ∈ Rr×r is in
the Jordan form and its eigenvalues are on the unit circle,

A2 ∈ R(n−r)×(n−r), B2 ∈ R(n−r)×1 are in the Brunovskỳ form,
i.e.

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and f̄k(x1, x2, u), for k = 1, 2, designates a vectorfield which
is a polynomial of degree greater or equal to two.

Now, consider the feedback given by

u(x1, x2) = �(x1) + K2x2, (2.4)

with � a smooth function and K2 = [k2,1 · · · k2,n−r ].
Because (A2, B2) is controllable, the eigenvalues in the

closed-loop system associated with the equation of x2 can be
placed at arbitrary points in the complex plane by selecting the
appropriate values for K2. If one of these controllable eigen-
values is placed outside the unit disk, the closed-loop system
is unstable around the origin. Therefore, we assume that K2
has the following property.

Property P. The eigenvalues of the matrix Ā2 = A2 + B2K2
are strictly inside the unit disk.

Let us denote by F the feedback (2.4) with the property P.
The closed loop system (2.3)–(2.4) given by

x+
1 = A1x1 + f̄1(x1, x2, �(x1) + K2x2),

x+
2 = A2x2 + B2(K2x2 + �(x1))

+ f̄2(x1, x2, �(x1) + K2x2) (2.5)

possesses r eigenvalues on the unit circle, and n−r eigenvalues
strictly inside the unit disk. Thus, a center manifold exists [33].
It is represented locally around the origin as

Wc = {(x1, x2) ∈ Rr × Rn−r | x2 = �(x1),

|x1| < �, �(0) = 0} (2.6)

for sufficiently small positive real number �. This means that
� and � satisfy the nonlinear functional equation [33]

Ā2�(x1) + B2�(x1) + f̄2(x1, �(x1), �(x1) + K2�(x1))

= �(A1x1 + f̄1(x1, �(x1), �(x1) + K2�(x1))). (2.7)

The center manifold theorem ensures that this equation has a
local solution for any smooth �(x1). The reduced dynamics of
the closed loop system (2.3)–(2.4) on the center manifold is
given by

x+
1 = f1(x1; �), (2.8)

where f1(x1; �)=A1x1 + f̄1(x1, �(x1), �(x1)+K2�(x1)). Ac-
cording to the center manifold theorem, we know that if the
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dynamics (2.8) is locally asymptotically stable then the closed
loop system (2.3)–(2.4) is locally asymptotically stable.

The part of the feedback F given by �(x1) determines the
controlled center manifold x2 =�(x1) which in turn determines
the dynamics (2.8). Hence the problem of stabilization of the
system (2.3) reduces the problem to stabilizing the system (2.8)
after solving Eq. (2.7), i.e. finding �(x1) such that the origin of
the dynamics (2.8) is asymptotically stable. Thus we can view
�(x1) as an input for the controlled dynamics (2.8).

But since solving Eq. (2.7) is difficult, usually we do not
need to solve it exactly, and frequently it suffices to compute
the low degree terms of the Taylor series expansion of � and �
around x1 = 0.

Because � starts with linear terms

�(x1) = K1x1 + �[2](x1) + · · · . (2.9)

� starts with linear terms

�(x1) = �[1]x1 + �[2](x1) + · · · . (2.10)

Eq. (2.7) implies that

Ā2�
[1] + B2K1 = �[1]A1, (2.11)

and

Ā2�
[2](x1) + B2�

[2](x1) + f̄
[2]
2 (x1, �

[1]x1, K1x1 + K2�
[1]x1)

= �[2](A1x1) + �[1]f̄ [2]
1 (x1, �

[1]x1, K1x1 + K2�
[1]x1),

(2.12)

and so on.
The degree k equations are

Ā2�
[k](x1) + B2�

[k](x1) + f̃
[k]
2 (x1)

= �[1]f̃ [k]
1 (x1) + �[k](x1) + �[k](A1x1), (2.13)

where f̃i (x1) = f̄i (x1, �(x1), �(x1) + K2�(x1)), and �(x1) =∑k−1
i=2 �[i](A1x1 + f̃1(x1)).

For any �[k](x1), these linear equations are solvable for
�[k](x1) because the eigenvalues of Ā2 do not coincide with
the eigenvalues of A1. Note that f̃

[j ]
i (x1) only depends on

�[1](x1), . . . , �[j−1](x1) and �[1](x1), . . . , �[j−1](x1).
For 1� i�n − r − 1, the ith row of these equations is

�[k]
i+1(x1) = �[k]

i (A1x1) + �[k]
i (x1) − f̃

[k]
2,i (x1)

+
r∑

j=1

�[1]
i,j (x1)f̃

[k]
1,j (x1). (2.14)

The (n − r)th row is

�[k](x1) = �[k]
n−r (A1x1) + �[k]

n−r (x1) − f̃
[k]
2,n−r (x1)

+
r∑

j=1

�[1]
n−r,j (x1)f̃

[k]
1,j (x1) −

n−r∑
i=1

k2,i�
[k]
i (x1).

(2.15)

Note that �[k]
1 (x1) determines �[k]

2 (x1), . . . , �
[k]
r (x1) and

�[k](x1). Therefore we may change our point of view. Instead
of viewing �[k](x1) as determining �[k]

1 (x1), . . . , �
[k]
r (x1), we

can view �[k]
1 (x1) as determining �[k]

2 (x1), . . . , �
[k]
r (x1) and

�[k](x1). In other words, instead of viewing the feedback as
determining the center manifold, we can view the first coordi-
nate function of the center manifold as determining the other
coordinate functions and the feedback. Alternatively we can
view �1 as a pseudo control and write the dynamics as

x+
1 = A1x1 + f̄1(x1; �1). (2.16)

Definition 2.1. The controlled center dynamics of the system
�U subject to the feedback F is the control system (2.16) given
by the reduction of the system (2.5) on the center manifold
(2.6) where the first component of the center manifold plays
the role of the input.

2.1. Linear center manifold

In this section, we give an explicit solution to Eq. (2.11)
defining the linear part of the center manifold. Suppose the
entries in K2 are k2,1, k2,2, . . . , k2,n−r . Then the characteristic
polynomial, p(�), of the matrix A2 + B2K2 is defined by

p(�) = det(�I(n−r)×(n−r) − A2 − B2K2)

= �n−r − k2,n−r�
n−r−1 − · · · , k2,2� − k2,1. (2.17)

The linear part of the feedback (2.4) is given by

u(x1, x2) = K1x1 + K2x2. (2.18)

From (2.10), the linear part of the center manifold is given by

�[1](x1) = �[1]x1

and (2.11) is equivalent to the following system of equations:

�[1]
2 = �[1]

1 A1,

�[1]
3 = �[1]

2 A1,

...

�[1]
n−r = �[1]

r−1A1

and

0 = �[1]
n−rA1 − K1 − k2,1�

[1]
1 − · · · − k2,n−r�

[1]
n−r ,

where �[1]
i is the ith row vector in �[1]. Therefore,

�[1]
2 = �[1]

1 A1,

�[1]
3 = �[1]

1 A2
1,

...

�[1]
n−r = �[1]

1 An−r−1
1
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and

0 = − K1 + �[1]
1 An−r

1 −
n−r∑
i=1

k2,i�
[1]
1 Ai−1

1

= − K1 + �[1]
1

(
An−r

1 −
n−r∑
i=1

k2,iA
i−1
1

)
.

The last equation has the form of the characteristic polynomial
defined by (2.17).

To summarize, the linear part of the center manifold is de-
fined by the following equations:

�[1]
1 = K1p(A1)

−1,

�[1]
i = �[1]

1 Ai−1
1 for i = 2, . . . , n − r . (2.19)

The matrix p(A1) is always invertible. Indeed, since the eigen-
values of p(A1) equal the values of p(�) evaluated at the eigen-
values of A1, and since Ā2 = A2 + B2K2 has all its eigenval-
ues strictly inside the unit disk, the roots of the characteristic
polynomial (2.17) are all strictly inside the unit disk. Since the
eigenvalues of A1 are all on the unit circle, and they are differ-
ent from the roots of p(�), we deduce that p(A1) has no zero
eigenvalue. Thus, the matrix p(A1) is invertible.

Theorem 2.1. Given the feedback F, the center manifold is
given by

x2 = �[1]x1 + O(x2
1 )

with the components of �[1] uniquely determined by (2.19).

Now, consider the following change of coordinates

x̃2,i = x2,i − �[1]
1 Ai−1

1 x1, i = 1, . . . , n − r − 1 (2.20)

then,

x̃+
2,i = x̃2,i+1 for i = 1, . . . , n − r ,

x̃+
2,n−r =

n−r∑
i=1

k2,i x̃2,i .

Hence the coefficient K1 has been removed from the x2-part
of the dynamics (2.3)–(2.18) by a change of coordinates. With
K1 = 0, we deduce from (2.19) that �[1] = 0. So, in the new
coordinates system, the linear terms of the center manifold are
null.

Proposition 2.1. Given any feedback (2.18) satisfying Prop-
erty P, and the change of coordinates (2.20), then the center
manifold is given by

x̃2 = O(x2
1 ). (2.21)

2.2. Quadratic approximation of the center manifold

In this section, we derive the quadratic approximation of the
center manifold. Under the linear change of coordinates (2.20),

the closed-loop system (2.5) is transformed into the following
system

x+
1 = A1x1 + f

[2]
1 (x1, x̃2 + �[1]x1, �

[2](x1)) + O(x1, x̃2)
3,

x̃+
2 = A2(x̃2 + �[1]x1) − �[1]A1x1

+ B2(K1x1 + K2x̃2 + K2�
[1]x1 + �[2](x1))

+ f
[2]
2 (x1, x̃2 + �[1]x1, u(x1, x̃2 + �[1]x1))

− �[1]f [2]
1 (x1, x̃2 + �[1]x1, u(x1, x̃2 + �[1]x1))

+ O(x1, x̃2)
3.

Define a quadratic vector field f̄
[2]
2 (x1, x̃2) by

f̄
[2]
2 (x1, x̃2) = f

[2]
2 (x1, x̃2 + �[1]x1, K1x1 + K2x̃2 + K2�

[1]x1)

− �[1]f [2]
1 (x1, x̃2 + �[1]x1, K1x1

+ K2x̃2 + K2�
[1]x1). (2.22)

Then from (2.20) and (2.22), Eq. (2.3) is equivalent to

x+
1 = A1x1 + f

[2]
1 (x1, x̃2 + �[1]x1, u(x1, x̃2 + �[1]x1))

+ O(x1, x̃2)
3,

x̃+
2 = A2x̃2 + B2(K2z2 + �[2](x1, x̃2 + �[1]x1))

+ f̄
[2]
2 (x1, x̃2) + O(x1, x̃2)

3. (2.23)

In the (x1, x̃2) coordinates, the center manifold has the form
(2.21). It satisfies the center manifold equation

Ā2�
[2](x1) + B2�

[2](x1) + f̄
[2]
2 (x1, 0) = �[2](A1x1).

This equation can be written as

�[2]
i+1(x1) = �[2]

i (A1x1) − f̄
[2]
2,i (x1, 0)

for i = 1, . . . , n − r − 1, (2.24)

n−r∑
i=1

k2,i�
[2]
i (x1) + �[2](x1) = �[2]

n−r (A1x1) − f̄2,n−r (x1, 0).

(2.25)

Solving these equations, we obtain

�[2]
i (x1) = �[2]

1 (Ai−1
1 x1)

−
i−1∑
j=1

f̄
[2]
2,j (A

i−j−1
1 x1, 0) for i = 2, . . . , n − r ,
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�[2]
1 (An−r

1 x1) −
n−r∑
i=1

k2,i�
[2]
1 (Ai−1

1 x1)

= �[2](x1) +
n−r∑
j=1

f̄
[2]
2,j (A

n−r−j

1 x1, 0)

−
n−r∑
i=2

i−1∑
j=1

k2,i f̄
[2]
2,j (A

i−j−1
1 x1, 0). (2.26)

If we adopt the matrix notation

�[2]
i (x1) = xT

1 Qix1,

f̄
[2]
2,i (x1, 0) = xT

1 Rix1,

�(x1) = xT
1 Lx1, (2.27)

where Qi , R and L are symmetric r×r matrices, and by defining
S as the operator given by

SA1(Q) = AT
1 QA1 (2.28)

for all symmetric r×r matrices Q. Then, we can write (2.26) as

Qi = Si−1
A1

(Q1) −
i−1∑
j=1

S
j

A1
(Ri−j−1)

for i = 2, . . . , n − r ,

p(SA1)Q1 = L +
n−r∑
j=1

S
n−r−j

A1
(Rj )

−
n−r∑
i=2

i−1∑
j=1

k2,iS
i−j−1

A1
(Rj ). (2.29)

To summarize, Eqs. (2.29) imply the following result on
quadratic center manifold.

Theorem 2.2. If

x2 = �[1]x1 + �[2](x1) + O(x1)
3

is the center manifold of (2.3), then �[2](x1) is uniquely deter-
mined by the following equations:

�[2]
i (x1) = xT

1 Qix1 for i = 1, 2, . . . , n − r

where

Q1 = p(SA1)
−1

⎛⎝L +
n−r∑
j=1

S
n−r−j

A1
(Rj )

−
n−r∑
i=2

i−1∑
j=1

k2,iS
i−j−1

A1
(Rj )

⎞⎠ ,

Qi = Si−1
A1

(Q1) −
i−1∑
j=1

S
j

A1
(Ri−j−1) for i = 2, . . . , n − r ,

in which SA1 is the operator defined by (2.28); Ri is from the
quadratic dynamics and it is defined by (2.27) and (2.22); L is
from the quadratic feedback and it is defined by (2.27); and p
is the characteristic polynomial of Ā2 given in (2.17).

Similar to the derivation of the linear part of the center mani-
fold, the operator p(SA1) is always invertible. The set of eigen-
values of the operator SA1 is {�i�j : for i, j = 1, . . . , r} with
��, �=1, . . . , r , being the eigenvalues of A1. Therefore, |�i |=1
implies that all the eigenvalues of SA1 have a modulus equal
to one. Since Ā2 has all its eigenvalues strictly inside the unit
disk, all the roots of p(�) has modulus strictly less than one.
They do not coincide with the eigenvalues of SA1 . Thus the
eigenvalues of p(SA1) given by p(�i�j ), i, j = 1, . . . , r , are
nonzero. We deduce that the operator p(SA1), from Rr×r to
Rr×r , is invertible.

There are some special cases in which the center manifold
is simpler. For instance, if (2.23) is in quadratic normal form
(see [10,26]), then f̄

[2]
2 is independent of x1. In this case,

f̄
[2]
2 (x1, 0) = 0. Therefore, Ri = 0. Under the feedback

u = K2x2 + xT
1 Lx1

the center manifold of (2.23) is

x2 = �[2](x1),

where

�[2]
i (x1) = xT

1 Qix1,

Q1 = p(SA1)
−1(L),

Qi = Si−1
A1

(Q1).

Remark.

1. Similarly to the procedure above, we can explicit the kth
order part of the center manifold by using the change of
variable x̃2 =x2 −�[1]x1 −∑k−1

j=2 �[j ](x1), with k�3. More-
over, we can show that the mapping relating the kth or-
der part of the feedback and the kth order of the center
manifold is a bijection provided p(�i1 · · · �ik ) �= 0, with
i1, . . . , ik=1, . . . , r and ��, �=1, . . . , r , being the eigenval-
ues of A1. This condition is satisfied since the eigenvalues
of A1 and Ā2 do not coincide as above.

2. As in the center manifold theorem for dynamical systems, it
will not be necessary to find the kth order approximation of
the controlled center dynamics for any k ∈ N. We will use
the lowest degree of approximation of the center manifold
(2.11) and the feedback (2.9) that allows to prove asymp-
totic stability of the controlled center dynamics. In fact, the
procedure is very similar to the one used in the center man-
ifold theorem, we start by degree k = 1 and if we are able
to find K1 in (2.9) such that the controlled center dynam-
ics is asymptotically stable then we deduce an asymptoti-
cally stabilizing controlled for �U from the expression of
the feedback F. If we are not able to find such a K1 using
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an approximation of degree k = 1, then we use an approxi-
mation of degree 2 and try to find�[2](x) for which we have
asymptotic stability of the controlled center dynamics and
so on.

3. We note that it is not necessary to use the normal forms in
order to find the controlled center dynamics, but their use
simplify finding explicit solutions to the equations defining
the controlled center dynamics.

4. As pointed out to the authors by a reviewer, there are simi-
larities in the algebra between our technique and the one in
[7]. In [7], a term by term approach was used to compute
the approximated center manifold solutions in order to deal
with the problem of output regulation.

3. Stabilization of systems with transcontrollable
bifurcation

In this section, we use the preceding results to stabilize sys-
tems with a transcontrollable bifurcation, i.e. those where A1=1
in (2.3).

From [10,26], we know that there exist a quadratic change
of coordinates and a feedback bringing the system (2.3) to a
quadratic normal form

z+
1 = z1 + �z2

1 + 	z1z21 +
n−r+1∑

i=1

�iz
2
2i + O(z1, z2, v)3,

z+
2 = A2z2 + B2v + O(z1, z2, v)2, (3.30)

with z2,r+1 = v, and �, 	, �1, . . . , �n−r are real numbers. Sup-
pose we use the linear feedback

v = K1z1 + K2z2

and assume that the linear part of the center manifold is given
by

z2 = �[1]z1. (3.31)

Since A1 = 1, we deduce from (2.19) that

�[1]
i = �[1]

1 , i = 2, . . . , n − r ,

K1 = −K21�
[1]
1 (3.32)

so �[1]
2 , . . . , �[1]

r , K1 depend on �[1]
1 .

First, suppose that we use the piecewise linear feedback

v = K1z1 + K2z2, (3.33)

with

K1 =
{

k1, z�0,

k̃1, z < 0.

Proposition 3.1. The closed-loop system (3.30)–(3.33) pos-
sesses a piecewise smooth center manifold.

Proof. The linear part of the dynamics (3.30)–(3.33) is
given by

z+
1 = z1 + O(z1, z2)

2,

z+
2 = B2K1z1 + Ā2z2 + O(z1, z2)

2. (3.34)

Let �k1
(resp. �k̃1

) be the system (3.34) when K1 =k1 (resp.

K1 = k̃1) for all z1. Since the system �k1
(resp. �k̃1

) is smooth,
and possesses one eigenvalue on the unit circle and n−1 eigen-
values strictly inside the unit disk; then, from the center mani-
fold theorem, in a neighborhood of the origin, �k̄1

(resp. �k̃1
)

has a center manifold Wc (resp. W̃ c).
For �k1

, the center manifold is represented by z2 = �(z1),
for z1 sufficiently small. The ith component of the linear part
of the center manifold, z2,i = �[1]

i z1, for i = 1, . . . , n − 1 is
given by (3.32) with K1 = k̄1.

Similarly for �k̃1
, the center manifold is represented by z2 =

�̃(z1), and its linear part z2,i = �̃[1]
i z1, for i = 1, . . . , n − 1 is

given by (3.32) with K1 = k̃1.
The center manifolds Wc and W̃ c intersect along the line

z1 = 0. Hence, if we slice them along the line z1 = 0 and
then glue the part of Wc for which z1 > 0 with the part of W̃ c

for which z1 < 0, along this line, we deduce that in an open
neighborhood of the origin, D, the piecewise smooth system
(3.34) has a piecewise smooth center manifold Wc. The linear
part of the center manifold Wc is represented by z2 = �[1]z1.
The ith component of z2, z2,i , is given by z2,i = �[1]

i z1, with

�[1]
i = K1/p(1), for 1� i�n − 1. �

Using (3.31), (3.32), and (3.33) we deduce that the controlled
center dynamics is given by

z+
1 = z1 + �z2

1 + 	z1 · �[1]
1 z1 +

n−r∑
i=1

�i (�
[1]
1 z1)

2 + O(z3
1),

(3.35)

with �[1]
1 =�[1]

1 =−k1/k2,1 when z�0, and �[1]
1 =�̃[1]

1 =−k̃1/k2,1

when z < 0. Now, let 
(X) = � + 	X +∑r
i=1 �iX

2, then the
controlled center dynamics (3.35) can be written as

z+
1 =

{
z1 + 
(�[1]

1 )z2
1 + O(z3

1), z1 �0,

z1 + 
(̃�[1]
1 )z2

1 + O(z3
1), z1 < 0.

(3.36)

From [10,26], we know that in order to have a trancontrollable
bifurcation, the condition 	2 − 4�

∑r
i=1 �i > 0 has to be satis-

fied. Thus, the polynomial 
(X) changes its sign. So, it is pos-
sible to find �[1]

i and �̃[1]
i such that 
(�[1]

1 )=−
(̃�[1]
1 )=−
0,

for some 
0 > 0. Thus the controlled center dynamics can be
written as

z+
1 = z1 − 
0z1|z1| + O(z3

1). (3.37)
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If we choose 
0 > 0, the origin of this dynamics is asymp-
totically stable. Thus, using a similar approach1 to the one in
B.2, we deduce that the closed-loop system (3.30)–(3.33) is
asymptotically stable. Hence, the controller (3.33) asymptoti-
cally stabilizes the system (3.30).

Remark. Let us note here that we cannot apply the center
manifold theorem to this case in order to deduce that the
full order dynamics is asymptotically stable, since the center
manifold theorem applies only to the case where the center
manifold is smooth, and in our case the center manifold is
piecewise smooth. This is why we have to use a similar argu-
ment to the one in Appendix B.2 where a Lyapunov function
is used to prove that when the reduced order dynamics on
a piecewise smooth center manifold is locally asymptoti-
cally/practically stable then the full order dynamics is locally
asymptotically/practically stable.

Now, let us consider the case of a quadratic feedback

v = K1z1 + K2z2 + �[2](z1) (3.38)

in order to asymptotically stabilize the system (3.30).
Since 	2 − 4�

∑r
i=1 �i > 0, there are two choices of �[1]

1

such that 
(�[1]
1 ) = 0. After such a choice, the stability of the

controlled center dynamics depends on cubic terms.
Let us consider quadratic and cubic change of state coordi-

nates and invertible quadratic and cubic feedback

x = z + T [2](z) + T [3](z),

u = v + �[2](z, v) + �[3](z, v)

to bring the system from linear normal form to quadratic and
cubic normal form (see [26]),

z+
1 = z1 + �z2

1 + 	z1z21 +
n−r+1∑

i=1

�iz
2
2i + �̄z3

1 + 	̄z2
1z21

+
n−r+1∑

i=1

�̄iz1z
2
2i +

n−r+1∑
i=1

n−r+1∑
j=i

�̄ij z21z2j z2i

+ O(z1, z2, v)4,

z+
2 = A2z2 + B2v + O(z1, z2, v)2, (3.39)

with �, 	, �̄, 	̄, �i , �̄i , �̄ij (for i=1, . . . , n−r +1, j = i, . . . , n−
r + 1) are real numbers. Because z2 is linearly stabilizable,
the quadratic and cubic terms will not affect the local stability
properties of the z2-dynamics.

1 We consider the Lyapunov function V (z1) = z2
1, then, from (3.36), we

have

�V = V (z+
1 ) − V (z1) =

⎧⎨⎩2
(�[1]
1 )z3

1 + O(z4
1), z1 �0,

2
(̃�[1]
1 )z3

1 + O(z4
1), z1 < 0,

and the proof follows the same steps as in the case �=−1 in Appendix B.2.

The procedure to choose the parameters of the feedback
(3.38) is as follows: from Property P, we know that K2 =
[k2,1 · · · k2,n−r ] is such that the eigenvalues of A+B2K2 are
strictly inside the unit disk. Moreover, we choose �[1]

1 so the
quadratic part of the controlled center dynamics is zero, then
we deduce K1 from (3.32). For the quadratic part of (3.38), we
can choose �[2]

1 (z1) = cz2
1 arbitrarily, and the controlled center

dynamics is

z+
1 = z1 + z3

1 + O(z4
1),

with

 =
(

	 + 2
n−r∑
i=1

�i�
[1]
1

)
c + �̄ + 	̄�[1]

1 +
n−r∑
i=1

�̄i (�
[1]
1 )2

+
n−r∑
i=1

n−r∑
j=i

�̄ij (�
[1]
1 )3.

There were two possible choices of �[1]
1 that canceled

the quadratic part of controlled center dynamics. Since
	2 − 4�

∑r
i=1 �i > 0, there is at least one such �[1]

1 so that

	 + 2
∑r+1

i=1 �i�
[1]
1 �= 0.

By choosing c so that  < 0, the origin of controlled center
dynamics will be locally asymptotically stable. Thus, we de-
duce that the origin of the closed loop system (3.30)–(3.38) is
locally asymptotically stable by applying the center manifold
theorem.

We can summarize the results of this section in the following
theorem.

Theorem 3.1. Consider the system (3.30) with 	2 − 4�∑r
i=1 �i > 0. Then, the feedbacks (3.33) and (3.38) locally

asymptotically stabilize the system around the origin.

4. Stabilization of systems with a fold or period doubling
control bifurcation

In this section, we use the preceding results to stabilize sys-
tems with a fold or period doubling control bifurcation i.e.
those where the system (2.3) has a single uncontrollable mode
� ∈ R, such that, |�| > 1 or � = −1, respectively.

When there is only one uncontrollable mode � /∈ {0, 1} in
(2.3), we know, from [10,18,26], that there exist a cubic change
of coordinates and a feedback bringing the system to its cubic
normal form

z+
1 = �z1 + 	z1z21 +

n−r+1∑
i=1

�iz
2
2i + 	̄z2

1z21 +
n−r+1∑

i=1

�̄iz1z
2
2i

+
n−r+1∑

i=1

n−r+1∑
j=i

�̄ij z21z2j z2i + O(z1, z2, v)4,

z+
2 = A2z2 + B2v + O(z1, z2, v)2, (4.40)

with z2,n−r+1=v, and �, 	, �̄, 	̄, �i , �̄i , �̄ij (for i=1, . . . , n−r+
1, j =i, . . . , n−r +1) are real numbers. We know also that this
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system exhibits a control bifurcation provided the transversality
condition �̃ =∑n−r+1

i=1 (1 + �i−1)�i �= 0 is satisfied [26]. Let
�̂ =∑n−r+1

i=1 �i .

Theorem 4.1. Consider the system (4.40). If 	̃� �̂ �= 0, then
the piecewise linear feedback (3.33) practically stabilizes the
system (4.40) around the origin when � > 1 or � < − 1. The
feedback asymptotically stabilizes the system around the origin
when � = −1.

The procedure to choose the parameters of the feedback
(3.33), k̄1 and k̃1, is as follows: let �(X) = X(	 + �̂X) with
X ∈ R, and let

�[1]
1 = k̄1

p(sign(�))
and �̃[1]

1 = k̃1

p(sign(�))
, (4.41)

with p the characteristic polynomial of Ā2. Since it is always
possible to choose k̄1 and k̃1 such that �(�[1]

1 ) = −�(̃�[1]
1 ) = �0

then we will choose K1 such that �0 > 0 when � > 1, �0 < 0
when |�| < 1 or � = −1. Moreover, K2 is chosen such that
A2 + B2K2 has all its eigenvalues strictly inside the unit disc.

Proof. The linear part of the closed-loop dynamics (4.40)–(3.33)
can be written as

z+
1 = �z1 + O(z1, z2)

2,

z+
2 = Ā2z2 + O(z1, z2)

2. (4.42)

Let us write � as �=(1+�) sign(�), with � is a slightly positive
number. If we consider � as an extra state whose equation is
�+ = �, the term �z1 will be considered of order two. Then, the
dynamics (4.42) can be written as

�+ = �,

z+
1 = sign(�)z1 + O(z1, z2, �)

2,

z+
2 = Ā2z2 + O(z1, z2)

2. (4.43)

Using the same kind of arguments as in Proposition 3.1,
we can show that for the closed loop system (4.40)–(3.33), a
piecewise smooth center manifold exists. It is defined by z2 =
�(�, z1). Since there is no linear term in � in the z1-subdynamics
of the system (4.43), the linear part of the center manifold can
be written as

z2 = �[1]z1.

The components of �[1] are given by (2.19), with

A1 =
[1 0

0 sign(�)

]
for the dynamics in the (�, z1, z2) space. Thus, the controlled
center dynamics is

z+
1 =

{
�z1 + �(�[1]

1 )z2
1 + O(z3

1), z1 �0,

�z1 + �(̃�[1]
1 )z2

1 + O(z3
1), z1 < 0.

(4.44)

Since 	 �= 0 and �̂ �= 0, by the assumption in the theorem,
there are two distinct solutions for the equation �(�[1]

1 ) = 0,

hence �(�[1]
1 ) changes its sign. So we can choose �[1]

1 and �̃[1]
1

such that �(�[1]
1 ) = −�(̃�[1]

1 ) = −�0, with �0 > 0 if � > 1, and
�0 < 0 if � < 1. In this case, the controlled center dynamics will
have the form

z+
1 = �z1 − �0|z1|z1 + O(z3

1), (4.45)

which is the normal form of the supercritical “bird foot bifur-
cation for maps” (see Appendix A).

For � such that � /∈ {0, 1}, and in a sufficiently small neigh-
borhood of the origin (in the case, for example, where we
choose �0 sufficiently large or � sufficiently close to one)
three equilibrium points exist: the origin and z̄∗ = (� − 1)/�0,
z̄∗∗ = −(� − 1)/�0 = −z̄∗. The origin is unstable for � > 1 or
� < − 1, and the two other equilibrium points are stable. Thus,
the solution converges to z̄∗ or z̄∗∗. Hence, by making z̄∗ suffi-
ciently close to the origin, i.e. by choosing �0 sufficiently large,
we shall have practical stability for the origin of the controlled
center dynamics. Using a similar methodology to the one in
[17], we can show that this implies practical stability of the
origin of the system (4.40) (see Appendix B.2).

When � = −1, the controlled center dynamics (4.45)
reduces to

z+
1 = −z1 − �0|z1|z1 + O(z3

1).

If we use the Lyapunov function V (z1) = z2
1, then

�V = V (z+) − V (z) = 2�0|z1|z2
1 + O(z3

1).

Hence choosing �0 < 0, permits to ensure that the origin is
asymptotically stable. �

Now let us consider the quadratic feedback

v = K1z1 + K2z2 + �[2](z1) (4.46)

instead of the feedback (3.33). The coefficient K2 is such that
the eigenvalues of A+B2K2 are all strictly inside the unit disk.

Theorem 4.2. Consider the system (4.40). If 	̃� �= 0, then the
feedback (4.46) with K1 = 0 practically stabilizes the system
(4.40) around the origin when � > 1 or � <−1. It asymptotically
stabilizes the system around the origin when � = −1.2

Proof. Adopting the same approach as precedently we show
the existence of a center manifold in the (�, z1) plane. The
feedback (4.46) shapes the linear and quadratic parts of the
approximation of the center manifold

z2 = �[1]z1 + �[2](z1),

2 One should note that, similarly to the period-doubling bifurcation for
dynamical systems, the period-doubling control bifurcation for one dimen-
sional systems appears only in the case of discrete-time systems: there is
no period-doubling (control) bifurcation for one dimensional continuous-time
(controlled) dynamical systems. To control systems where the bifurcation is
due to the parameter different techniques have been used, see for example
[3,31,32]. It is important to note that in our work the bifurcation is due to
the control and not to the parameter.
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which in turn shape the quadratic and cubic parts of the con-
trolled center dynamics given by

z+
1 = �z1 + �(�[1]

1 )z2
1 + O(z3

1).

Since the equation �(X) = 0 admits zero as a solution, we
can choose the solution �[1]

1 = 0, which gives K1 = 0 from

(3.32). Then, by choosing �[2]
1 (z1)= cz2

1 arbitrarily, we deduce
that the controlled center dynamics is given by

z+
1 = �z1 + 	cz3

1 + O(z4
1). (4.47)

Since |�| > 1, the origin is unstable. If we choose c such that
(1 − �)	c > 0, the two equilibrium points ẑ∗ = √

(1 − �)/	c
and ẑ∗∗ = −√(1 − �)/	c, when they exist,3 are stable. The
controlled center dynamics (4.47) has the form of a system
with a supercritical pitchfork bifurcation. Since the solution
converges to one of the equilibrium points ẑ∗ or ẑ∗∗, the origin
of the controlled center dynamics can be made practically stable
by having the equilibrium points ẑ∗and ẑ∗∗ sufficiently close to
the origin. We can show that this implies practical stability of
the origin of the system (4.40) (by adopting the same approach
as in Appendix B).

When �=−1, the controlled center dynamics (4.47) reduces
to

z+
1 = −z1 + 	cz3

1 + O(z4
1).

We see that choosing c such that 	c > 0 permits to ensure that
the origin is asymptotically stable. �

The piecewise linear feedback (3.33) is more robust than the
quadratic feedback (4.46). Indeed, using the quadratic feed-
back (4.46) requires finding the exact of �[1] of the equation
�(�[1]

1 )=(
∑r

i=1 �i )(�
[1]
1 )2 +	�[1]

1 +�=0. If there exists a small
uncertainty on the invariants 	 and �i (with i = 1, . . . , r + 1),
the quadratic terms generated by the uncertainty in the con-
trolled center dynamics (4.47) will be a source of instability of
the system. Using the piecewise linear feedback (3.33) does not
necessitate the exact solutions of the equation �(�[1]

1 ) = 0, as

we just have to find �[1]
1 and �̃[1]

1 such that �(�[1]
1 )�(̃�[1]

1 ) < 0.
Thus the piecewise linear feedback is more robust.

Appendix A. The birdfoot bifurcation for maps

In this section, we analyze the discrete-time version of
the “bird foot bifurcation” (see [24] for a treatment of the
continuous-time case).

3 In order for the two equilibria to exist, 1 − � has to be sufficiently
small, i.e. � has to be in a small neighborhood of one in order to be able to
choose c such that (1 − �)	c > 0. The size of that neighborhood, around one,
in which � lies, and for which the two equilibria ẑ∗ and ẑ∗∗ exist, depends
on the value of c as well as on the terms in O(z4) in Eq. (4.47).

Consider a dynamical system

x+ = �x − �0x|x| + O(x3), (A.48)

with x ∈ R, � ∈ R a parameter, and �0 ∈ R\{0} a constant.
The fixed points of the system are the solutions of the equation

((1 − �) + �0|x|)x = 0.

Provided � sufficiently close to one or �0 sufficiently large, and
that (�−1)�0 > 0, the dynamical system has three fixed points:
the origin, x∗ = (� − 1)/�0, and x∗∗ = −(� − 1)/�0 = −x∗. If
� = 1, the dynamical system has the origin as the only fixed
point.

Let us consider the Lyapunov function V (x) = x2, then

�V = V (x+) − V (x) = (�2 − 1)x2 − 2�0�|x|x2 + O(x4).

If |�| < 1, then �V < 0 and the origin is an asymptotically stable
equilibrium point. If |�| > 1, then �V > 0 and the origin is an
unstable equilibrium point.

When �0 > 0 (resp. �0 < 0), the equilibrium points x∗ and
x∗∗ appear when � > 1 (resp. � < 1). For � sufficiently close to
one, the equilibrium points x∗ and x∗∗ are unstable when the
origin is asymptotically stable, and are asymptotically stable
when the origin is unstable. As for the pitchfork bifurcation, we
have an exchange of the stability properties, at � = 1, between
the origin and the two equilibrium points x∗ and x∗∗. If � = 1,
the origin is the only equilibrium point. It is asymptotically
stable when �0 > 0, and unstable when �0 < 0.

When �0 > 0, we shall call the bifurcation a supercritical
birdfoot bifurcation. When �0 < 0, we shall call the bifurcation
subcritical birdfoot bifurcation.

When �0 > 0 (resp. �0 < 0), and � > 1 is sufficiently large,
the three fixed points become unstable (resp. stable), and stable
(resp. unstable) cycles appear (see [9,28]).

One of the properties of the birdfoot bifurcation is that a
system with a birdfoot bifurcation is robust to small quadratic
perturbations. Indeed, a system in a normal form (A.48) exhibits
a birdfoot bifurcation if we perturb it by a small quadratic term
�x2; while the same perturbation will make a system with a
pitchfork bifurcation exhibit a transcritical bifurcation.

Appendix B

B.1. Preliminaries

Let us first review the definition of class K, K∞ and KL
functions.

Definition B.1 (Khalil [23, Definitions 3.3, 3.4]).

• A continuous function � : [0, a) → [0, ∞) is said to belong
to class K if it is strictly increasing and �(0) = 0. It is said
to belong to class K∞ if a = ∞ and limr→∞ �(r) = ∞.

• A continuous function � : [0, a) × [0, ∞) → [0, ∞) is said
to belong to class KL if, for each fixed s, the mapping
�(r, s) belongs to class K with respect to r; and, for each
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fixed r, the mapping �(r, s) is decreasing with respect to s
and limr→∞ �(r, s) = 0.

Now, consider the dynamical system

x+ = f (x), (B.49)

with f : D → Rn a continuous function such that f (0) = 0.

Definition B.2. Let D ⊂ Rn be an open set, and let V be a
function V : D → R+, such that V is smooth on D, and

x ∈ D �⇒ �1(‖x(k)‖)�V (x)��2(‖x(k)‖), (B.50)

with �1 and �2 class K functions. Then, V is a Lyapunov
function if there exists a class K function �3 such that

�V (x) = V (f (x)) − V (x)� − �3(‖x‖) for x ∈ D. (B.51)

Let B� be the closed ball, around the origin, of radius �.

Definition B.3 (�-Practical stability). The origin of the dynam-
ical system x+ = f (x), with f (0) = 0, is said to be locally
�-practically stable, if there exists an open set D containing the
closed ball B�, a class KL function � and a positive constant
�, such that for any initial condition x(0) with ‖x(0)‖ < �, the
solution x(k) of (B.49) exists and satisfies

dB�
(x(k))��(dB�

(x(0)), k), ∀k ∈ N, (B.52)

with dB�
(x(k)) = inf�∈B�

d(x(k), �), the usual point to set
distance.

B.2. Proof of the practical stability of the whole closed-loop
dynamics

Consider the Lyapunov function V (z1) = z2
1, and let �1�

−(�2 −1)/2 ��(�[1]
1 ) and �2�−(�2 −1)/2 ��(̃�[1]

1 ). Then, from
(4.44), we have

�V = V (z+
1 ) − V (z1)

=
{

2 ��(�[1]
1 )(z1 − �1)z

2
1 + O(z4

1), z1 �0,

2 ��(̃�[1]
1 )(z1 − �2)z

2
1 + O(z4

1), z1 < 0,
(B.53)

• Practical stability for � > 1 or � < − 1.

By choosing4 �[1]
1 and �̃[1]

1 such that �(�[1]
1 ) < 0 and

�(̃�[1]
1 ) > 0, we get �1 > 0 and �2 < 0. This choice is always

possible since the equation �(X) = 0 admits two solutions
X∗ = 0 and X∗∗ =−(	/̂�) �= 0 (by the assumption in Theorem
4.1); so, � takes both positive and negative values. In this case,
�V < 0 for z1 > �1 and z1 < �2, and �V = 0 for z1 = �1 or
z1 = �2.

In the following, and without loss of generality, we choose
�[1]

1 and �̃[1]
1 such that �(�[1]

1 ) = −�(̃�[1]
1 ), so �1 = −�2��, with

4 This choice will give us the parameters k1 and k̃1 of the feedback
(2.18) using Eq. (4.41).

0���r , and r is the radius of Br , the largest closed ball con-
tained in the largest open neighborhood of the origin for which
a center manifold exist for the system (4.40)–(3.33).

Let �1 and �2 be two sets defined by �1 = (�, +r] and
�2 = [−r, −�). If z1(0) ∈ �1 ∪ �2, then �V < 0 on �1 ∪ �2.
From (B.50), (B.51), we have

�V � − �3(‖z1‖)� − �3(�
−1
2 (V )). (B.54)

Since �2 and �3 are a class K functions, then �3(�
−1
2 ) is also

a class K function. Hence, using the comparison principle in
[20, lemma 4.3] (this work is the discrete-time version of a
result in [27]), there exists a class KL function Υ such that

V (z1(k))�Υ (V (z1(0), k)). (B.55)

The sets �1 = [0, �] and �2 = [−�, 0] have the property that
when a solution enters either set, it remains in it. This is due to
the fact that �V is negative definite on the boundary of these
two sets. For the same reason, if z1(0) ∈ �1 (resp. z1(0) ∈ �2),
then z1(k) ∈ �1 (resp. z1(k) ∈ �2), for k ∈ N.

Let k� be the first time such that the solution enters �1 ∪
�2 = B�. Using (B.50) and (B.55), we get that for 0�k�k�,

��‖z1(k)‖��−1
1 (V (z1(k))��−1

1 (Υ (V (z1(0), k)))

��(z1(0), k)).

The function � is a class KL function, since �1 is a class K
function and Υ a class KL function. Since � is a class KL
function, then k� is finite. Hence, z1(k) ∈ �1 ∪ �2, for k�k�.

Thus, for z1 ∈ Br , the solution satisfies

dB�
(z1(k))��(dB�

(z1(0)), k). (B.56)

So, in Br , the origin is locally �-practically stable.
In order to prove the stability of the whole closed-loop

dynamics we adapt, to the present problem, the proof in [23,
Theorem 4.2], where the author proved the center manifold the-
orem for continuous-time systems using a Lyapunov argument.

The closed-loop dynamics (4.40)–(3.33) can be written as

z+
1 = �z1 + �z2

1 + 	z1z2,1 +
n−1∑
i=1

�iz
2
2,i + O(z1, z2)

3,

z+
2 = B2K1z1 + Ā2z2 +

n−1∑
i=1

n−1∑
j=i+2

�j
i z

2
2,j e

i
2 + O(z1, z2)

3.

(B.57)

Let w1 = z1, w2 = z2 −�(z1), and w = (w1, w2)
T. Then, the

dynamics (B.57) is given by

w+
1 = �w1 + �(w1, �1(w1)) + N1(w1, w2).

w+
2 = Ā2w2 + N2(w1, w2),
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with

Ni (w1, w2) =
{
Ni (w1, w2), w1 �0,

Ñi (w1, w2), w1 < 0,
for i = 1, 2,

and

�1(w1) =
{ �̄1(w1), w1 �0

�̃1(w1), w1 < 0.

The functions � and N are such that �(w1, �(w1)) = O(w2
1)

as w1 → 0, Ni (w1, 0) = 0, and (�Ni/�w2)(0, 0) = 0.
Since Ni (w1, 0) = 0 and (�Ni/�w2)(0, 0) = 0 (i = 1, 2),

then in a domain ‖w‖ < , N1 and N2 satisfy

Ni (w1, w2)��i‖w2‖, i = 1, 2,

where �1 and �2 can be arbitrarily small by making  suffi-
ciently small.

Since Ā2 has all its eigenvalues strictly inside the unit disk,
there exists a unique P such that ĀT

2 P + P Ā2 = −I . Let V be
the following composite Lyapunov function

V(w1, w2) = w2
1 +

√
wT

2 Pw2.

Then �V is given by

�V(w1, w2) = V(w+
1 , w+

2 ) − V(w1, w2)

= (w+
1 )2 − w2

1 +
√

(w+
2 )TPw+

2 −
√

wT
2 Pw2.

For w1 ∈ �1 ∪ �2, and using (B.54), we obtain

(w+
1 )2 − w2

1

= �V1 + N2
1(w1, w2) + 2��(w1, �(w1))w2

+ 2�N1(w1, w2)w1 + �(w1, �(w1))N1(w1, w2),

� − �3(‖w1‖) + N2
1(w1, w2) + 2��(w1, �(w1))w2

+ 2�N1(w1, w2)w1 + �(w1, �(w1))N1(w1, w2),

� − �3(‖w1‖) + 2��1‖w1‖‖w2‖ + ‖O(w1, w2)
2‖.

Using the fact that �min(P )‖w2‖2 �wT
2 Pw2 ��max(P )

‖w2‖2, we obtain

√
(w+

2 )TPw+
2 −

√
wT

2 Pw2

�
√

�max(Ā
T
2 P Ā2) + 2�max(Ā

T
2 P)�2 + �max(P )�2

2

× ‖w2‖ −√
�min(P )‖w2‖.

Hence

�V(w1, w2)

� − �3(‖w1‖) +
(

2��1�

+
√

�max(Ā
T
2 P Ā2) + 2�max(Ā

T
2 P)�2 + �max(P )�2

2

−
√

�min(P )

)
‖w2‖,

with � = max{w1:w1∈�1∪�2}‖w1‖.
By choosing �1 and �2 such that

2��1� +
√

�max(Ā
T
2 P Ā2) + 2�max(Ā

T
2 P)�2 + �max(P )�2

2

−
√

�min(P ) < 0,

we shall have

�V(w1, w2) < 0.

Hence, for w1 ∈ �1 ∪ �2, �V(w1, w2) < 0. So, there exists
a class KL function Υ such that

‖w(k)‖�Υ (‖w(0)‖, k). (B.58)

When w1 ∈ �1 ∪ �2, and by considering w1 as an input of the
system

w+
2 = Ā2w2 + N2(w1, w2),

we deduce that ‖w2‖ is bounded, since Ā2 has all its eigenvalues
strictly inside the unit disk. Hence, for w1 ∈ �1 ∪ �2, there
exists �̄ such that

‖w(k)‖� �̄. (B.59)

From (B.58)–(B.59) we obtain

dB�̄
(w(k))�Υ (dB�̄

(w(0)), k). (B.60)

So the origin of the whole dynamics is locally �̄-practically
stable.

• Asymptotic stability for � = −1.

In this case �1 = �2 = 0, and the sets �1 and �2 reduce to
the origin. Hence, the origin of the reduced closed-loop system
is asymptotically stable, since the solution converges to �1 ∪
�2 = {0}. We deduce that the origin of the whole closed-loop
dynamics is asymptotically stable since �V(w1, w2) < 0 for
w1 ∈ �1∪�2=[−r, 0)∪(0, r]. When w1=0, then w2 → 0 since
the system w+

2 = Ā2w2 +N2(0, w2) is locally asymptotically
stable because Ā2 has all its eigenvalues inside the unit disk.
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