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Summary. We consider the fixed interval smoothing problem for data from linear
or nonlinear models where there is a priori information about the boundary values
of the state process. The nonlinearities and boundary values preclude a stochastic
approach so instead we use a least squares methodology. The resulting variational
equations are a coupled system of ordinary differential equations for the state and
costate involving boundary conditions. If the model is linear and the a priori infor-
mation is only about the initial state then several authors have given methods for
solving the resulting equations in two sweeps. If the model is linear but the a priori
information is about both the initial and final states then direct methods have been
proposed. If the state dimension is large these methods can be very expensive and
moreover they don’t readily generalize to nonlinear models. Therefore we present an
iterative method for solving both linear and nonlinear problems.
Key Words: Nonlinear smoothing, boundary value processes, least squares
smoothing

1.1 Introduction

We consider the problem of smoothing a boundary value process, i.e. a non-
linear system of the form

ẋ = f(t, x, u)
y = h(t, x, u)
0 = b(x(0), x(T ))

(1.1)

where x(t) ∈ IRn is the unknown state of the process, u(t) ∈ IRm is the
known input or control, y(t) ∈ IRp is the known output or observation and
the boundary condition (1.1) is k dimensional. The notation x(0 : T ) denotes
the curve t 7→ x(t), for t ∈ [0, T ].
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The fixed interval smoothing problem [5] is to estimate the state x(0 :
T ) from the knowledge of the functions f, h, b and the inputs and outputs
u(0 : T ), y(0 : T ). This problem is called fixed interval smoothing because to
estimate x(t) at any t ∈ [0, T ], we use all the inputs u(t) and outputs y(t) on
the interval [0, T ].

But the above formulation is different from the standard fixed interval
smoothing problem in two ways. The first is that the model is allowed to be
nonlinear. The second is that the a priori partial information that we have
available can be about both x(0) and x(T ). The usual approach is to assume
that only a priori information is known about x(0) so the boundary conditions
(1.1) are replaced by initial conditions,

0 = b(x(0)) (1.2)

Both of these differences add substantial difficulty to the smoothing problem.
There are several closely related problems which we briefly describe. For

a more complete discussion of these problems we refer the reader to [5].
The filtering problem is to estimate x(t) for t > 0 given the past inputs

and outputs u(0 : t), y(0 : t). In filtering problems it is usually assumed a
priori information is only available about x(0).

The fixed point smoothing problem is to estimate x(t) given the inputs
u(0 : T ) and outputs y(0 : T ) as T →∞. Again it is usually assumed a priori
information is only available about x(0). There are extensions of the above
model to the situation where a priori information is available at times interior
to [0, T ]. Then the boundary condition is replaced by a multipoint condition

0 = b(x(0), x(t1), . . . , x(tl), x(T )) (1.3)

where 0 < t1 < . . . < tl < T . For simplicity of exposition we shall not discuss
such problems but the methods that we will present readily generalize.

In some estimation problems, the input and/or output data may be cen-
sored. For example in fixed interval smoothing the output may be unknown
on some subset [t0, t1] ⊂ [0, T ]. The model can be adjusted to handle this by
setting y(t) = 0 and h(t, x, u) = 0 for t ∈ [t0, t1]. If the input is unknown on
[t0, t1] then we can treat it as a driving noise, see below.

The approach that we take is an extension of Bryson and Frazier [3].
The above model may not be known exactly or there may be driving noise,
observation noise or boundary noise so we don’t expect to be able to estimate
x(t) exactly. To account for this, we add noises β, w(t), v(t) to the model,

ẋ = f(t, x, u) + g(t, x)w
y = h(t, x, u) + k(x, t)v
β = b(x(0), x(T ))

(1.4)

We could take w(t), v(t) to be independent white Gaussian noises and β to
be an independent random vector but then we would have to deal with the
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mathematical technicalities of a stochastic ODE with random boundary con-
ditions. Not much is known about this except for linear ODEs with well-posed
linear boundary conditions. In this case x(t) is a reciprocal process [8], [9] and
there are well-developed linear smoothers [1], [14], [15], [4]. Instead we assume
that w(t) ∈ L2([0, T ], IRl), v(t) ∈ L2([0, T ], IRq) are unknown functions and β
is an unknown vector in IRk.

The model (1.4) is well-posed if for every u(0 : T ), y(0 : T ), β, w(0 :
T ), v(t) there exists an unique solution x(0 : T ) to (1.4). We do not assume
that the model is well-posed. If it is not well-posed then for a given u(0 :
T ), y(0 : T ) we restrict our attention to those noise triples β, w(0 : T ), v(0 :
T ) for which there exists a unique x(0 : T ) satisfying (1.4). Such noise triples
are said to be admissible. To simplify the discussion we shall restrict our
attention to the case where k(x, t) = I so that v(t) = y(t)− h(x(t), t).

We define an ”energy” associated with the three noises, a simple choice is

1
2

(
β′Pβ +

∫ T

0

w′(t)Q(t)w(t) + v′(t)R(t)v(t) dt

)
(1.5)

where P is positive definite and Q(t), R(t) are positive definite for any t ∈
[0, T ]. The larger P is relative to Q(t), R(t) the more we assume that the
boundary condition is satisfied exactly. The larger Q(t) is relative to P, R(t)
the more we assume that the dynamics is satisfied exactly. The larger R(t)
is relative to P, Q(t) the more we assume that the observation is exact. One
could generalize the definition (1.5) of the energy by allowing Q, R to depend
on x, u or even more general nonlinear functions but for simplicity we do not
do so.

We postulate that optimal state estimate x̂(t), t ∈ [0, T ] is generated
by the admissible noise triple of minimum energy consistent with the known
functions u(0 : T ), y(0 : T ). Therefore for each known u(0 : T ), y(0 : T ), we
must solve the optimal control problem of minimizing the energy (1.5) over
all admissible noise triples. If the minimum energy is achieved by the noise
triple β̂, ŵ(0 : T ), v̂(0 : T ) then the optimal estimate x̂(0 : T ) satisfies

˙̂x = f(t, x̂, u) + g(t, x̂)ŵ
y = h(t, x̂, u) + v

β̂ = b(x̂(0), x̂(T )).
(1.6)

This is an application of the least squares approach to estimation that has
been widely used since Gauss. Generally speaking for linear systems the least
squares and stochastic approaches give the same estimates when P, Q(t), R(t)
of the least squares approach are the inverses of the covariances of the bound-
ary, driving and observation noises of the stochastic approach. The advantage
of the least squares approach is that it readily generalizes to nonlinear systems
with a priori boundary information while the stochastic approach can lead to
considerable technical difficulties.
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1.2 The Variational Approach

We apply the Pontryagin minimum principle to the above problem. This yields
the first order necessary that must be satisfied by an optimal solution. For
fixed, known u(0 : T ), y(0 : T ), the noise triple β̂, ŵ(0 : T ), v̂(0 : T ) that
minimizes the energy (1.5) generates the state x̂(0 : T ) and adjoint λ̂(0 : T )
trajectories that satisfy the following conditions. Define the Hamiltonian

H(t, λ, x, w) = λ′ (f(t, x, u(t)) + g(t, x)w) +
1
2
w′(t)Q(t)w(t) (1.7)

+
1
2
(y(t)− h(t, x, u(t)))′R(t)(y(t)− h(t, x, u(t))).

Then

˙̂x(t) =
(

∂H

∂λ
(t, λ̂(t), x̂(t), ŵ(t))

)′

(1.8)

˙̂
λ(t) = −

(
∂H

∂x
(t, λ̂(t), x̂(t), ŵ(t))

)′

(1.9)

ŵ(t) = argminwH(t, λ̂(t), x̂(t), w) (1.10)

λ̂(0) =
(

∂b

∂x0
(x̂(0), x̂(T ))

)′

Pb(x̂(0), x̂(T )) (1.11)

λ̂(T ) =
(

∂b

∂xT
(x̂(0), x̂(T ))

)′

Pb(x̂(0), x̂(T )) (1.12)

Because of the form of the Hamiltonian we have that

ŵ(t) = −Q−1(t)g′(t, x̂(t))λ̂(t) (1.13)

and so

˙̂x(t) = f(t, x̂(t), u(t))− g(t, x̂(t))Q−1(t)g′(t, x̂(t))λ̂(t)
˙̂
λ(t) = −

(
∂f

∂x
(t, x̂(t), u(t))− ∂g

∂x
(t, x̂(t))Q−1(t)g′(t, x̂(t))λ̂(t))

)′

λ̂(t)

+
(

∂h

∂x
(t, x̂(t), u(t))

)′

R(t) (y(t)− h(t, x̂(t), u(t)))

λ̂(0) =
(

∂b

∂x0
(x̂(0), x̂(T ))

)′

Pb(x̂(0), x̂(T ))

λ̂(T ) =
(

∂b

∂xT
(x̂(0), x̂(T ))

)′

Pb(x̂(0), x̂(T )).

(1.14)
This is a nonlinear two point boundary value problem in 2n variables that
can be solved by direct methods, shooting methods or iterative methods [6],
[7], [12]. Below we shall introduce iterative methods that takes advantage of
the variational nature of the problem.
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1.3 Smoothing of Linear Boundary Value Processes

Let’s look at the linear case where the noisy system takes the form

ẋ = F (t)x + B(t)u + G(t)w
y = H(t)x + D(t)u + v
β = V 0x(0) + V T x(T )

(1.15)

then the two point boundary value problem becomes

˙̂x(t) = F (t)x̂(t) + B(t)u(t)−G(t)Q−1(t)G′(t)λ̂(t)
˙̂
λ(t) = −F ′(t)λ̂(t) + H ′(t)R(t) (y(t)−H(t)x̂(t)−D(t)u(t))
λ̂(0) = (V 0)′PV 0x̂(0) + (V 0)′PV T x̂(T )
λ̂(T ) = (V T )′PV 0x̂(0) + (V T )′PV T x̂(T ).

(1.16)

We define

ξ =
[

x̂

λ̂

]
µ =

[
u
y

]
A(t) =

[
F (t) −G(t)Q−1(t)G′(t)

−H ′(t)R(t)H(t) −F ′(t)

]
B(t) =

[
B(t) 0

−H ′(t)R(t)D(t) H ′(t)R(t)

]
C(t) =

[
I 0
]

V0 =
[

(V 0)′PV 0 −I
(V T )′PV 0 0

]
VT =

[
(V T )′PV 0 0
(V T )′PV T −I

]
then the two point boundary value problem becomes

ξ̇ = A(t)ξ + B(t)µ
0 = V0ξ(0) + VT ξ(T )

(1.17)

This problem is well-posed if

F = V0 + VT Φ(T, 0)

is invertible where Φ(t, s) is the 2n× 2n matrix solution to

∂Φ

∂t
(t, s) = A(t)Φ(t, s)

Φ(s, s) = I.
(1.18)
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Then the Green’s matrix is

G(t, s) =
{

Φ(t, 0)F−1V0Φ(0, s) t > s
−Φ(t, 0)F−1VT Φ(T, s) t < s

(1.19)

and

ξ(t) =
∫ T

0

G(t, s)B(s)µ(s) ds

so the least squares smoothed estimate is

x̂(t) =
∫ T

0

C(t)G(t, s)B(s)µ(s) ds.

We say that F (t), G(t) is controllable on [0, T ] if the gramian∫ T

0

Φ(T, s)G(s)G′(s)Φ′(T, s) ds

is positive definite. The pair H(t), F (t) is observable on [0, T ] if the gramian∫ T

0

Φ′(t, 0)H ′(t)H(t)Φ(t, 0) ds

is positive definite It can be shown that if F (t), G(t) is controllable on [0, T ],
H(t), F (t) is observable on [0, T ] and the eigenvalues of Q(t), R(t) are bounded
away from zero then there exists a unique solution to the optimization problem
and this solution must satisfy (1.16) so it is well-posed.

1.4 Solution of the Linear Two Point Boundary Value
Problem by Direct Methods

The most direct way of solving the two point boundary value problem is
to compute the Green’s matrix (1.19). This requires finding the fundamental
matrix which satisfies an 2n×2n linear differential equation (1.18). If n is large
then this is a nontrivial task. Moreover since the dynamics is Hamiltonian
(1.16) we expect it to have modes that are unstable in forward time and
also modes that are unstable in backward time. This is a difficulty for any
numerical scheme

Several authors [13], [1], [11], [2], [14] have proposed other direct methods
based on diagonalization or triangularization of the dynamics (1.16). We shall
describe the triangularization method due to Weinert [14]. Our use of notation
is different from his. He assumes that the input u(t) = 0. The first step is to
make a change of variables in x, λ space so as to triangularize the dynamics
(1.16). Let N(t) be the n × n matrix that satisfies the backward Riccati
equation
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Ṅ = −NF − F ′N + NGQ−1G′N −H ′RH

N(T ) = 0

Define

ρ(t) = λ(t)−N(t)x(t) (1.20)

then the dynamics is triangular[
ẋ
ρ̇

]
=
[

F −GQ−1G′N −GQ−1G′

0 −F ′ + GQ−1G′N

] [
x
ρ

]
+
[

0
H ′R

]
y. (1.21)

The boundary conditions become

V0

[
I 0

N(0) I

] [
x(0)
ρ(0)

]
+ VT

[
x(T )
ρ(T )

]
=
[

0
0

]
. (1.22)

Moreover Weinert asserts that the dynamics of x is stable in the forward
direction when ρ = 0 and the dynamics of ρ is stable in the backward direction.

If there is only a priori data about the initial condition (V 0 = I, V T = 0)
then

V0 =
[

P −I
0 0

]
VT =

[
0 0
0 −I

]
and the boundary conditions also triangularize

(P −N(0))x(0)− ρ(0) = 0
ρ(T ) = 0.

(1.23)

We can find the solution of (1.21) and (1.23) by first integrating the differ-
ential equation for ρ backward from the final condition ρ(T ) = 0 and then
integrating the differential equation for x forward from the initial condition
(P −N(0))x(0)− ρ(0) = 0.

But if there is a priori data about both the initial and final conditions then
the boundary conditions do not triangularize. We can still find a particular
solution by first integrating the lower half of (1.21) backward from the final
condition ρ(T ) = 0 and then integrating the upper half forward from the
initial condition x(0) = 0. Denote this solution by x̄(t), ρ̄(t), it will probably
not satisfy the correct boundary conditions (1.22).

Therefore we need to compute the 2n× 2n matrix solution of

d

dt
Σ(t) =

[
F −GQ−1G′N −GQ−1G′

0 −F ′ + GQ−1G′N

]
Σ(t)

Σ(0) = I.

(1.24)
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This can be reduced to the solution of two n×n matrix differential equations.
Let Ψ(t, s) be the solution of

∂

∂t
Ψ(t, s) =

(
F −GQ−1G′N

)
Ψ(t, s)

Ψ(s, s) = I

(1.25)

and let M(t) be the solution of the Lyapunov equation

Ṁ =
(
F −GQ−1G′N

)
M + M

(
F −GQ−1G′N

)′ −GQ−1G′

M(0) = 0
(1.26)

then

Σ(t) =
[

Ψ(t, 0) M(t)Ψ ′(T, t)
0 Ψ ′(T, t)

]
. (1.27)

The solution to (1.21) that we seek is of the form[
x(t)
ρ(t)

]
=
[

x̄(t)
ρ̄(t)

]
+ Σ(t)ξ (1.28)

where ξ is determined by the boundary conditions (1.22).
Weinert’s method is more efficient than the direct computation of the

Green’s matrix (1.19). The latter requires finding the fundamental solution of
a 2n × 2n linear differential equation. Weinert’s method requires finding the
fundamental solution of a n×n linear differential equation and the n×n solu-
tions of a Riccati differential equation and a Lyapunov differential equation.
But neither method is practical if n is large.

1.5 Solution of the Linear Smoothing Problem by an
Iterative Method

We prsent an iterative method to solve the linear smoothing problem and
generalize it to the nonlinear problem in the next section. We are given the
input u(0 : T ) and observation y(0 : T ) and we wish to find the solution
of (1.15) that minimizes the least square criterion (1.5). We do not assume
that the boundary value problem (1.15) is well-posed so for given β and w(0 :
T ) there may not be a solution and/or it may not be unique. Therefore to
parametrize the solutions of (1.15) we must choose a well-posed boundary
condition like

x(0) = x0.

We fix the observations y(0 : t), then given x0 and w(0 : T ) there is a unique
solution x(0 : T ), v(0 : T ) to
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ẋ = F (t)x + B(t)u + G(t)w
y = H(t)x + D(t)u + v

x(0) = x0
(1.29)

to which we associate the cost

π(x0, w) =
1
2

(
β′Pβ +

∫ T

0

w′(t)Q(t)w(t) + v′(t)R(t)v(t) dt

)
(1.30)

We compute the first variation in π due to variations in x0, w(0 : T ),

δπ = π(x0 + δx0, w + δw)− π(x0, w)
= β′P

(
V 0 + V T Φ(T, 0)

)
δx0

−
∫ T

0

v′(s)R(s)H(s)Φ(s, 0) ds δx0

+β′PV T

∫ T

0

Φ(T, s)G(s)δw(s) ds

+
∫ T

0

w′(s)Q(s)δw(s) ds

−
∫ T

0

∫ T

s

v′(t)R(t)H(t)Φ(t, s)dtG(s)δw(s) ds

+O(δx0, δw)2

where Φ(t, s) is the n× n matrix solution of

∂

∂t
Φ(t, s) = F (t)Φ(t, s)

Φ(s, s) = I.

If n is large it is expensive to compute Φ(t, s) so instead we define

µ′(s) = β′PV T Φ(T, s) −
∫ T

s
v′(t)R(t)H(t)Φ(t, 0) dt.

Then µ(s) satisfies the final value problem

d

ds
µ(s) = −F (s)µ(s) + H ′(s)R(s)v(s)

µ(T ) = (V T )′Pβ

(1.31)

and the first variation is

π(x0 + δx0, w + δw) = π(x0, w) +
(
β′PV 0 + µ′(0)

)
δx0

+
∫ T

0

(w′(s)Q(s) + µ′(s)G(s)) δw(s) ds

+O(δx0, δw)2.
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We solve the problem by gradient descent. Given u(0 : T ) and y(0 : T ),
choose any x0 and w(0 : T ), solve the initial value problem (1.29) and compute
the cost (1.30). Then compute the gradient of the cost with respect to x0, w(0 :
T ) by solving the final value problem (1.31). Choose a step size ε and define

δx0 = −ε
(
(V 0)′Pβ + µ(0)

)
δw(s) = −ε (Q(s)w(s) + G′(s)µ(s)) .

(1.32)

Replace x0, w(0 : T ) by x0 + δx0, w(0 : T ) + δw(0 : T ), solve the new initial
value problem (1.29) and compute the new cost (1.30). If the new cost is
not sufficiently less than the previous cost then we change the step size and
recompute (1.29) and (1.30). We repeat until we find a variation that reduces
the cost sufficiently. Standard step size rules such as Armijo’s can be used
[10].

Once we find a variation that sufficiently lowers the cost, we accept it.
Then we again compute the gradient of the cost with respect to x0, w(0 : T )
by solving the final value problem (1.31) and repeat until it is too difficult
to find a variation that reduces the cost any further. The last solution to the
initial value problem (1.29) is the smoothed estimate x̂(0 : T ).

1.6 Solution of the Nonlinear Smoothing Problem by an
Iterative Method

We return to the nonlinear smoothing problem and seek to minimize (1.5)
subject to (1.4). Again we use gradient descent. Given u(0 : T ) and y(0 : T )
choose any x0 and w(0 : T ), solve the initial value problem,

ẋ = f(t, x, u) + g(t, x(t))w
x(0) = x0 (1.33)

and compute the cost (1.30). Then compute the gradient of the cost with
respect to x0, w(0 : T ) by solving the final value problem (1.31) where

F (t) =
∂f

∂x
(t, x(t), u(t))

G(t) = g(t, x(t))

H(t) =
∂h

∂x
(t, x(t), u(t))

We continue as in the linear case. Choose a step size ε and define

δx0 = −ε
(
(V 0)′Pβ + µ(0)

)
δw(s) = −ε (Q(s)w(s) + G′(s)µ(s)) .

(1.34)

Replace x0, w(0 : T ) by x0 + δx0, w(0 : T ) + δw(0 : T ) and solve the new
initial value problem (1.33) and compute the new cost (1.30). If the new cost
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is not sufficiently less than the previous cost then we change the step size and
recompute (1.33) and (1.30). We repeat until we find a variation that reduces
the cost sufficiently.

Once we find a variation that sufficiently lowers the cost, we accept it.
Then we again compute the gradient of the cost with respect to x0, w(0 : T )
by solving the final value problem (1.31) and repeat until it is too difficult
to find a variation that reduces the cost any further. The last solution to the
initial value problem (1.33) is the smoothed estimate x̂(0 : T ).

1.7 Conclusion

We have discussed the problem of obtaining smoothed estimates of a non-
linear process from continuous observations and boundary information which
we call boundary value processes. Because of technical difficulties associated
with the stochastic approach, we have opted for a least squares approach. The
latter is applicable even when the description of the boundary value process
is not well-posed. We reviewed an existing direct method for smoothing linear
boundary value processes and presented new iterative methods for smooth-
ing both linear and nonlinear boundary value process. For low dimensional
linear processes direct methods can be used but for high dimensional and/or
nonlinear processes the iterative method is preferable.

Acknowledgement. It is a pleasure and honor to dedicate this paper to my esteemed
colleague, Michael Zeitz on the occasion of his sixty fifth birthday.
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