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Abstract: Low codimensional bifurcations of control systems have been classified
using the theory of normal forms. However, the normal form theory was developed
as local results. To understand the behavior of control systems outside a local area
of a bifurcation point, it is necessary to study the convergence of the normal forms if
the vector fields are analytic. The convergence is a long time open problem. In this
paper, we address the convergence problem of normal forms for three dimensional
control systems. Bounded attractors are found for a family of such normal forms,
which include the controlled Lorenz system as a special case.
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1. INTRODUCTION

Since early 1990’s, normal forms of nonlinear con-
trol systems have become an increasingly active
research subject with applications to bifurcation
control and engineering systems. The transforma-
tion group used in normal form theory consists
of formal power series (Kang and Krener, 2006).
This approach is useful for the analysis of the
local behavior around equilibria with control bi-
furcations (Kang, 1998b; Kang, 1998a; Krener et
al., 2004). However, qualitative properties of ana-
lytic systems in a given neighborhood cannot be
analyzed using these normal forms because there
is no guarantee on the convergence of the normal
forms. The problem of convergence goes back to
Poincaré. For classical dynamical systems without
control, the convergence of the Poincaré normal
form had been a problem of active research for
many years. It was proved that the distribution of
the eigenvalues of the linearized dynamical system
provides critical information about the conver-
gence. The well known Poincar-Dulac Theorem

and Siegels Theorem provide sufficient conditions
for the convergence of the Poincaré normal form
(Arnold, 1983).

The eigenvalues in the linearization of control sys-
tems can be changed by state feedback, therefore
the convergence results on the Poincaré normal
form do not apply to control systems. The prob-
lem must be solved using new approaches. Thus
far, very little is known about the convergence of
control system normal forms, except for some very
special cases such as the systems that are com-
pletely feedback linearizable. In 2004, the problem
of convergence for control system normal forms is
published in (Kang and Krener, 2004) as an open
problem of mathematical systems and control the-
ory. In the following, we focus on the convergence
of the three dimensional normal forms of con-
trol systems. The systems are classified into three
cases. In the case of one uncontrollable mode,
the problem is completely solved. In the cases of
two uncontrollable modes and no uncontrollable



mode, sufficient conditions are proved for the con-
vergence of the normal forms.

If a system is equivalent to its normal form un-
der convergent transformations, the behavior of
the normal form inside the region of convergence
is the same as the original system. Therefore,
studying the global behavior of the convergent
normal forms helps to understand the behavior of
general nonlinear systems. In this paper, a family
of control feedbacks are derived under which a set
of three dimensional normal forms has a bounded
attractor. The system have a variety of different
behavior inside the attractor, depending on the
feedback, including stable equilibria, bifurcations,
and chaos. In fact, it is proved that the controlled
Lorenz equation is globally and analytically equiv-
alent to its normal form. While the normal form of
the controlled Lorenz system reveals the complex
dynamics of a special set of normal forms, the
global behavior of general normal forms is still a
problem widely open. We hope that the nonlinear
feedback and the bounded attractor studied in
this paper will motivate and inspire more research
in this subject of nonlinear control theory.

In the next section, the convergence of the normal
form of three dimensional control systems are
addressed. Three different types of systems are
addressed in three subsections. Then, a Lyapunov
function is constructed in Section 3 for a family of
normal forms with a single uncontrollable mode.
A family of feedbacks is derived under which the
controlled normal form has a bounded attractor.
In addition, it is proved that the controlled Lorenz
system is globally equivalent to a special case of
the normal forms addressed in Section 3.

2. THE CONVERGENCE OF NORMAL
FORMS

Dynamical systems can be classified under trans-
formation groups. A system is said to be equiv-
alent to another if it can be transformed to the
other system. Different types of transformations
are used in the literature for the purpose of system
classification. For the Poincaré normal form, for-
mal transforms are used, i.e the changes of coordi-
nates defined by formal power series. When using
the formal transformation, the problem of conver-
gence can be avoided. However, conclusions about
the qualitative properties of the normal forms are
local. If the analytic transformations are used,
one must prove convergence of the transformation,
which could be very difficult. For control sys-
tems, the normal form theory has been addressed
using formal transformations. The classification
and the normal form of control systems under
analytic transformations are still open (Kang and
Krener, 2004). In this paper, we study the normal

forms of the three dimensional control systems
using analytic transformations. Consider a control
system with a single input

ξ̇ = f(ξ) + g(ξ)v, f(0) = 0, g(0) 6= 0 (2.1)

with ξ ∈ R3, and v ∈ R. Throughout the paper,
we assume that f(ξ) and g(ξ) are analytic vector
fields around the origin. A transformation consists
of a change of coordinates and an invertible feed-
back of the following form

x = φ(ξ),
∂φ

∂ξ

∣∣∣∣
ξ=0

6= 0

u = α(ξ) + β(ξ)v, β(0) 6= 0
(2.2)

where φ(ξ), α(ξ), and β(ξ) are analytic functions
around the origin (ξ, v) = (0, 0), x and ξ are
state variables of the control system, u and v are
the control inputs. The family of transformations
defined by (2.2) is a group. Control systems can be
classified based on this group of transformations.

Definition 2.1. Given two analytic control sys-
tems. They are analytically equivalent to each
other if one system can be transformed into an-
other by an analytic change of coordinates and an
analytic state feedback.

In this paper, we divide systems defined by (2.1)
into three subsets based on the number of un-
controllable modes. More specifically, define the
matrices A, B, and the integer n0 by

A =
∂f

∂ ξ
(0), B = g(0)

n0 = 3− rank[B,AB,A2B]
(2.3)

If n0 = 0, the system is linearly controllable. It has
no uncontrollable mode. If n0 = 1, the system has
one uncontrollable mode. If n0 = 2, the system
has two uncontrollable modes. Because g(0) 6= 0,
then n0 6= 3. In the following, the three cases of
n0 = 0, 1, 2 are addressed in three subsections.
The convergence problem is partially solved for
n0 = 0, and completely solved for n0 = 1.
For n0 = 2, it is proved that the normal form
converges provided that the associated Poincaré
normal form converges.

2.1 The normal form of linearly controllable systems

Consider a linearly controllable analytic system
(n0 = 0)

ξ̇1 = ξ2 + f
[2+]
1 (ξ)

ξ̇2 = ξ3 + f
[2+]
2 (ξ)

ξ̇3 = v + f
[2+]
3 (ξ)

(2.4)



The convergence of the normal form for systems
defined by (2.4) is still an open problem. In this
section, we can solve the convergence problem for
those systems satisfying the following assumption

∂f
[2+]
1

∂ξ1

∣∣∣∣∣
ξ3=0

= 0,
∂f

[2+]
1

∂ξ1∂ξ3

∣∣∣∣∣
ξ3=0

= 0

∂f
[2+]
2

∂ξ1
= 0, f

[2+]
2 |ξ3=0 = 0

(2.5)

More specifically, (2.4) and (2.5) imply

ξ̇1 = ξ2 + f
[2+]
1I (ξ2)

+f [1+]
1II (ξ2)ξ3 + f1III(ξ1, ξ2, ξ3)ξ23

ξ̇2 = ξ3 + f
[1+]
2 (ξ2, ξ3)ξ3

ξ̇3 = v + f
[2+]
3

(2.6)

Theorem 2.1. A system defined by (2.6) is analyt-
ically equivalent to its normal form

ẋ1 = x2 + ε(x1, x2, x3)x2
3

ẋ2 = x3, ẋ3 = u
(2.7)

Proof. This theorem is a slightly more general
version of a result proved in (Kang, 1991) and
(Kang, 1996). It is simple to remove f [2+]

3 by a
feedback. So, we can assume f [2+]

3 = 0. To remove
f

[1+]
2 (ξ2, ξ3)ξ3 we use the following transformation

called “pushing down”

ξ̄3 = ξ3 + f
[1+]
2 (ξ2, ξ3)ξ3, v̄ = ˙̄ξ3

The inverse mapping is analytic and it satisfies

ξ1 = ξ̄1, ξ2 = ξ̄2, ξ3 = ξ̄3 − f̄
[1+]
2 (ξ̄2, ξ̄3)ξ̄3

The transformation removes f [1+]
2 (ξ2, ξ3)ξ3 from

the second equation in (2.6). Meanwhile, the for-
mality of

f
[2+]
1I (ξ2) + f

[1+]
1II (ξ2)ξ3 + f1III(ξ1, ξ2, ξ3)ξ23

in the first equation of (2.6) remains unchanged
under ξ̄. From now, we assume f [1+]

2 (ξ2, ξ3)ξ3 = 0
and f

[2+]
3 = 0 in (2.6). For the rest of the proof,

we use the transformation in (Kang, 1991) and
(Kang, 1996). Define

f̃1II(ξ2) =

ξ2∫
0

f1II(t)dt

x1 = ξ1 − f̃1II(ξ2)
x2 = ξ2 + f1I(ξ2)

x3 = ξ3 +
∂f1I(ξ2)
∂ξ2

ξ3

u = v +
∂2f1I(ξ2)
∂ξ22

ξ23 +
∂f1I(ξ2)
∂ξ2

v

(2.8)

Under the new coordinates we have

ẋ1 = x2 + f1III(ξ1, ξ2, ξ3)ξ23
ẋ2 = x3, ẋ3 = ν

(2.9)

From (2.8) we have ξ3 = x3 + ψ(x)x3 for some
function ψ(x). Substitute this into (2.9), we obtain

ẋ1 = x2 + f1III(ξ(x))(1 + ψ(x))2x2
3

ẋ2 = x3, ẋ3 = u

This is a system in normal form and the transfor-
mations used are analytic. 2

2.2 Systems with a single uncontrollable mode

This is the case in which the problem of conver-
gence is completely solved. The proof is based
on the Cauchy-Kowalevsakaya theorem of partial
differential equations.

Theorem 2.2. Consider an analytic control sys-
tem defined by (2.1). Assume n0 = 1. Then (2.1)
is analytically equivalent to its normal form

ẋ =

 λ 0 0
0 0 1
0 0 0

x+

 0
0
1

u+

 p[2+](x0)
0
0

 γ(x0)x11 + δ1(x0, x11)x2
11 + δ2(x0, x1)x2

12

0
0


where p(x0) is the Poincaré normal form, i.e.

p[2+](x0) =
{

0, if λ 6= 0
analytic function, if λ = 0 (2.10)

Proof. Because g(0) 6= 0, there exists a change
of coordinates so that, under the new coordinate,
g =

[
0 0 1

]T . So, we can assume g(ξ) to be a
constant vector. In this case, u is not contained
in any nonlinear term. Because n0 = 1, there
exists a linear change of coordinates x = Tξ and
a linear feedback v = Kξ + Pu such that (2.1) is
transformed into a system in the following form

ẋ =

 λ 0 0
0 0 1
0 0 0

x+

 0
0
1

u+

 f
[2+]
0 (x)
f

[2+]
11 (x)
f

[2+]
12 (x)

 (2.11)

where x =
[
x0 x11 x12

]T , and f
[2+]
0 (x), f [2+]

11 (x)
f

[2+]
12 (x) are analytic functions contain only the

quadratic and higher order terms of x in their
Taylor expansions around the origin.

To transform the system into its normal form, we
first cancel f [2+]

11 and f
[2+]
12 by change of coordi-

nates and state feedback. For this purpose, let
x̄11 = x11, x̄12 = x12 + f

[2+]
11 (x), then

˙̄x11 = x̄12,

˙̄x12 = u+ f
[2+]
12 (x) +

∂f
[2+]
11

∂x0
(λx0 + f

[2+]
0 (x))

+
∂f

[2+]
11

∂x11
(x12 + f

[2+]
11 (x)) +

∂f
[2+]
11

∂x12
(u+ f

[2+]
12 (x))



By defining v = ˙̄x12, we obtain

ẋ0 = λx0 + f
[2+]
0 (x),

˙̄x11 = x̄12, ˙̄x12 = v

Now, we can consider (2.11) in which

f
[2+]
11 (x) = 0, f

[2+]
12 (x) = 0 (2.12)

Now, we focus on the uncontrollable part.

f
[2+]
0 (x) = (f [2+]

0 (x0, x11, x12)− f
[2+]
0 (x0, 0, 0))

+f [2+]
0 (x0, 0, 0)

If λ 6= 0, based on the Poincaré normal form
theory (Arnold, 1983) we know there exists a
change of coordinates x̄0 = x0 + ϕ[2+](x0) such
that ẋ0 = λx0 + f

[2+]
0 (x0, 0, 0) is transformed into

˙̄x0 = λx̄0. When λ = 0, then all terms in the
Taylor expansion of f [2+]

0 (x0, 0, 0) are resonant,
thus they are already in Poincaré normal form.
So we can assume (2.11) satisfies

f
[2+]
0 (x) = f̄ [2+](x0, x11, x12) + p[2+](x0)

in which p[2+](x0) satisfies (2.10), and

f̄ [2+](x0, 0, 0) = 0

This function can be expressed as

f̄ [2+](x0, x11, x12) = γ(x0)x11 + q(x0, x11)x12+
δ1(x0, x11)x2

11 + δ2(x0, x1)x2
12

where γ(x0), q(x0, x11), δ1(x0, x11), and δ2(x0, x1)
are analytic functions and γ(0) = 0, q(0, 0) = 0.
Now, let us find a change of coordinates that per-
mits us to cancel q(x0, x11)x12 in f̄(x0, x11, x12).
Consider the change of coordinates

x̄0 = x0 − φ[2+](x0, x11).

Then

˙̄x0 = ẋ0 −
∂φ[2+](x0, x11)

∂x0
ẋ0 −

∂φ[2+](x0, x11)
∂x11

ẋ11,

=
(

1− ∂φ[2+](x0, x11)
∂x0

)(
λx0 + p[2+](x0)

+γ(x0)x11 + q(x0, x11)x12 + δ1(x0, x11)x2
11

+δ2(x0, x1)x2
12

)
− ∂φ[2+](x0, x11)

∂x11
x12

We want to prove that the following PDE(
1−∂φ

[2+](x0, x11)
∂x0

)
q(x0, x11)−

∂φ[2+](x0, x11)
∂x11

= 0

admits an analytic solution φ[2+](x0, x11) around
the origin. Indeed, let y1 = φ[2+](x0, x11) and
y2 = x11, then the equation becomes

∂y1
∂x11

= − ∂y1
∂x0

q(x0, y2) + q(x0, y2),

∂y2
∂x11

= 1
(2.13)

with boundary condition y1 = y2 = 0 at x11 = 0.
The Cauchy-Kowalevski Theorem (John, 1982)

guarantees that (2.13) has an analytic solution
around the origin. Moreover, every term in y1
contains x11 because of the boundary condition.
So, if y1 has a linear term, it must be x11.
However, the right hand side of the first equation
in (2.13) is at least linear. Therefore, the lowest
nonzero term in the Taylor expansion of y1 =
φ[2+](x0, x11) must be at least quadratic and

φ[2+](x0, 0) = 0 (2.14)

Under this transformation, ˙̄x0 has the following
form

˙̄x0 =
(

1− ∂φ[2+](x0, x11)
∂x0

)(
λx0 + p[2+](x0)

+γ(x0)x11 + δ1(x0, x11)x2
11 + δ2(x0, x1)x2

12

)
= λx0 + p̃[2+](x0) + γ̃(x0)x11

+δ̃1(x0, x11)x2
11 + δ̃2(x0, x1)x2

12

(2.15)

for some analytic functions p̃[2+](x0), γ̃(x0)x11,
δ̃1(x0, x11)x2

11, and δ̃2(x0, x1). In the inverse trans-
formation x0 is a function of x̄0 and x11, i.e.

x0 = x̄0 + ψ[2+](x̄0, x11)

for some analytic function ψ[2+](x̄0, x11). Because
of (2.14) we have ψ(x̄0, 0) = 0. Therefore, under
the new coordinate, (2.15) is equivalent to a
system in the following form

˙̄x0 = λx̄0 + p̄[2+](x̄0) + γ̄(x̄0)x11 + δ̄1(x̄0, x11)x2
11

+δ̄2(x̄0, x1)x2
12

This is in normal form. 2

2.3 Systems with two uncontrollable modes

If n0 = 2, the linearization of the system has two
uncontrollable modes, and one controllable mode.
Due to the small dimension of the controllable
part, the convergence of the normal form is fully
determined by the uncotrollable variables. As a
result, the convergence of the normal form de-
pends on the convergence of the Poincaré normal
form in the uncontrollable dynamics. Consider a
system defined by (2.1) satisfying n0 = 2. By
an analytic change of coordinates, we can assume
g(ξ) =

[
0 0 1

]T , the system has the following
form [

ξ̇01
ξ̇02

]
= A0ξ0 +A1ξ1 + f

[2+]
0 (ξ0, ξ1)

ξ̇1 = v

The controllability matrix [
0
0

]
A1 A0A1

1 0 0





has rank 1, we know A1 = 0. Therefore, the
system is analytically equivalent to[

ξ̇01
ξ̇02

]
= A0ξ0 + f

[2+]
0 (ξ0, ξ1)

ξ̇1 = v

(2.16)

where A0 is a 2 × 2 matrix in Jordan canonical
form, and ξ0 =

[
ξ01 ξ02

]T . The higher order
vector field f

[2+]
0 (x0, x1) can be expressed in the

following form

f
[2+]
01 (ξ0, ξ1) = p

[2+]
1 (ξ0) + γ1(ξ0)ξ1 + δ1(ξ0, ξ1)ξ21

f
[2+]
02 (ξ0, ξ1) = p

[2+]
2 (ξ0) + γ2(ξ0)ξ1 + δ2(ξ0, ξ1)ξ21

Except for the vector field

p[2+](ξ0) =

[
p
[2+]
1 (ξ0)
p
[2+]
2 (ξ0)

]
the system is already in normal form. Therefore,
the convergence of normal form boils down to
the normal form of the following system without
control

ξ̇0 = A0ξ0 + p[2+](ξ0) (2.17)

This is the classical Poicaré normal form.

Proposition 2.1. Consider three dimensional sys-
tems satisfying n0 = 2. Then the system (2.16) is
analytically equivalent to its normal form if (2.17)
admits an analytic Poincaré normal form under
analytic change of coordinates.

The condition in this result is sufficient, but not
necessary. For example, consider[
ξ̇01
ξ̇02

]
= A0ξ0 + q

[2+]
1 (ξ0)q

[2+]
2 (ξ0) + q

[2+]
1 (ξ0)ξ1

ξ̇1 = v

Then the change of coordinates

ξ0 = x0, ξ1 = x1 − q
[2+]
2 (x0)

plus a suitable state feedback cancels q[2+]
1 (ξ0)q

[2+]
2 (ξ0),

no matter it has a convergent Poincaré normal
form or not.

3. STABILITY AND BEHAVIOR OF A
THREE DIMENSIONAL NORMAL FORM

Normal forms are representatives of general non-
linear control systems. Therefore, the dynamic be-
havior of normal forms qualitatively characterizes
the fundamental properties of nonlinear control
systems. In this section, we develop a Lyapunov
function and analyze its behavior for the nor-
mal forms defined by (3.1), which is a subset of
the normal forms in Theorem 2.2. In addition, it
is proved that the controlled Lorenz equation is

globally and analytically equivalent to a special
case of (3.1). As a result, the normal form could
have chaotic behavior. Consider the following nor-
mal form with one uncontrollable mode

ẋ0 = −λx0 + δ1x
2
1 + δ2x

2
2

ẋ1 = x2

ẋ3 = u
(3.1)

In this section, we assume λ > 0. The system
has interesting behavior when its trajectories are
attracted to a bounded set. For this purpose, we
need to generate a Lyapunov function. let x1 = z1,
x2 = −dz1 + ez2, and z0 = x0 + px2

1. Define the
Lyapunov function by

V =
1
2
(z2

1 + z2
2 + (z0 − q)2) (3.2)

Consider the feedback

u = −k1x1 − k2x2 + k01x0x1 + k02x0x2

+k111x
2
1 + k112x

2
1x2

(3.3)

We consider three family of feedbacks. If in V (z)
we select q = 0, then it can be proved that the
following feedback globally stabilizes the system.

Feedback I

k2 > 0

0 < d < k2 and d 6= λ/2, T =
δ1 + δ2d

2

λ− 2d
k1 > (k2 − d)d, e2 = k1 − (k2 − d)d
k01 = e2(δ2d+ 2T )
k02 = −δ2e2
k111 = −e2T (δ2d+ 2T )
k112 = e2δ2T

(3.4)

If we select q 6= 0, then we can prove that the tra-
jectory approaches a bounded attractor under the
following feedbacks. The notation I(a,b) represents
the open interval between a and sign(b)∞.

Feedback II , δ2 6= 0

k2 ∈ R

k02 ∈ I(0,−δ2), e2 =
∣∣∣∣k02

δ2

∣∣∣∣
d > 0 and d 6= λ/2, T =

δ1 + δ2d
2

λ− 2d
k1 ∈ I(e2+(δ2d+2T )(d−k2)/δ2,(δ2d+T )/δ2)

k01 = e2(δ2d+ 2T )
k111 = −e2T (δ2d+ 2T )
k112 = e2δ2T

(3.5)



Feedback III , δ2 = 0, δ1 6= 0

k2 > 0
k1 ∈ R

0 < d < k2 and d 6= λ/2, T =
δ1

λ− 2d
k111 < 0, e2 = −k111

2T 2

k01 = 2e2T
k02 = 0, k112 = 0

(3.6)

Theorem 3.1. Consider the normal form (3.1).

(i) Given any feedback in the form of I, or II,
or III. Then there exists a bounded set D so
that all trajectories of the closed-loop system
asymptotically approach D.

(ii) Under Feedback I the system is globally
asymptotically stable at the origin.

While the system is asymptotically stable under
Feedback I, its behavior under Feedbacks II and
III becomes more complicated. All we know is that
the system has a bounded attractor. However, the
behavior inside the bounded attractor is unknown.
In fact, depending on the feedback, bifurcations
and chaos could occur. As an example, in the
following we prove that the Lorenz system is
equivalent to a normal form (3.1) with a Feedback
III. Consider a controlled Lorenz system

ẋ = α(y − x)
ẏ = βx− xz − y + v
ż = xy − λz

(3.7)

where α > 0, β > 0, and λ > 0 are constant
parameters, u is a control input. Define a globally
invertible transformation

x1 = x, x2 = α(y − x),

x0 = z − 1
2α
x2,

u = α(β + α)x− α(1 + α)y − αxz + αv,

(3.8)

Then the Lorenz system is transformed into the
following normal form

ẋ0 = −λx0 + (1− λ

α
)x2

1

ẋ1 = x2, ẋ2 = u
(3.9)

It is a special case of the normal form (3.1) with
δ1 = 1− λ

α , δ2 = 0, for some α > 0. The classical
Lorenz system is (3.7) with v = 0. It is equivalent
to (3.9) in which u is defined by (3.3) and the
coefficients k1 = α − αβ, k2 = α + 1, k01 = −α,

k02 = 0, k111 = −1
2
, k112 = 0. It is a special case

of Feedback III with d = α. It is well known that
the system has bifurcations and chaos, depending
on the value of α, β, and λ.

Proposition 3.1. Under the change of coordinates
and state feedback (3.8), the controlled Lorenz
system (3.7) is globally and analytically equiva-
lent to its normal form (3.9). The classical Lorenz
system with v = 0 is equivalent to (3.9) under a
Feedback III.

4. CONCLUSION

The convergence of control system normal forms
is a long time open problem. In this paper, the
problem is solved for three dimensional control
systems with a single uncontrollable mode and a
single input. The problem is partially solved for
linearly controllable systems and also for systems
with two controllable modes. A controlled Lorenz
system is proved to be analytically equivalent to
a normal form. In addition, a family of feedbacks
is derived under which the normal form has a
bounded attractor which include the well known
Lorenz attractor as a special case.
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