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1 Introduction

The theory of model reduction for linear control systems was initiated by B.
C. Moore [9]. His method, called balanced truncation, is applicable to control-
lable, observable and exponentially stable linear systems in state space form.
The reduction is accomplished by making a linear change of state coordinates
to simultaneously diagonalize the controllability and observability gramians
and make them equal. Such a state space realization is said to be balanced.
The diagonal entries of the gramians are the singular values of the Hankel map
from past inputs to future outputs. The balanced reduction is accomplished
by Galerkin projection onto the states associated to the largest singular val-
ues. The method is intrinsic in that the reduced order model depends only on
the dimension of the reduced state space.

Scherpen [12] extended Moore’s method to locally asymptotically stable
nonlinear systems. She defined the controllability and observability functions
which are the nonlinear analogs of the controllability and observability grami-
ans. Scherpen made a change of state coordinates that took the system into
input normal form where the controllability function is one half of the sum of
squares of the state coordinates. She then made additional changes of state
coordinates that preserved the input normal form while diagonalizing the ob-
servability function where the diagonal entries, which she called the singular
value functions, are state dependent. She reduced the system by Galerkin
projection onto coordinates with the largest singular value functions.

The reduction technique of Scherpen is not intrinsic. The singular value
functions themselves are not unique [6]. Moreover the resulting reduced order
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system depends on the changes of coordinates that are used to achieve it and
these are not unique.

The goal of this paper is to present a more intrinsic method of nonlin-
ear model reduction. Our approach differs from Scherpen in that we analyze
the changes of coordinates degree by degree and give a normal form of the
controllability and observability functions for each degree. Generically this
normal form of the controllability and observability functions is unique up
through terms of degree 7 and it is diagonalized in some sense. There are
many changes of coordinates that achieve the normal form and this choice
can affect the lower order model.

2 Input Normal Form of Degree d

Suppose we have an n dimensional system of the form

ẋ = f(x, u) = Fx+Gu +f [2](x, u) + . . . +f [d](x, u) +O(x, u)d+1

y = h(x) = Hx +h[2](x) + . . . +h[d](x) +O(x)d+1 (1)

where f(x, u), h(x) are Cd+1, d ≥ 1 in some neighborhood of the equilibrium
x = 0, u = 0. The superscript [j] denotes a function that is homogeneous and
polynomial of degree j in its arguments so the right sides of the above are
the Taylor series expansions of f, h around x = 0, u = 0 with remainders of
degree d+ 1.

Following Moore [9] we assume that F is Hurwitz, i.e., all its eigenvalues
lie in the open left half plane, F,G is a controllable pair and and H,F is
an observable pair. Scherpen [12] defined the controllability and observability
functions of the system. The controllability function πc(x) is the solution of
the optimal control problem

πc(x0) = inf
u(−∞:0)

1
2

∫ 0

−∞
|u|2dt (2)

subject to the system (1) and the boundary conditions

x(−∞) = 0
x(0) = x0.

The notation u(−∞ : 0) denotes a function in L2((−∞, 0), IRm). Loosely
speaking πc(x) is the minimal ”input energy” needed to excite the system
from the zero state to x over the time interval (−∞, 0].

If πc(x) exists and is smooth then it and the optimal control u = κ(x)
satisfy the Hamilton-Jacobi-Bellman equations

0 =
∂πc

∂x
(x)f(x, κ(x))− 1

2
|κ(x)|2, 0 =

∂πc

∂x
(x)

∂f

∂u
(x, κ(x))− κ′(x). (3)
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locally around x = 0 where ′ denotes transpose. The negative signs in front
of second terms in the above equations occur because we are considering an
optimal control problem on (−∞, 0] rather than the more usual [0,∞).

Because F is Hurwitz and F,G is a controllable pair then from [1], [8]
we know there there exists a unique local solution of these equations around
x = 0 where πc(x) is Cd+2 and κ(x) is Cd+1. Moreover the Taylor series of
this solution can be computed term by term,

πc(x) = 1
2x
′P−1

c x+ π
[3]
c (x) + . . .+ π

[d+1]
c (x) +O(x)d+2

κ(x) = Kx+ κ[2](x) + . . .+ κ[d](x) +O(x)d+1
(4)

where Pc > 0 is controllability gramian, i.e., the unique solution to linear
Lyapunov equation

0 = PcF + F ′Pc +GG′ (5)

and the linear part of the feedback is

K = G′P−1
c (6)

The controllability gramian is finite because F, G is a controllable pair and
positive definite because F is Hurwitz. The higher degree terms of π(x), κ(x)
can be computed degree by degree following the method of Al’brecht [1].

The observability function πo(x) is defined by

πo(x0) =
1
2

∫ ∞

0

|y(t)|2dt

subject to the system (1) and the initial condition

x(0) = x0

Since F is Hurwitz we are assured that if x0 is small enough then x(t) → 0
exponentially fast as t → ∞ so y(0 : ∞) ∈ L2((0,∞), IRp). Again speaking
loosely πc(x) is the ”output energy” that is released by the system over the
time interval [0,∞) when it is started at x(0) = x and the input is zero.

The observability function satisfies the nonlinear Lyapunov equation

0 =
∂πo

∂x
(x)f(x, 0) +

1
2
|h(x)|2. (7)

Because F is Hurwitz and H,F is an observable pair then there exists
a unique Cd+2 solution of this equation defined locally around x = 0. The
Taylor series of this solution can also be computed term by term,

πo(x) =
1
2
x′Pox+ π[3]

o (x) + . . .+ π[d+1]
o (x) +O(x)d+2

where Po > 0 is the observability gramian, i.e., the unique solution to the
linear Lyapunov equation



4 A. J. Krener

PoF
′ + FPo +H ′H = 0.

The observability gramian is finite because F is Hurwitz and positive definite
because H, F is an observable pair.

From [9], [12] we know that we can choose a linear change of coordinates
so that in the new coordinates also denoted by x

πc(x) =
1
2
|x|2 + π[3]

c (x) +O(x)4 (8)

πo(x) =
1
2

∑
τix

2
i + π[3]

o (x) +O(x)4 (9)

where the squared singular values τ1 ≥ τ2 ≥ . . . ≥ τn > 0 are the ordered
eigenvalues of PoPc. When (8) holds then we say that the system is in input
normal form of degree one.

Instead we could have made a linear change of coordinates to make Po = I
and Pc a diagonal matrix. Then we say that the system is in output normal
form of degree one. Throughout this paper we shall concentrate on systems
that are in input normal form but there are analogous results for systems that
are in output normal form .

The linear part of the system is said to be balanced [9] if the state co-
ordinates have been chosen so that Pc and Po are diagonal and equal. The
diagonal entries σ1 ≥ . . . ≥ σn > 0 are called the Hankel singular values of the
linear part of the system and they are related to the squared singular values
τi = σ2

i .

Definition 1. A system with distinct squared singular values τ1 > τ2 > . . . >
τn is in input normal form of degree d if

πc(x) =
1
2

n∑
i=1

x2
i +O(x)d+2, πo(x) =

1
2

n∑
i=1

τ
[0:d−1]
i (xi)x2

i +O(x)d+2

(10)
where τ

[0:d−1]
i (xi) = τi + . . . is a polynomial in xi with terms of degrees 0

through d−1. They are called the squared singular value polynomials of degree
d− 1.

Input normal form of degree d is similar to a normal form of Scherpen
[12]. She showed that, for nonlinear systems with controllable, observable and
exponentially stable linear part, state coordinates x can be found such that

πc(x) +
1
2

n∑
i=1

x2
i , πo(x) =

1
2

n∑
i=1

τi(x)x2
i (11)

where Scherpen called τi(x) the singular value functions.
Grey and Scherpen [6] have shown that the singular value functions τi(x)

are not unique except at x = 0 where they equal the squared singular values
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of the linear part of the system τi(0) = τi = σ2
i . For example, suppose 1 ≤

i < j ≤ n and we define for any c ∈ IR

τ̄i(x) = τi(x) + cx2
j

τ̄j(x) = τj(x)− cx2
i

τ̄l(x) = τl(x) otherwise

then

πo(x) =
1
2

n∑
l=1

τl(x)x2
l =

1
2

n∑
l=1

τ̄l(x)x2
l

Moreover there are many local coordinate systems around zero in which the
controllability and observability functions of the system are in the normal
form of Scherpen (11), see [6].

The differences between Scherpen’s normal form and input normal form
of degree d are threefold. First the former is exact while the latter is only
approximate through terms of degree d+ 1. The second difference is that, in
the former, the parameters τi(x) can depend on all the components of x, while,
in the latter, when the Hankel singular values are distinct, the ith parameter
τ

[0:d−1]
i (xi) only depends on xi. Finally and most importantly, the singular

value functions τi(x) of the former are not unique except at x = 0 while
the squared singular value polynomials τ [0:d−1]

i (xi) of the latter are unique
if d ≤ 6 and the Hankel singular values are distinct. If the system is odd,
i.e., f(−x,−u) = −f(x, u), h(−x) = −h(x) then the squared singular value
polynomials τ [0:d−1]

i (xi) are unique if d ≤ 12.
Recently Fujimoto and Scherpen [3] have shown the existence of a normal

form where πc is one half the sum of squares of the state coordinates and

∂πo

∂xi
(x) = 0 iff xi = 0. (12)

But the normal form of Fujimoto and Scherpen [3] is not unique while the
input normal form of degree d ≤ 6 is unique.

While writing this paper we became aware of a earlier paper of Fujimoto
and Scherpen [2] that claims the following. Suppose the linear part of the
system is controllable, observable and Hurwitz and the Hankel singular values
are distinct. Then there exists a local change of coordinates such that the
controllability and observability functions are of the form

πc(x) =
1
2

n∑
i=1

x2
i πo(x) =

1
2

n∑
i=1

(ρi(xi)xi)
2 (13)

Unfortunately there appears to be a gap in their proof. Such a result would
be an extremely useful generalization of Morse’s Lemma.
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Notice that if a system with distinct squared singular values τi = τi(0)
is in input normal form of degree d then its controllability and observability
functions are ”diagonalized” through terms of degree d+ 1. They contain no
cross terms of degree less than or equal to d+1 where one coordinate multiplies
a different coordinate. This is reminiscent of the balancing of linear systems
by B. C. Moore [9].

For linear systems the squared singular value τi is a measure of the impor-
tance of the coordinate xi. The ”input energy” in the state x is πc(x) and the
”output energy” is πo(x). The states that are most important are those with
the most ”output energy” for fixed ”input energy”. Therefore in constructing
the reduced order model, Moore kept the subspace of states with largest τi
for they have the most ”output energy” per unit ”input energy”.

In Scherpen’s generalization [12] of Moore, the singular value functions
τi(x) measure the importance of the state xi. To obtain a reduced order model,
she assumed τi(x) > τj(x) whenever 1 ≤ i ≤ k < j ≤ n and x is in a
neighborhood of the origin. Then she kept the states x1, . . . , xk in the reduced
order model. But the τi(x) are not unique so this approach is not uniquely
defined.

For nonlinear systems in input normal form of degree d, the polynomial
τ

[0:d−1]
i (xi) is a measure of the importance of the coordinate xi for moderate

sized x. We shall show that if the τi are distinct and d ≤ 6 then τ
[0:d−1]
i (xi)

is unique. The leading coefficient of this polynomial is the squared singular
value τi so in constructing a reduced order model we will want to keep the
states with the largest τi. But τi can be small yet τ [0:d−1]

i (xi) can be large
for moderate sized xi. If we are interested in capturing the behavior of the
system for moderate sized inputs, we may also want to keep such states in the
reduced order model. We shall return to this point when we discuss reduced
order models in a Section 4.

Theorem 1. Suppose the system (1) is Cr, r ≥ 2 with controllable, observable
and exponentially stable linear part . If the squared singular values τ1, . . . , τn
are distinct and if 2 ≤ d < r − 1 then there is at least one change of state
coordinates that takes the system into input normal form of degree d (10). The
controllability and observability functions of a system in input normal form
of degree d ≤ 6 are unique. But the system and a change of coordinates that
achieves input normal form are not necessarily unique even to degree d. If the
system is odd then the controllability and observability functions of a system
in input normal form of degree d ≤ 12 are unique but again the system and a
change of coordinates that achieves it are not necessarily unique.

Proof. We shall prove the first part by induction. Moore has shown the exis-
tence of input normal form of degree d = 1 so assume that we have shown the
existence of input normal form of degree d−1. Then there are state coordinates
x and polynomials τ [0:d−2]

i (xi) of degree 0 through d− 2 such that
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πc(x) =
1
2

n∑
i=1

x2
i + π[d+1]

c (x) +O(x)[d+2]

πo(x) =
1
2

n∑
i=1

τ
[0:d−2]
i (xi)x2

i + π[d+1]
o (x) +O(x)[d+2].

A near identity change of coordinates of degree d > 1 is one of the form
x = z + φ[d](z).. For brevity we refer to it as a change of coordinates of
degree d. Notice that a change of coordinates of degree d does not change the
expansions of πc and πo through terms of degree d but it can change terms
of degrees greater than d. We shall show that there is a degree d change of
coordinates that will bring a system from input normal form of degree d− 1
to input normal form of degree d. In fact there may be several such degree d
changes of coordinates.

Suppose we have a degree d+ 1 monomial

xixjxk1 · · ·xkd−1 (14)

with at least two distinct indices, say i 6= j. Let γc and γo be the coefficients
of this monomial in π[d+1]

c (x) and π[d+1]
o (x)

After the degree d change of coordinates

φ
[d]
i (z) = aizjzk1 · · · zkd−1

φ
[d]
j (z) = ajzizk1 · · · zkd−1

φ
[d]
l (z) = 0 otherwise

(15)

we have

πc(z) =
1
2

n∑
i=1

z2
i + π[d+1]

c (z) + (ai + aj)zizjzk1 · · · zkd−1

+O(z)[d+2]

πo(z) =
1
2

n∑
i=1

τ
[0:d−2]
i (zi)z2

i

+π[d+1]
o (z) + (τiai + τjaj)zizjzk1 · · · zkd−1

+O(z)[d+2].

We would like to choose ai and aj so as to cancel the monomial zizjzk1 · · · zkd−1

from both π[d+1]
c (z) and π[d+1]

o (z) so they must satisfy[
1 1
τi τj

] [
ai

aj

]
= −

[
γc

γo

]
(16)
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Since i 6= j then τi 6= τj and this is always possible .
We proceed in this way to cancel all monomials in π[d+1]

c (z) and π[d+1]
o (z)

with at least two distinct indices and so all that are left are monomials with
all indices the same i = j = k1 = · · · = kd−1. For such a monomial the degree
d change of coordinates

φ
[d]
i (z) = −γcz

d+1
i

φ
[d]
l (z) = 0 otherwise

(17)

can be used to cancel the monomial zd+1
i from π

[d+1]
c (z) but nothing can be

done about the same monomial in π[d+1]
o (z). Hence it is added to τ [0:d−2]

i (zi)
to form τ

[0:d−1]
i (zi)

Next we show that if d ≤ 6 the normal form is unique. Let γc and γo be
the coefficients the monomial xixjxk in π

[3]
c and π

[3]
o . If i = j = k then there

is only one change of coordinates (17) that cancels the monomial from π
[3]
c . If

there are only two distinct indices among i, j, k then there is only one change
of coordinates (15, 16) that cancels the monomial from π

[3]
c and π[3]

o .
Assume that the indices are distinct, i < j < k. Then there is a one

parameter family of degree two transformations that cancel this monomial
from π

[3]
c , π

[3]
o ,

xi = zi + aizjzk

xj = zj + ajzizk

xk = zk + akzizj

xl = zl, otherwise.

(18)

The coefficients ai, aj , ak must satisfy[
1 1 1
τi τj τk

] ai

aj

ak

 = −
[
γc

γo

]
Since τi > τj > τk we can choose any ai and adjust aj , ak to satisfy this
constraint. This freedom propagates to the higher order remainders of πc and
πc in three ways.

The first way is that it introduces terms like z2
j z

2
k, z

2
i z

2
k, z

2
i z

2
j with coef-

ficients that are not unique because they depend on ai. But all these contain
two distinct indices and so all can be cancelled. For example we would cancel
the z2

j z
2
k terms with a degree three change of coordinates of the form

zj = ξj + bjξjξ
2
k

zk = ξk + bkξ
2
j ξk.

This introduces nonunique terms like ξ2j ξ
4
k and ξ4j ξ

2
k but these are easily can-

celled because they contain two distinct indices. The coordinate transforma-
tions that cancel them introduce nonunique terms of degree 12 that we don’t
care about.
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Here is another way that (18) can nonuniquely change the higher remain-
ders. Suppose the monomial x3

i appears in πo in the input normal form of
degree d > 2. Then after (18) it is replaced by

z3
i + 3aiz

2
i zjzk + 3a2

i ziz
2
j z

2
k + a3

i z
3
j z

3
k.

The first nonunique term 3aiz
2
i zjzk contains three distinct indices so it is easily

cancelled by a change of coordinates of degree 3 that introduce nonunique
terms of degree 6 with at least two distinct indices which in turn are easily
cancelled by a changes of coordinates of degree 5 which introduce nonunique
terms of degree 10 that we don’t care about. The second nonunique term
3a2

i ziz
2
j z

2
k also contains three distinct indices so it is easily cancelled by a

change of coordinates of degree 4 that introduce extra terms of degree 8 that
we don’t care about. The last nonunique term a3

i z
3
j z

3
k has two distinct indices

so it can be cancelled by a change of coordinates that introduce nonunique
terms of degree 12 that we don’t care about.

The last way that (18) can nonuniquely change the higher remainders is as
follows. Suppose the monomial xixl1xl2xl3 appears in the quartic remainders
of πc, πo Then after (18) it is replaced by

zizl1zl2zl3 + aizjzkzl1zl2zl3 + . . .

The nonunique term aizjzkzl1zl2zl3 contains at least two distinct indices j 6= k
so it can be cancelled by a change of coordinates of degree 4 which introduces
nonunique terms of degree 8 that we don’t care about.

But if if l1 = l2 = l3 = k then the change of coordinates that cancels the
nonunique term aizjz

4
k is of the form

zj = ξj + bjξ
4
k

zk = ξk + bkξjξ
3
k

and the first of these introduces a nonunique term b2jξ
8
k that contains only

one distinct index and so it cannot be cancelled from π
[8]
o . This is why input

normal form is not unique for d ≥ 7.
If the system is odd then it is easy to see that πc, πo are even functions

πc(x) = πc(−x), πo(x) = πo(−x)

so there Taylor expansions contain only even terms. A slight modification of
the above argument shows that input normal of degree d ≤ 12 is unique.

The normal change of coordinates of degree d that achieves input normal
form of degree d is constructed as follows. For each monomial (14) let i, j be
the pair of distinct indices that are furthest apart. Then we choose ai, aj in the
change of coordinates (15) to cancel this monomial in π[d+1]

c (z) and π[d+1]
o (z).

If there are not two distinct indices then we choose the change of coordinates
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(17) to cancel the monomial in π
[d+1]
c (z). Then form the composition of all

such changes of coordinates as one ranges over all monomials of degree d+ 1
and throw away the part of composition of degree greater than d. The result
does not depend on the order of the composition and it is the unique nor-
mal change of coordinates of degree d. The rational behind using the normal
change of coordinates of degree d is that if i, j are as far apart as possible
then so are τi, τj . The coefficients ai, aj that are used to cancel the monomial
(14) in both π

[d+1]
c and π

[d+1]
o satisfy the pair of linear equations (16). The

determinant of the matrix on the left is τj − τi and we would like to make
its magnitude as large as possible to minimize the effect of numerical errors
in solving these linear equations. Hence we choose i, j as far apart as possible.

While writing this paper we became aware of a paper of Fujimoto and
Tsubakino [4] that discusses the term by term computation of a change of co-
ordinates that takes a system into input normal form of degree d. They show
that at each degree the coefficients of the change of coordinates must satisfy
a set of linear equations that is underdetermined, there are more coordinates
than there are constraints in the normal form. But they don’t show that the
set of linear equations is always solvable as we have above.

Next we drop the assumption that the squared singular values are distinct.

Definition 2. The system is in input normal form of degree d if

πc(x) = 1
2

∑n
i=1 x

2
i +O(x)d+2

πo(x) = 1
2

∑n
i=1 τ

[0:d−1]
i (x)x2

i +O(x)d+2

(19)

where τ [0:d−1]
i (x) is a polynomial of degrees 0 through d − 1 in the variables

{xj : τj = τi} and with constant term

τ
[0:d−1]
i (0) = τi

Theorem 2. Suppose the system (1) is Cr r ≥ 2 with controllable, observable
and exponentially stable linear part . If 2 ≤ d < r − 1 then there is a change
of state coordinates that takes the system into input normal form of degree d
(19).

Proof. A slight extension of the proof of the previous theorem yields the ex-
istence of the input normal form of degree d. One uses changes of coordinates
of the form (15) where τi 6= τj to cancel the monomial zizjzk1 · · · zkd−1 from
π

[d+1]
c (z) and π[d+1]

c (z).
If τi = τj = τk1 = . . . = τkd−1 then the monomial zizjzk1 · · · zkd−1 can be

canceled from π
[d+1]
c (z) using the change of coordinates
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φ
[d]
i (z) = cizizjzk1 · · · zkd−1

φ
[d]
l (z) = 0 otherwise

(20)

But this change of coordinates is not uniquely determined unless i = j = k1 =
. . . , kd−1. For example if i 6= j we could as well use the change of coordinates

φ̄
[d]
j (z) = cjzizjzk1 · · · zkd−1

φ̄
[d]
l (z) = 0 otherwise

(21)

to cancel the monomial zizjzk1 · · · zkd−1 from π
[d+1]
c (z). Or we could use a

combination of them both

φ̃
[d]
i (z) = cizizjzk1 · · · zkd−1

φ̃
[d]
j (z) = cjzizjzk1 · · · zkd−1

φ̃
[d]
l (z) = 0 otherwise.

(22)

If the squared singular values τ1, . . . , τn are not distinct then input normal
form of any degree d > 1 is not unique. For example we could make a block
diagonal change of coordinates

xi = zi + φi(z)

where φi(z) only depends on those zj such that τj = τi. By the an argument
similar to the above we see that input normal form of degree d ≤ 6 is unique
up to such block diagonal changes of coordinates.

3 Linear Model Reduction

Moore’s method [9] of obtaining a reduced order model of a linear system is
called balanced truncation. One chooses so-called balanced linear state coor-
dinates z where the controllability and observability gramians are diagonal
and equal,

Pc = Po = diagonal(σ1, . . . , σn)

If σ1 ≥ σ2 ≥ . . . ≥ σk >> σk+1 ≥ . . . ≥ σn > 0 then a k dimensional reduced
order model is obtained by Galerkin projection onto the subspace of the first
k balanced coordinates.

An equivalent method is to chose linear coordinates x so that the system
is in input normal form of degree 1,

Pc = I Po = diagonal(τ1, . . . , τn)

where τi = σ2
i . A k dimensional reduced order model is obtained by Galerkin

projection onto the subspace of the first k input normal coordinates. The two
sets of coordinates and the reduced order models are related by zi = ±σ

1
2
i xi.
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It is convenient to let x1 = (x1, x2, . . . , xk) and x2 = (xk+1, . . . , xn) then
in these coordinates the full order linear system is

ẋ1 = F11x1 + F12x2 +G1u
ẋ2 = F21x1 + F22x2 +G2u
y = H1x1 +H2x2

(23)

and the reduced order model is

ẋ1 = F11x1 +G1u
y = H1x1

(24)

How does one justify balanced truncation? Consider a linear system

ẋ = Fx+Gu
y = Hx

(25)

If F is Hurwitz then it defines an input-output map

IO : L2((−∞,∞), IRm) → L2(−∞,∞, IRp)
IO : u(−∞ : ∞) 7→ y(−∞ : ∞)

given by

y(t) =
∫ t

−∞
HeF (t−s)Gu(s) ds

Ideally want would like to choose the reduced order model to minimize
over all models of state dimension k the norm of the difference between the
input-output maps of the full and reduced models. Balanced truncation does
not achieve this goal.

The input-output map of a linear system is not a compact operator which
causes mathematical difficulties. There is a closely related map which is of
finite rank hence compact. It is the Hankel map from past inputs to future
outputs which factors through the current state

H : L2(−∞, 0], IRm) → L2([0,∞), IRp)
H : u(−∞ : 0) 7→ y(0 : ∞)

given by

x(0) =
∫ 0

−∞
e−FsGu(s) ds

y(t) = HeFtx(0)

Unfortunately balanced truncation does not minimize the difference of
norm between the Hankel maps of the full and reduced models over all reduced
models of state dimension k.



Nonlinear Model Reduction 13

So how does one justify balanced truncation and how can it be generalized
to nonlinear systems? Newman and Krishnaprasad [11] have given a stochastic
way. Here is another way. We start by restricting our attention to reduced
order models that can be obtained by Petrov Galerkin projection of (25). A
Petrov Galerkin requires two linear maps

Ψ : IRk → IRn, Ψ : z 7→ x = Ψz

Φ : IRn → IRk, Φ : x 7→ z = Φx

such that ΦΨz = z and(ΨΦ)2 = ΨΦ. The reduced order model of (25) is then

ż = Φ (FΨz +Gu)
y = HΨz

Balanced truncation is a Galerkin projection in balanced coordinates
where

Φ = Ψ ′ =
[
I 0

]
(26)

But in the original coordinates it is a Petrov Galerkin projection. How were
Ψ and Φ chosen?

Intuitively to obtain a reduced order model of dimension k of the linear
system (25) we should Ψ so that the states in its range have the largest
output energy πo(x) for given input energy πc(x). More precisely, the range
of Ψ should be the k dimensional subspace through the origin where πo(x) is
maximized for given πc(x). If the linear system is in input normal coordinates
the clearly this subspace is given by xk+1 = · · · = xn = 0 and a convenient
choice of Ψ is (26).

We choose Φx so that the norm of the difference in the outputs start-
ing from x and ΨΦx is as small as possible. To do this we define the co-
observability function

πoo(x, x̄) =
1
2

∫ ∞

0

|y(t)− ȳ(t)|2 dt (27)

where y(0 : ∞), ȳ(0 : ∞) are the outputs of the linear system (25) starting
from x, x̄ at t = 0 with u(0 : ∞) = 0. Then we choose Φx to minimize

πoo(x, ΨΦx)

Because of the system is linear, πoo(x, x̄) is a quadratic form in (x, x̄) and

πoo(x, x̄) = πo(x− x̄) =
1
2

∑
τi(xi − x̄i)2

If the system is in input normal coordinates then the minimizing Φ is given
by (26).This explains choices of Ψ, Φ that are made in balanced truncation.
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4 Nonlinear Model Reduction

We would like to generalize linear balanced truncation to nonlinear systems
of the form

ẋ = f(x, u)
y = h(x) (28)

To do so we restrict our attention to reduced order models that are con-
structed by a nonlinear Galerkin projection. A nonlinear Galerkin projection
of (28) is defined by two maps, an embedding ψ from the lower dimensional
state space into the higher one and a submersion φ of the higher dimensional
state space onto the lower dimensional one. These state spaces could be man-
ifolds but, since we will focus on local methods, we shall assume that they
are neighborhoods of the origin in IRk, IRn. To simplify notation we just let
IRk, IRn stand for these neighborhoods.

So we seek

ψ : IRk → IRn, ψ : z 7→ x

φ : IRn → IRk, φ : x 7→ z

such that φ(ψ(z)) = z and (ψ ◦ φ)2(x) = ψ ◦ φ(x)
Motivated by the interpertation of linear balanced truncation given above

we would like to choose ψ so that the submanifold that is its range maximizes
output energy πo(x) for fixed input energy πc(x). But if k > 1 and the system
is nonlinear then this submanifold is not well-defined.

Suppose k = 1 then for each small positive constant c we can maximize
πo(x) subject to πc(x) = c. Since the quadratic parts of these functions are
positive definite, for small c > 0, πo(x) will have two local maxima on each
level set πc(x) = c. The locus of these local maxima form a one dimensional
submanifold through the origin which we can take as the state space of our
one dimensional reduced order model.

But if k > 1 then the k dimensional submanifold that maximizes πo(x) for
πc(x) = c is not well-defined. When the system is linear and πo(x), πc(x) are
quadratic forms then this submanifold is assumed to be a subspace and hence
is well-defined. It is the subspace spanned by the k leading eigenvectors of Po

when the system is in input normal form Pc = I.
Suppose that the squared singular values are distinct and that the nonlin-

ear system has been brought to input normal form (19) of degree d by changes
of coordinates up to degree d. The minimum input energy necessary to excite
the system to state x is

πc(x) =
1
2
|x|2 +O(x)d+2.

The output energy generated by the system relaxing from the state x is

πo(x) =
1
2

n∑
j=1

τ
[0:d−1]
j (xj)x2

j +O(x)d+2.
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Suppose further that there is a gap in the squared singular value polyno-
mials over the range of states of interest |x| ≤ c,

τ
[0:d−1]
i (xi) >> τ

[0:d−1]
j (xj) (29)

for 1 ≤ i ≤ k < j ≤ n and |xi| ≤ c, |xj | ≤ c.
Then a k dimensional submanifold that ”approximately maximizes” πo(x)

for given πc(x) is given by xk+1 = · · · = xn = 0 and we define

ψ(z1, . . . , zk) = x = (z1, . . . , zk, 0, . . . , 0) (30)

We find the submersion φ as before. Define the co-observability function
πoo(x, x̄) as before (27) except that y(0 : ∞), ȳ(0 : ∞) are the outputs of the
nonlinear system (28) starting from x, x̄ with u(0 : ∞) = 0. It is not hard to
see that πoo(x, x̄) satisfies the Lyapunov PDE

0 =
[
∂πoo

∂x
(x, x̄)

∂πoo

∂x̄
(x, x̄)

] [
f(x, 0)
f(x̄, 0)

]
+

1
2
|h(x)− h(x̄)|2

and this can be easily solved term by term,

πoo(x, x̄) =
1
2

∑
τi(xi − x̄i)2 + π[3]

oo (x, x̄) + π[4]
oo (x, x̄) + . . .

We choose φ(x) to minimize πoo(x, ψ(φ(x))). Assume that the system is
in input normal form of degree d and ψ has been chosen as above . Then a
straightforward calculation leads to

φi(x) = xi

+ 1
τi

(
∂π[3]

oo

∂x̄i
(x, (φ(x), 0)) + ∂π[4]

oo

∂x̄i
(x, (φ(x), 0)) + . . .

) (31)

for i = 1, . . . , k which can be solved by repeated substitution.
The reduced order nonlinear model is

ż = a(z, u) =
∂φ

∂x
(ψ(z))f(ψ(z), u)

y = c(z) = h(ψ(z))

(32)

Here is our algorithm for nonlinear model reduction to degree d.

1. Compute the controllability and observability functions πc(x), πo(x) to
degree d + 1 by solving the HJB and Lyapuov equations (3, 7) term by
term.

2. Make normal changes of coordinates of degrees 1 through d to bring the
system into input normal form of degree d, (10)

3. Examine the squared singular value polynomial τ [0:d−1]
i (xi) to see if there

is a gap (29) for some k over the range of states of interest.
4. Define the embedding ψ by (30).
5. Find the submersion φ by solving (31) to degree d.
6. The degree d reduced order model is given by the truncation of (32) to

terms of degree less than or equal to d.
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5 Linear Error Estimates

K. Glover [5] has given an important error bound for the norm of the difference
between the input-output map of the full linear system IOn and the input-
output map of its balanced truncation IOk,

‖IOn − IOk‖ ≤ 2
n∑

j=k+1

σj

where the norm is the induced L2 norm.
We know that the corresponding Hankel maps Hn, Hk satisfy

σk+1 ≤ ‖Hn −Hk‖

so we have for linear balanced truncation

σk+1 ≤ ‖Hn −Hk‖ ≤ ‖IOn − IOk‖ ≤ 2
n∑

j=k+1

σj

Unfortunately we do not have similar estimates for nonlinear model reduc-
tion. But there is a new error estimate for linear systems that can be extended
to nonlinear systems. To each state x of the full order model there is an op-
timal open loop control ux(−∞ : 0) that excites the system from state 0 at
t = −∞ to state x at t = 0. It is the solution of the optimal control problem
(2). These optimal controls form a n dimensional subspace of the space of
inputs L2([−∞ : 0], IRm) to the Hankel map. We expect that these optimal
controls are typical of those that are used in the full order model and hence
we are interested in the size of errors when they are used in the reduced order
model. The error of the Hankel maps can be readily bounded as follows.

The optimal open loop controls are generated by the optimal feedback
(6). If the linear system is in input normal coordinates then the optimal gain
is K = G′. We drive both the full model (23) and the reduced model (24)
obtained by balanced truncation by this feedback to get the combined system[

ẋ
ż

]
=

[
F +GK 0
G1K F11

]
For balanced truncation −(F + GK) and F11 are Hurwitz so there is an

unstable subspace z = Tx where T satisfies the Sylvester equation

T (F +GK)− F11T = G1K (33)

The meaning of T is that if we excite the reduced order system with the
optimal control ux(−∞ : 0) that excites the full order system to x then
z(0) = Tx.

Next we define the cross-observability function
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ρ(x, z) =
1
2

∫ ∞

0

|yf (t)− yr(t)|2 dt (34)

where yf (0 : ∞) is the output of the full order model starting at x(0) = x and
yr(0 : ∞) is the output of the reduced order model starting at z(0) = z with
u(0 : ∞) = 0. Because the systems are linear, ρ is a quadratic form

ρ(x, z) =
1
2

[
x
z

]′ [
Q11 Q12

Q21 Q22

] [
x
z

]
where Q satisfies the Sylvester equation

0 =
[
F 0
0 F11

]′ [
Q11 Q12

Q21 Q22

]
+

[
Q11 Q12

Q21 Q22

] [
F 0
0 F11

]
+

[
H ′H H ′H1

H ′
1H H ′

1H1

]
(35)

Clearly Q11 is the observability gramian. If the system is in balanced or input
normal coordinates then Q22 is the upper left k × k block of Q11.

If we use the optimal control ux(−∞ : 0) then the norm of error between
the full and reduced Hankel maps is

2ρ(x, Tx) = x′
[
I
T

]′ [
Q11 Q12

Q21 Q22

] [
I
T

]
x

If the system is in input normal form then the maximum squared norm of
error between the Hankel maps restricted to optimal inputs of the full system
is the largest eigenvalue of[

I
T

]′ [
Q11 Q12

Q21 Q22

] [
I
T

]
(36)

This error estimate is always greater than or equal to the largest neglected
squared singular value τk+1 because the right singular vectors of the Hankel
map of the full system are a basis for the space of optimal controls. In the few
examples that we have computed we found that this error estimate is much
closer to τk+1 than to the square of Glover’s bound.

One can compute the maximum norm of error between the Hankel maps
restricted to optimal inputs of the reduced system in a similar fashion.

6 Nonlinear Error Estimates

Unfortunately for nonlinear model reduction we don’t have an error bound
on the input-output maps similar to Glover. Furthermore we don’t have a
lower bound on the norm of the Hankel error like the first neglected singular
value. But we can generalize the error bounds of the Hankel maps restricted
to optimal inputs of the full or reduced system. We present the bound for the
optimal inputs of the full system. The other is very similar.
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Suppose we have a full order system (1) which is in input normal form of
degree d and its reduced order model

ż = a(z, u) = F11z +G1u +a[2](z, u) + . . . +a[d](z, u)
y = c(z) = H1z +c[2](z) + . . . +c[d](x)

(37)

found by the method above or a similar method.
For each x ∈ IRn there is an optimal open loop control ux(−∞ : 0) that

excites the system from state 0 at t = −∞ to state x at t = 0. It is the
solution of the optimal control problem (2). These optimal controls form a
n dimensional submanifold of the space of inputs L2([−∞ : 0], IRm) of the
Hankel map. Again we expect that these optimal controls are typical of those
that are used in the full order model and hence we are interested in the errors
when they are used in the reduced order model.

The optimal controls are generated by the feedback (4) which can be com-
puted term by term. We plug this feedback into the combined system

ẋ = f(x, κ(x)) = (F +GK)x+ . . .

ż = a(z, κ(x)) = F11z +G1Kx+ . . .

Again −(F +GK) and F11 are Hurwitz so there exists an unstable manifold
z = θ(x) which satisfies the PDE

a(θ(x), κ(x)) =
∂θ

∂x
(x)f(x, κ(x))

This PDE can be solved term by term and the linear coefficient is the T
satisfying (33).

The cross-obervability function ρ(x, z) is defined as before (34) except now
the full (1)and reduced (37) systems are nonlinear and the input is zero. The
cross-obervability function satisfies the PDE

0 =
[

∂ρ
∂x (x, z) ∂ρ

∂z (x, z)
] [
f(x, 0)
a(z, 0)

]
+

1
2
|h(x)− c(z)|2

This also has a series solution

ρ(x, z) =
1
2

[
x
z

]′ [
Q11 Q12

Q21 Q22

] [
x
z

]
+ ρ[3](x, z) + . . .

where Q satisfies the Sylvester equation (35).
Then the squared norm of the error between the full and reduced Hankel

maps using the optimal control ux(−∞ : 0) is

2ρ(x, θ(x))

and good estimate of the maximum relative squared norm of the error is



Nonlinear Model Reduction 19

sup
ρ(x, θ(x))
πc(x)

Suppose the system is in input normal form of degree d, so that

πc(x) =
1
2
|x|2 +O(x)d+2 (38)

Then we can make a linear orthogonal change of coordinates to diagonalize
the quadratic part (36) of ρ(x, θ(x)). If the diagonal entries are distinct, then
as with the transformation to input normal form of degree d we can make
further changes of state coordinates of degrees 2 through d that leave πc(x)
as above (38) and bring ρ(x, θ(x)) into the normal form

ρ(x, θ(x)) =
1
2

∑
i

ε
[0:d−1]
i (xi)x2

i

The ε[0:d−1]
i (xi) are polynomials of degrees 0 through d− 1 and are called

the squared error polynomials. They are unique if d ≤ 6 (d ≤ 12 for odd
systems). They measure how fast the squared error between the Hankel maps
grows restricted to optimal controls ux(−∞ : 0) as x grows.

7 Example

We consider three linked rods connected by planar rotary joints with springs
and dampening hanging from the ceiling. The input is a torque applied to
the top joint and the output is the horizontal displacement of the bottom.
Each rod is uniform of length 2, mass 1, with spring constant 3, dampening
constant 0.5 and gravity constant 0.5.

We approximated the nonlinear system by its Taylor series through terms
of degree 5. The Taylor series of controllability and observability functions
πc(x), πo(x) were computed through terms of degree 6. The system was
brought into input normal form of degree 5 by a changes of state coordi-
nates of degrees 1 through 5. The Hankel singular values of the linear part of
the system are 15.3437, 14.9678, 0.3102, 0.2470, 0.0156, 0.0091. Apparently
only two dimensions are linearly significant.

Figure 1 is a semilog plot of the squared singular value polynomials τ [0:4]
i

Notice the difference in scale and how flat they are. Apparently only two
dimensions are nonlinearly significant.

Let ux(−∞ : 0) be the optimal input that excites the full system to x. Let
Hn,Hk be the Hankel of the full order model (n = 6) and the reduced order
model (k = 2). The error between them satisfies

|Hn(ux(−∞ : 0))−Hk(ux(−∞ : 0))|2 ≤ 0.0965|x|2 − 0.0009|x|4 + . . .

By way of comparison, the square of the third Hankel singular value is 0.0962
so this estimate is tight. Figure 2 shows the outputs of the Hankel maps of
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Fig. 1. Squared Singular Value Polynomials

the full and reduced systems excited by an optimal control ux(−∞ : 0) for
random x.

Figure 3 shows the responses of the full nonlinear model, the reduced
nonlinear model and the linear part of the full model to a sinusoidal input.
The linear response has the largest amplitude and exceeds the total length of
the three rods. The full nonlinear response has a small secondary oscillation
that does not appear in the reduced nonlinear response.

8 Conclusion

We have presented a new normal form for the controllability and observabil-
ity functions of a nonlinear control system. This normal form is valid through
terms of degree d + 1 where d is an integer chosen by the user and less than
the degree of smoothness of the system. There are several advantages to this
normal form. It can be computed term by term from the Taylor expansion of
the nonlinear system. It is essentially unique for d ≤ 6 and therefore gives an
unambiguous measure of the relative importance of the different components
of the state. A reduced order model can be constructed by projection onto the
most important coordinates. One nice property of the reduced order model
is that its controllability and observability functions are almost the restric-
tions of the controllability and observability functions of the full order model.
Also the state space of the reduced order model almost achieves the intuitive
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goal of maximizing the observability function while holding the controllability
function constant. Our methods readily extend to other forms of nonlinear
model reduction such as LQG [7], [14] and H∞ , [10], [13].

This paper is dedicated to my good friend and esteemed colleague Alberto
Isidori on the occasion of his 65th birthday.
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