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Abstract

A new systematic framework for nonlinear observer design that allows the concurrent estimation of the process state variables together with
key unknown process or sensor disturbances is proposed. The nonlinear observer design problem is addressed within a similar methodological
framework as the one introduced in [N. Kazantzis, C. Kravaris, Nonlinear observer design using Lyapunov’s auxiliary theorem, Systems Control
Lett. 34 (1998) 241; A.J. Krener, M. Xiao, Nonlinear observer design in the Siegel domain, SIAM J. Control Optim. 41 (2002) 932.] for
state estimation purposes only. From a mathematical standpoint, the problem under consideration is addressed through a system of first-order
singular PDEs for which a rather general set of solvability conditions is derived. A nonlinear observer is then designed with a state-dependent
gain that is computed from the solution of the system of singular PDEs. Under the aforementioned conditions, both state and disturbance
estimation errors converge to zero with assignable rates. The convergence properties of the proposed nonlinear observer are tested through
simulation studies in an illustrative example involving a biological reactor.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Technical limitations and/or prohibitively high cost associ-
ated with current sensor technology entail the non-availability
of all process state variables for direct on-line measurements.
Furthermore, key process parameters frequently represent
unknown or poorly known time-varying disturbances [3]. The
operation of sensing devices is also subject to external distur-
bances, involving, for example, a sudden or gradual decalibra-
tion of the instrument. Therefore, there is an essential need for
an accurate estimation of the unmeasurable process state vari-
ables together with key process or sensor disturbances [6,8,19].
In the case of linear systems, both the well-known Kalman
filter and its deterministic analogue realized by Luenberger’s
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observer [3] offer a comprehensive solution to the problem.
However, the nonlinear observer design problem is much more
challenging and has received a considerable amount of atten-
tion in the literature [1,2,4,6–20]. The present research work
aims at the development of a new framework for nonlinear ob-
server design that allows the concurrent estimation of the state
variables, together with key unknown process or sensor dis-
turbances. In particular, the nonlinear observer design problem
is formulated and addressed within a similar methodological
framework as the one first introduced in [12,16] for state esti-
mation purposes only, and from a mathematical standpoint, via
a system of first-order singular PDEs for which a rather gen-
eral set of necessary and sufficient conditions for solvability is
derived. A nonlinear observer is then designed that possesses
a state-dependent gain computed from the solution of the sys-
tem of PDEs. Under the above conditions, it is proven that both
state and disturbance estimation errors converge to zero with
assignable rates. The proposed method is evaluated in an illus-
trative bioreactor example through simulation studies.
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2. Problem formulation

Consider a dynamic system

ẋ = f (x, w),

y = h(x, w) (1)

that represents the dynamics of a process, where x is the process
state vector, y is the vector of measurements and w is the vector
of unmeasurable process or sensor disturbances. The dynamics
of the disturbances is governed by the exosystem

ẇ = s(w). (2)

Notice that disturbance models such as (2) are traditionally
considered in output regulation problems [5]. The problem of
state and disturbance estimation becomes a pure state estima-
tion problem when one considers the extended system (1)–(2),
where

[
x
w

]
is the extended system’s state vector, which must

be estimated via an appropriately designed observer.
The approach that will be taken in this work is the observer

error linearization approach [12,16]. Generally speaking, the
degree of difficulty of the observer design problem depends on
the nature of the eigenvalues of the linearization of the extended
system, in particular whether their convex hull includes the
origin (spectrum is in the Siegel domain) or does not include
the origin (spectrum is in the Poincaré domain).

The following definitions will be needed for the rest of the
paper:

• Given a set of eigenvalues �1, . . . , �n, a complex number �
is said to be nonresonant with this set of eigenvalues if it
is not related with them through any relation of the form
� = ∑n

i=1mi�i , where m1, . . . , mn are nonnegative integers
not all zero.

• Given a set of eigenvalues �1, . . . , �n, a complex number
� is said to be of type (C, �) with respect to this set of
eigenvalues if there exist constants C > 0 and � > 0 such
that |�−∑n

i=1mi�i |� C
(
∑n

i=1mi)
� for any nonnegative integers

m1, . . . , mn that are not all zero.

3. Nonlinear observer design

Consider the augmented system

ẋ = f (x, w),

ẇ = s(w),

y = h(x, w), (3)

where f : Rn×R� → Rn, s : R� → R�, h : Rn×R� → R� are
real analytic functions, with f (0, 0) = 0, s(0) = 0, h(0, 0) = 0.
Similarly as in [12,16], a local diffeomorphism z = �(x, w) is
sought that maps system (3) into

ż = Az + �(y), (4)

where A is a (n+�)×(n+�) matrix and � : R� → Rn+� is a real
analytic function with �(0)=0. As long as such a transformation
can be found, (4) can be used as observer dynamics and the

inverse transformation can be used to reconstruct the system
states:

˙̂z = Aẑ + �(y),[
x̂

ŵ

]
= �−1(ẑ). (5)

It turns out that the unknown transformation map � must
satisfy the following system of singular PDEs [12,16]:

��

�x
(x, w)f (x, w) + ��

�w
(x, w)s(w) = A�(x, w) + �(h(x, w)).

(6)

Therefore, the problem of interest reduces to the study of PDEs
(6) and the properties of the solution. The following proposi-
tions are direct consequences of the results in [12] and [16,17],
respectively.

Proposition 1. Let f : Rn × R� → Rn, s : R� → R�, h :
Rn × R� → R� and � : R� → Rn+� be real analytic vector
functions with f (0, 0) = 0, s(0) = 0, h(0, 0) = 0, �(0) = 0
and F = (�f/�x)(0, 0), P = (�f/�w)(0, 0), S = (�s/�w)(0),
H=(�h/�x)(0, 0), Q=(�h/�w)(0, 0), B=(��/�y)(0). Denote
by �(F ) and �(S) the spectra of S and F, respectively.

Suppose:

1. There exists an invertible (n + �) × (n + �) matrix T such

that T
[

F
0

P
S

]
= AT + B[H Q].

2. All the eigenvalues of A are nonresonant with �(F ) ∪ �(S).
3. 0 does not lie in the convex hull of �(F ) ∪ �(S).

Then there exists a unique analytic solution z = �(x, w) to
PDE (6) locally around (x, w) = (0, 0). The solution has the
property that [(��/�x)(0, 0) (��/�w)(0, 0)] = T and so � is a
local diffeomorphism.

Proposition 2. Under the notations of Proposition 1, suppose:

1. There exists an invertible (n + �) × (n + �) matrix T such

that T
[

F
0

P
S

]
= AT + B[H Q].

2. There exist C > 0, � > 0 such that all the eigenvalues of A
are of type (C, �) with respect to �(F ) ∪ �(S).

3. There exist C > 0, � > 0 such that all the eigenvalues of F
and S are of type (C, �) with respect to �(F ) ∪ �(S).

Then there exists a unique analytic solution z = �(x, w) to
PDE (6) locally around (x, w) = (0, 0). The solution has the
property that [(��/�x)(0, 0) (��/�w)(0, 0)] = T and so � is a
local diffeomorphism.

Remark 1. Assumptions 1 and 2 of either proposition imply

that
(
[H Q],

[
F
0

P
S

])
is an observable pair. On the other hand,

if
(
[H Q],

[
F
0

P
S

])
is an observable pair, it is always possible

to find matrices A, B, T which satisfy the matrix equation of
assumption 1, with T invertible and A having prescribed eigen-
values.
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Remark 2. Under the assumption that �(F ) and �(S) are
disjoint sets, it is possible to show that the pair of compos-

ite matrices
(
[H Q],

[
F
0

P
S

])
is observable if and only if the

following conditions hold:

(a) (H, F ) is an observable pair.
(b) (HR +Q, S) is an observable pair, where R is the solution

of RS − FR = P .
Condition (b) implies that no eigenvalue of S is a transmission
zero of (F, P, H, Q).

It should be noted that observer (5) can be expressed in the
original coordinates via the inverse transformation �−1, so that
x̂ and ŵ explicitly represent the observer states:

˙̂x = f (x̂, ŵ) + Lx(x̂, ŵ){�(y) − �(h(x̂, ŵ))},
˙̂w = s(ŵ) + Lw(x̂, ŵ){�(y) − �(h(x̂, ŵ))}, (7)

where
[

Lx(x̂,ŵ)
Lw(x̂,ŵ)

]
= [(��/�x)(x̂, ŵ) (��/�w)(x̂, ŵ)]−1.

Finally, it should be noted that the estimation error in the
transformed coordinates follows linear dynamics, governed by
the arbitrarily selected matrix A (design parameter):

d

dt
[�(x, w) − �(x̂, ŵ)] = A[�(x, w) − �(x̂, ŵ)].

4. Nonlinear observer design for state and sensing error
estimation

A special case of the problem under consideration is the state
and sensing error estimation problem, where the disturbances
affect the sensing devices only, and in an additive way:

ẋ = f (x),

ẇ = s(w),

y = h(x) + q(w). (8)

Also, suppose that for the design of the observer, linear output
injection �(y) = By is used, where B is an (n + �) × � matrix.
Then, the system of PDEs (6) becomes

��

�x
(x, w)f (x) + ��

�w
(x, w)s(w)

= A�(x, w) + B(h(x) + q(w)). (9)

The solution of (9) can be expressed as

�(x, w) = 	(x) + 
(w), (10)

where 	 and 
 satisfy the following system of PDEs:

�	

�x
(x)f (x) = A	(x) + Bh(x), (11)

�


�w
(w)s(w) = A
(w) + Bq(w). (12)

In this way, the system of PDEs for � (9) is partitioned
into two decoupled sub-systems of PDEs of smaller dimen-
sion, and, therefore, the computational effort is significantly

reduced. PDE (11) is exactly the PDE for the observer design
for the disturbance-free part of the system, whereas (12) is the
corresponding observer PDE for the disturbance dynamics. For
�(x, w) of the form (10), with 	 and 
 being solutions of (11)
and (12), observer (7) takes the form

˙̂x = f (x̂) + Lx(x̂, ŵ)(y − h(x̂) − q(ŵ)),
˙̂w = s(ŵ) + Lw(x̂, ŵ)(y − h(x̂) − q(ŵ)), (13)

where the corresponding gains are given by the following
expressions:

[
Lx(x̂, ŵ)

Lw(x̂, ŵ)

]
=

[
�	

�x
(x̂)

�


�w
(ŵ)

]−1

B. (14)

It should be noted that in most engineering applications, there
are two further simplifications:

(i) The disturbances w are considered to be prototype distur-
bances (e.g. steps, ramps, sine waves, etc.) that follow linear
dynamics, which means s(·) and q(·) are linear functions:

s(w) = Sw,

q(w) = Qw, (15)

where S and Q are matrices of appropriate dimensions. Then
the solution to PDE (12) is also a linear function:


(w) = �w, (16)

where � is the solution of the matrix equation �S −A�=BQ.
(ii) The dynamics of the process states ẋ = f (x) is locally

exponentially stable, which means that the eigenvalues of its
linearization are in the Poincaré domain. Then the results in
[12] lead to the following:

Proposition 3. Let f : Rn → Rn and h : Rn → R� be
real analytic vector functions with f (0) = 0, h(0) = 0 and
F = (�f/�x)(0), H = (�h/�x)(0).

Suppose:

1. There exists an (n+ �)×n matrix T with Rank T =n such
that T F = AT + BH .

2. All the eigenvalues of A are nonresonant with �(F ).
3. 0 does not lie in the convex hull of �(F ).

Then there exists a unique analytic solution z=	(x) to PDE
(11) locally around x = 0 with (�	/�x)(0) = T .

Remark 3. From a practical point of view, the proposed ob-
server design method requires the development of an approxi-
mate solution method for PDEs (6) and (11). In a similar spirit
as in [12,16], one can develop a comprehensive power-series
solution scheme by taking advantage of the real analyticity
property of all the functions involved. The calculations for the
power-series solution scheme can be executed, up to a finite
truncation order, using symbolic computations software. Fur-
thermore, convergence properties may be further enhanced by
adopting ideas presented in [16,18].
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5. Bioreactor application

Consider a typical bioreactor with biomass production and
substrate consumption following Monod kinetics [3]:

dx

dt
= −Dx + �maxs

K + s
x,

ds

dt
= D(sf − s) − 1

Y

�maxs

K + s
x, (17)

where x is the biomass concentration, s the substrate concentra-
tion, sf the inlet substrate concentration, D the dilution rate, K a
reaction constant, Y the yield coefficient and �max the maximal
specific growth rate. It is assumed that the process parameters
satisfy �max/D > 1 + K/sf , which guarantees the existence
of a unique positive equilibrium for the bioreactor dynamics.
Moreover, it guarantees that the equilibrium is exponentially
stable, hence the spectrum of the linearization of (17) is in the
Poincaré domain.

The biomass x is measurable on line, but the measurement
could be subjected to a systematic error w. This is assumed
to remain constant over a certain period of time, but poten-
tially undergoing step changes. The objective is to estimate both
the reactor’s state and the systematic error w. Therefore, the
extended system under consideration is

dx

dt
= −Dx + �maxs

K + s
x,

ds

dt
= D(sf − s) − 1

Y

�maxs

K + s
x,

dw

dt
= 0,

y = x + w, (18)

and the objective is to design an observer to estimate the un-
measured substrate concentration s and the error w, following
the proposed method. For the design of the nonlinear observer,
the following PDE needs to be solved:

�	

�x
(x, s)

[
−Dx + �maxs

K + s
x

]

+ �	

�s
(x, s)

[
D(sf − s) − 1

Y

�maxs

K + s
x

]

= A	(x, s) + Bx. (19)

Once (19) is solved, the nonlinear observer is given by

dx̂

dt
= −Dx̂ + �maxŝ

K + ŝ
x̂ + Lx(x̂, ŝ, ŵ)(y − x̂ − ŵ),

dŝ

dt
= D(sf − ŝ) − 1

Y

�maxŝ

K + ŝ
x̂ + Ls(x̂, ŝ, ŵ)(y − x̂ − ŵ),

dŵ

dt
= Lw(x̂, ŝ, ŵ)(y − x̂ − ŵ), (20)

where[
Lx(x̂, ŝ, ŵ)

Ls(x̂, ŝ, ŵ)

Lw(x̂, ŝ, ŵ)

]
=

[
��

�x

��

�s

��

�w

]−1

B (21)

and where �(x, s, w) = 	(x, s) + �w with � = −A−1B.
A MAPLE code has been written, which solves PDE (19)

around an equilibrium point of (18) up to truncation or-
der N , calculates the observer gains via (21) and simulates
observer (20).

In the present study, the following parameter values were
used in all simulations:

sf = 50.0, D = 0.4, K = 2.0, Y = 0.5, �max = 0.9

and the reference equilibrium point is

xs = 24.2, ss = 1.6, ws = 0.0

which corresponds to zero sensing error.
The Jacobian of the dynamics of (18), evaluated at the ref-

erence equilibrium, forms an observable pair with [1 0 1], i.e.
system (18) is linearly observable.

Process (18) and observer (20) were simulated with the fol-
lowing initial conditions:

x(0) = 20.0, x̂(0) = 22.0,

s(0) = 7.0, ŝ(0) = 3.0,

w(0) = 1.0, ŵ(0) = 0.0.

This accounts for a unit step change in the sensing error, in
the presence of non-equilibrium initial conditions.

5.1. Effect of choice of eigenvalues for the error dynamics

Fig. 1 depicts the effect of speed of the error dynamics for
the same truncation order. For brevity we present the results
only for the sensing error. Three different sets of eigenval-
ues were used, ‘slow’ (−0.05, −1.5, −3.0), ‘medium speed’
(−0.35, −0.45, −3.9) and ‘fast’ (−2.5, −3.0, −3.1), which are
all nonresonant with the linearization of (17). In all cases
shown, the truncation order was N = 5.

From Fig. 1, one can see that the response of the observer
with ‘fast’ eigenvalues converges to the process response very
fast, but with significant deviations during the transient period,
while the case of ‘medium-speed’ eigenvalues shows a reason-
ably rapid response, with smaller deviations. On the other hand,
the observer with the ‘slow’eigenvalues gives rise to a very slow
approach of the error to zero. The same behavior is observed
for both the biomass and substrate concentrations. Throughout
the rest of the paper, the focus will be on the sensing error
and additional comments regarding the other two states will be
made where necessary.

The selection of error dynamics eigenvalues is, of course, ap-
plication dependent. If large short-lived errors can be tolerated
and the settling time for the error is the most important perfor-
mance parameter, fast eigenvalues may be preferable. Notice,
however, that using eigenvalues of higher speed than the ‘fast’
eigenvalues shown here, results in responses with excessively
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Fig. 1. True and estimated sensing error for different sets of eigenvalues for
truncation order N = 5.

large deviations in the transient period. Also, it must be noted
that it is not only the ‘speed’ of the eigenvalues that affects the
performance of the observer, but also the relative magnitudes
of the eigenvalues. In the particular problem, using eigenvalues
that are reasonably spread out yields better performance than
with eigenvalues of similar magnitude.

5.2. Effect of truncation order

In all simulation runs, calculations were performed for
different truncation orders N of the power-series solution algo-
rithm for PDE (19). This was necessary in order to test numer-
ical convergence of the approximation scheme with respect to
N. It was found that for the ‘slow’ and ‘medium’ eigenvalues,
numerical convergence of the observer responses was achieved
for N = 3. Numerical convergence for the ‘fast’ eigenvalues
was achieved at a higher truncation order N = 4. Simulation
results for different truncation orders N are omitted for brevity.

The case N = 1 is of special interest, since it corresponds to
a constant-gain observer, with gains being equal to what a lin-
ear design would have given for the linearized system. For the
previously considered sets of ‘slow’ and ‘medium’ eigenvalues
and initial conditions, the performance of the constant-gain ob-
server was found to be significantly inferior to the nonlinear
observer. Increasing the speed of eigenvalues, the response of
the constant-gain observer came closer to the one of the nonlin-
ear observer, while at the same time performance deteriorated
due to larger deviations in the transient period. In simulation
runs with other initial conditions, there were cases where the
response of the constant-gain observer blew up.

5.3. Effect of measurement noise

In addition to systematic error in the sensing device, noise is
expected to be present in the measurement signal. In this case,
the observer is driven by y = x + w + v, where w, as before,
represents the systematic error in the measurement and v is the
measurement noise.

Fig. 2. True and estimated sensing error in the presence of white noise of
standard deviation 0.4, for different sets of eigenvalues and truncation order
N = 5.

Fig. 3. True and estimated sensing error for different initial conditions for
the ‘medium-speed’ eigenvalues and truncation order N = 5.

In order to test the ability of the proposed observer to per-
form well in the presence of noise, the foregoing numerical
calculations were all repeated by adding white noise to the
measurement signal. White noise was simulated using normally
distributed random numbers of zero mean and 0.4 standard de-
viation.

Fig. 2 depicts the responses of the proposed nonlinear ob-
server, under the same sets of eigenvalues and initial conditions
as before, but with the simulated white noise being added to the
measurement signal. Comparing these responses with the ones
in the absence of noise (Fig. 1), it is seen that this observer is
capable of performing well under this level of noise.

The observer acts as a filter that attenuates measurement
noise. Increasing speed of eigenvalues generally gives rise to
larger observer gains and therefore higher sensitivity to noise
(cf. Fig. 2). For the given level of noise, the ‘medium-speed’
eigenvalues give the most reasonable response, combining
speed and noise rejection capability.
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5.4. Effect of initial conditions of the observer

Finally, the effect of the initial conditions on the observer
responses was studied. Five different sets of initial conditions
were tried, including the ones previously used. Fig. 3 depicts
the estimates of the sensing error for the ‘medium-speed’ eigen-
values with truncation order N =5, for the different initial con-
ditions. It is observed that the observer performs well for all
different cases.

It is important to note that for three of the initial condition
sets, (17.0, 5.0, 0.0), (18.0, 9.0, 0.0) and (18.0, 9.0, 2.0), the
linear design (N = 1) led to unstable observer response.

6. Conclusion

A new design framework for nonlinear observers capable of
offering reliable concurrent estimates of the process state vari-
ables, along with key unknown process or sensor disturbances,
was developed. In particular, the proposed nonlinear observer
has a state-dependent gain that can be computed from the so-
lution of a system of singular first-order PDEs. Within the pro-
posed design framework, both state and disturbance estimation
errors converge to zero with assignable rates.
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