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Abstract— There is a need to be able to find patterns in high
dimensional data sets. Often these patterns are described as
lower dimensional manifolds possibly of varying dimension that
more or less fit the data. We present a new algorithm for doing
this. It is a form of nonlinear principle component analysis.

Keywords: Nonlinear dimension reduction, manifold
learning

I. INTRODUCTION

Suppose we are given a large number of data points in
a high dimensional Euclidean space. Many algorithms have
been proposed for reducing the apparently high dimensional
data. Two of the best known are the Isomap technique of
Tenenbaum, de Silva and Langford [1] and the Locally
Linear Embedding technique of Roweis and Saul [3], [4]. The
Isomap technique seeks to preserve the distances between
data points while Local Linear Embedding seeks to preserve
the linear relationships between nearby points. For a more
complete review of the literature see Section 7 of [4] and the
recent paper [2].

Our approach is to find a low dimensional piecewise linear
manifold near which most of the points lie using a form of
local principal component analysis. For ease of exposition
we shall describe the algorithm when the low dimensional
manifold is two dimesional and lies in three space but its
extension to higher dimensions is straightforward at least in
theory if not in computation.

II. PTDR

We start with an initial data point x0 and compute its
local covariance as follows. We choose a length scale l that
depends on the density and curvature of the data. We define
the neighbors of x0 to be all data points xd within 2l of
x0. The length scale l is chosen so that this neighborhood
contains ten to twenty data points. The local covariance of
the data at x0 is the matrix P0 defined to be

P0 =
∑

d

(xd − x0)(xd − x0)′

|xd − x0|2
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where the sun is over all neighboring data points.
The normalizing factor |xd − x0|2 in the denominator in

effect weights all points in the neighborhood equally. This is
because we are primarily interested in the local directions
of the data near x0 not their magnitudes. An alternative
definition that weights closest points the most is to make
the denominator |xd − x0|α where α > 2.

We assume that the local covariance has two relatively
large eigenvalues and its third eigenvalue is relatively small.
This means that the data is locally two dimensional. We refer
to the two large eigenvalues and their associated eigenvectors
as the principal eigenvalues and principal eigenvectors.

Four triangles are constructed around the initial point x0

using the two unit principal eigenvectors v1, v2 as follows.
We find the four data points x1, x2, x3 and x4 that are
closest to x0 + lv1, x0 + lv2, x0 − lv1 and x0 − lv2. These
along with x0 form the vertices of the four triangles. Lists
of vertices, edges and triangles are stored with the boundary
vertices, edges and triangles noted.

Then starting with a boundary edge which we call the
active edge, we construct a new triangle as follows. Suppose
the vertices of this outside edge are x1, x2, along with
x0 they are the vertices of one the four triangles that we
have already constructed. We compute the local covariances
P1, P2 at x1, x2 and find the point x that solves minimizes

(x− x1)′P−1
1 (x− x1) + (x− x2)′P−1

2 (x− x2) (1)

subject to

l = |x− xm| (2)

and

(x− xm)′(x0 − xm) ≤ 0 (3)

where xm = (x1 + x2)/2.
A word of explanation is in order. Minimizing the objective

(4) tends to put the new point in the directions from x1, x2

of the principal eigenvectors of the covariances. The first
constraint (5) forces the next vertex to be of order l away
from x1, x2. The second constraint (5) encourages the next
vertex to be exterior to the already found triangles.



After finding the minimizing x we choose the data point xk

that is closest to it and construct new edges [x1, xk], [x2, xk]
and a new triangle [x1, x2, xk].

One could solve the constrained minimization problem
where x is restricted to be a data point but we found that
this leads to very skewed triangles if l is not very small. In
other words the minimizing data point tends to lie close to
either x1 or x2 but not both.

At the general step we pick up a boundary edge called the
active edge with vertices xi, xj . Together with an interior
vertex xk they form an already found triangle. We compute
the local covariances Pi, Pj at xi, xj and find the data point
x that solves minimizes

(x− xi)′P−1
i (x− xi) + (x− xj)′P−1

j (x− xj) (4)

subject to

l = |x− xm| (5)

and

(x− xm)′(xk − xm) ≤ 0 (6)

where xm = (xi + xj)/2. The constant l is set to
√

3|xi − xj |/2

because this is what it would be if the newly constructed
triangle were equilateral. We desire that our triangles be as
close to equilateral as possible.

Suppose the minimizer is x then we find the data point xd

that is closest to x. The proposed new triangle is [xi, xj , xd].
If the proposed triangle overlaps with an existing triangle,
then mark the edge [xi, xj ] as problematic and start over by
marking another boundary edge as active.

If the proposed triangle does not overlap with an existing
triangle then check that the new vertex is close to any existing
vertices. If it is closer than l/2 to an existing vertex which
is no more than one edge away from the active edge then
we move the proposed vertex to the existing vertex provided
that the new triangle does not overlap any existing triangle
and if the angle between the planes of the the new and old
triangle is acceptably small

If the new vertex does not cause an overlap with any
existing triangle and is not close to any existing vertices then
we accept the proposed vertex and resulting triangle Then we
go on to another boundary edge.

If the data lies in a higher dimensional space but the local
covariances have only two principal eigenvectors the algo-
rithm is essentially unchanged although the computational
burden is increased. If there are k > 2 principal eigenvectors
the instead of constructing triangles we construct k simplices
in a similar fashion. There is no reason to presume that
the number of principal eigenvectors is constant and we are
working on extensions of the basic algorithm to handle this.

III. EXAMPLE

We implement the above on an example. We generate
5, 000 data points more or less uniformly distributed on a
torus in |Real3 with horizontal radius 4 and vertical radius
1, see Figure 1. Figure 2 shows the results of the algorithm
after 100 triangles have been constructed. The color coding
is dictated by the height of the triangle. Upper triangle are
shown in shades of purple while lower triangles are in shades
of blue. The Figures 3-6 show the results of the algorithm
after 200, 300, 400 and 500 triangles have been constructed.

Next we corrupted each component of the data points by a
Gaussian random variable of standard deviation 0.1 and ran
the algorithm again. Figures 7-12 show the results. As you
can see the algorithm is robust to a reasonable amount of
noise.
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Fig. 1. Five Thousand Random Data Points on the Torus

Fig. 2. One Hundred Triangles on the Torus

Fig. 3. Two Hundred Triangles on the Torus

Fig. 4. Three Hundred Triangles on the Torus

Fig. 5. Four Hundred Triangles on the Torus

Fig. 6. Five Hundred Triangles on the Torus



Fig. 7. Five Thousand Noisy Data Points on the Torus

Fig. 8. One Hundred Noisy Triangles on the Torus

Fig. 9. Two Hundred Noisy Triangles on the Torus

Fig. 10. Three Hundred Noisy Triangles on the Torus

Fig. 11. Four Hundred Noisy Triangles on the Torus

Fig. 12. Five Hundred Noisy Triangles on the Torus


