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1. Introduction

In the last years, beginning with the work of
Brockett [1], there has been considerable interest
in nonlinear feedback theory and some results of
earlier work on linear systems have been gener-
alized to nonlinear systems of the form

(1.1a)
(1.1b)

% =go(x) +g(x)u,
y=h(x).

The growing literature in this field include now
results about feedback equivalence to linear sys-
tems [1], {2], disturbance decoupling [3}-[7], nonin-
teracting control [3], [8], feedback equivalence to
single-input systems [9].

In this paper we give conditions under which
there exists a feedback control law of the form
u=ax)+ B(x)v such that in suitable local coor-
dinates (1.1) becomes

xl:g(l)(xlvxz)+gl(xl’x2)v’ (1.2a)
X,=A,x,+ B,v, (1.2b)
y=h(x,), (1.2¢)

with (4,, B,) a controllable pair. In other words,
we give conditions under which (1.1) can be mod-
ified by means of feedback to obtain a system
whose output is influenced only by a linear and
controllable dynamics. In doing this we essentially
combine the results of Brockett [1] and Jakubczyk
and Respondek [2] on feedback equivalence of
(1.1a) to a controllable linear dynamics with previ-
ous results of ours [3] about observability of sys-
tems under feedback.

2. Main result

We consider control systems of the form (1.1),
where

g(x)u= 3 g(x)y,

i=1
and where x ER", uy,ER, y €R?. The vector
fields g, are complete smooth vector fields on R”
(smooth means either C* or analytic) and f(0) = 0;
A is a smooth function.

Following Jakubcyk and Respondek {2], we
consider the group of transformations generated
by

(i) change of coordinates in the state space (i.e.
a diffeomorphism ¢: R" — R" subject to the con-
straint @(0) =0;

(i1) feedback of the form u = a(x) + B(x)v, i.e.

m

u,=a,(x)+ g Bij(x)vj

j=

where @, and B,; are smooth functions, a(0) =0
and B is nonsingular at 0.

A system obtained from (1.1) by means of a
transformation belonging to this group is called
feedback equivalent to (1.1). For further details, the
reader is referred to [2], where the authors give
necessary and sufficient conditions under which
(1.1a) is feedback equivalent to a linear system

xX=Ax+ Bv

with (A4, B) a controllable pair. Their results will
be used in the sequel.
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In order to solve the synthesis problem outlined
in the introduction, it is needed to make the sys-
tem as much ‘unobservable’ as possible. To this
end, it is convenient to look at the so-called (f.8)
invariant distributions of (1.1a), in particular to
the family of those annihilating the output map. A
distribution A on R" is ( f,g) invariant if there
exists a nonlinear feedback u = a(x) + B(x)v such
that the modified dynamics

x=go(x) +g(x)a(x) +g(x)B(x)o
=&o(x) +g(x)o (2.1)

leaves A invariant, i.e.

(g0 +8a, A](x) C A(x), (2.2a)

[g8,A] CA(x). (2.2b)
A distribution A on R" is locally (/. g) invariant

if

[£° A](x) CA(x) + R (g(x)),

[8.41(x) CA(x) + R (g(x)),

where

R (8(x)) =span{g,(x).....g,(x)}).

It easy to see that if B is invertible (2.2) implies
(2.3). The converse in true under some mild as-
sumptions on A. We say that a distribution A
separates the controls if there exists a feedback pair
(a, B) with invertible 8 and a partition of f=
(B, U B,) such that

A(x) VR (g(x)) = R(g(x)B,(x)),
A(x) N R (g(x)By(x)) = (0}.

Such feedback is said to be separating. A distribu-
tion is nonsingular on some open subset U of R” if
the dimension of A(x) is constant over U. The
following lemma provides the bridge between (2.3)
and (2.2) [4], [5], [6].

(2.3a)
(2.3b)

Lemma 2.1. If A is nonsingular on U, involutive and
separates the controls, then the Jollowing are equiva-
lent:

(1) A is locally (f, g) invariant,

(i) locally around each x € U there exists a sep-

arating feedback pair (a,B) such that (2.2) are
satisfied.

A distribution A annihilates the output map A if
all tangent vectors v € A(x) annihilate dh(x), ie.
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are such that dA(x)o=0 (where dh(x) denotes
the differential of 4 at x). In view of (2.3) it is seen
that the family of all locally (f, g) invariant distri-
butions annihilating the output map is closed un-
der addition and thus has a unique maximal ele-
ment, denoted A¥. It is easy to see that A¥ is
involutive [3], thus if it is also nonsingular on some
subset U of R” and separates the controls, then A¥
becomes invariant locally around each x € U un-
der a suitable feedback.

The relevance of A* to our present synthesis
problem is due to the following property, shown in
[3]. Let (a, B) be a feedback pair such that (2.2)
hold (on some open subset U ), i.e. such that the
modified dynamics (2.1) satisfy

(2, 47](x) cAx(x), (2.4a)
[2. 83]1(x) Cas(x), (2.4b)
for all x€ U. Let A% be nonsingular on U. Then
locally around each point in U it is possible to

choose coordinates x = (xy, x,) in such a way that
(2.1) becomes

xl:g(])(xl’x2)+gl(xl’x2)v’ (2-53)
%= 85(x0) + 8%(x,)v, (2.5b)
¥ =h(x,). (2.5¢)

Since A% is maximal, then the dimension of X, is
maximal over all such decompositions possible. In
this way the system is made as much ‘unobserva-
ble’ as possible by feedback.

On the basis of those concepts, it is possible to
state the main result of this section.

Theorem 2.1. Let A% be the maximal locally (£, g)
invariant distribution annihilating the output map.
Assume that A% separates the controls and is nonsin-
gular on some neighbourhood U of 0. Let u denote
the codimension of A* on U. Assume that the Sfollow-
ing conditions are satisfied on U:

(@ For all 0<k<h<p—1 and 1<i, j<m,
there exist smooth functions ¢,, such that
[ad? g ad g ] = 3 ¢, ad; g modar.

I<s<m
O<r<h

(b) dim[span{ad’, g(x)0<r|k}
+4%(x)] = r(x) = const.

(c) dim[span{adgog(x)|0<r<p— 1}
+4a%(x)] =n.
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Then the system (1.1} is locally feedback equiva-
lent to a system of the form (1.2), with (4,, B,) a
controllable pair.

Remark 2.1. The above conditions are exactly the
ones found by Jakubczyk and Respondek, but this
time they are required to hold ‘mod A%’

The proof of this theorem is essentially based
on an invariance property of (a), (b), (¢) under
feedback. We recall first that if A is an involutive
and nonsingular distribution of dimension d de-
fined on some open subset U then, by Frobenius’
theorem, locally around each point in U it is
possible choose local coordinates x = (x,, x,) such
that

A =span{d/9x,,,...,8/3x,,},

where x,,...,x,, denotes components of x,. The
(n — d)-dimensional submanifold N passing
through (x{, x¥) and given by x, = x¥ is a sub-
manifold which is said complementary to A. If fis a
vector field on U which leaves A invariant, i.e.
such that

[£.a]ca,

then locally f can be projected onto N, i.e. there
exists a vector field f defined on N such that

(dm)f=fom

where 7 denotes the projection (x,, x,) = (x{, x,).
Based on these concepts, we can state the follow-
ing lemma.

Lemma 2.2. Assume g,. g and A% satisfy the hy-
potheses of the above theorem and let g, and g be
such that (2.4) is satisfied. Let N be a complemen-
tary submanifold of A%} passing through x, € V and

let g, and g denote local projections of §, and g onto
N.

Then the following conditions are satisfied:
@) Forall0<sk<h<p '"and | <i,j<m there
exist smooth functions ¢, defined on N such that

[adjg.adbg]= S ¢.adgs.
(b)) dim[span{ad} g(x)[0<r<k}] =r/(x)
= const.

(¢) dim[span{adgo‘é(x)logrgﬂ_ 1}] K
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Proof of the lemma. It is shown firstly that the
iterated use of the hypothesis (a’) makes it possible
to write

k—1

ad% =(ad% g)B+ 3 (ad’ g)v* mod A% (2.6)
i=0

for all 0 <k <p — 1, where y* are suitable m X m

matrices of smooth functions. This is obviously

true for k=0. By induction, assuming (2.6) true

for a given k, we have

k—1

Zo- (ad% g)B+ 3 (adi g)v/ + v
i=0

>

k+1~ __
ad§0 g=

where v is a smooth vector field in A%,

k—1

g+ ga, (ad g)B+ 3 (ad’gog)%"]
i=0

mod A%,

because [g,, v] € A%,

k
=(ad®"'g)B+ 3 (ad, g)v/*" mod A%,
i=0
due to the hypotesis (a’), for suitable y**'.
Since B is nonsingular, (2.6) can be inverted,
thus obtaining

ad} g = (ad g)8™"
k—1
+ 3 (ad} £)8¢ mod A @)
i=0

for all 0 <k <p— 1, wheére 8* are suitable m X m
matrices of smooth functions.

Now, it is shown that, as consequence of (a)
and 2.7), forall0<k<h<p—land 1 <i,j<m
there exist smooth functions é,, such that

[adg‘)gi’ adg}, gj] = 2 Er:ad'é'o g:

mod A%. (2.8)

To this end, one proceeds again by induction.
Replacing the right-hand-side of (2.7) on both
sides of the equality written under (a), one typi-
cally gets equalities written (with an abuse of
notation) in the form

k—1
(adk )8~ '+ 3 (adi 2)8k +v,
i=0
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h—1
(ad},g)8" + T (adiyg)or +w
i=0

= combination of elements of the
form adj g, with i <max(k, k),

which hold mod A%. The vector fields v and w are
in A%. Since A} is involutive and invariant also
under adfgo £ (use the Jacobi identity) they can be
omitted. From the resulting equality, an induction
argument yields the desired result.

Thus, it has been proved that the equality writ-
ten under (a) remains valid when g, and g are
replaced with g, and g. The same can be said
about (b) and (c) because, thanks to (2.6),

span{adgog(x)|0<r<k} + A¥(x)
= span{ad%og(x)|0<r<k} + A%(x).

At this point it is sufficient to project onto N all
the relations obtained hitherto (i.e. (a), (b), (¢) with
g and g in the place of g, and g) in order to get
(@), (b, (¢'). U

The proof of Theorem 2.1 is now completed in
this way. Since A} is locally (f,g) invariant, by
Lemma 2.1 one can find locally around 0 a feed-
back pair (a, 8) such that (2.2) are satisfied. By
proper choice of local coordinates, (2.1) becomes
(2.5), where gZ and g2 represent local projections
of g, and g onto the complementary submanifold
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of A} given by x, = 0. Moreover, the feedback pair
(@, B) can always be chosen in such a way that
a(0)=0 and, thus, g5(0)=0. Thanks to Lemma
2.2, the vector fields g2 and §? satisfy all the
conditions, given in [3], under which (2.5b) is
feedback equivalent to (1.2b). Thus, the theorem is
proved. [
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