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1. Introduction

While no system is truly linear, in many circum-
stances linear modelsdo suffice for controller design.
If the nonlinearities are mild and the controller is
sufficiently stabilizing then the inaccuracies of the
linear model can be safely ignored. We elaborate on
this point in section 2. Recently, motivated by
systems where the nonlinearities are severe, interest
has focused on the linearization of systems by change
of state coordinates and nonlinear feedback. We
discuss this procedure and its robustness in section
3. In the last section we focus on the question of
partial linearization via the same transformations.
We find that there always are maximally linearizing
transformations which are not necessarily unique.
Motivated by robustness considerations we study the
spectrum of all such transformed systems. For sim-
plicity we consider only single input systems.

2., Infinitesmal linear approximation

<«
Consider the € nonlinear system

E-fEV) E£ER v E€R (2.1)
around some nominal operating point (go,vo) which is
a critical point of the controlled differential equa-

tion, i.e.
£ 0% = 0. (2.2)

A standard approach to such systems is to replace
(2.1) by its infinitesmal approximation

x = Ax + Bu (2.3a)
where
_3f o o _o8f o o
A= ag(g v ) B = au(g V) (2.3b)
X ~ §-§O u=v-v® (2.3¢c)
around (xo,uo) = (0,0). It is well-known that as
long as (E(t),v(t)) stays close to (go,vo) then the

approximation is fairly accurate, but this can only
happen if the input v (t) remains close to v® and
(Eo,vo) is a stable critical point, i.e., the

spectrum of A lies strictly in the left half plane.

If this is not true but the infinitesmal
approximation (2.3) is controllable (or stabilizable)
then one can use state feedback

u(x,v) = Fx + Gv (2.4)

to transform (2.3) to
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x = (A+BF)x + BGv

The controllability (or stabilizability) of (A,B)
allow us to choose F so that spectrum of (A+BF) is
strictly in the left half plane.

(2.5)

On the other hand we could modify the original
nonlinear system by nonlinear state feedback

v = v(E,u) (2.6)
to obtain
£ = £,V (E.u) (2.7)
1f v(go,vo) = vo and
g%(g",v") =F %ﬁ(gﬂv") =G

then the infinitesmal approximation of (2.7) at

(E,u) = (go,vo) is just (2.5). 1In other words we can
think (2.5) as either the linear feedback (2.4) modi-
fication of the infinitesmal approximation (2.3) of
the original system (2.1) as the infinitesmal approx-
imation of the nonlinear feedback modification (2.6)
of the original system (2.1).

This is extremely fortunate for it means that a
feedback chosen to stabilize the infinitesmal approx-
imation (2.3) also stabilizes the original nonlinear
system and greatly improves the accuracy of the
approximation of (2.5) to (2.7). This is the funda-
mental mathematical fact that allows one to use linear
models obtained by infinitesmal approximation (after
being stabilized by feedback) to model nonlinear pro-
cesses in the small., Moreover even if (2.3) is not
exactly the infinitesmal approximation of (2.1)
because (2.3b) does not exactly hold we can expect the
eigenvalues to remain strictly stable and hence the
approximation still will be accurate,

3. Linearization by Feedback

In this section we describe a different technique
for linearizing a system developed independently by
Hunt-Su [1l] and Jakubczyk-Respondek [2] following ear-
lier work of Brockett [3]. It is usually described as
linearization by state feedback but a more accurate
description would be linearization by change of state
and input coordinates, This change of coordinates has
a triangular structure, the new state coordinates de-
pend only on the old state coordinates and the new
input coordinates depend on the old state and input
coordinates. As was mentioned before we only consider
systems with a one dimensional input, m=1, the general
case is described in the above references.

The first step is to transform (2.2) into a
system which is linear in the control
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. o
g =g (5 + 8@ 3.1
'his amounts to a state dependent change of input
coordinates u =u(E,v) given by the relation

0o

g (&) + g(8lu(g,v) = £(g,V) 3.2)
A necessary condition for such a change of input
coordinates to be valid in that the range of the map
v » f(g,v) lie on a line. This is not sufficient for
this map may not be l-1 or onto the line. The system
may be subject to saturation, etc.

But these problems are always present when
trying to approximate a real plant by a mathematical
model. 1If one attempts to incorporate all the pecu-
liarities of the plant into the model from the
beginning the result typically is a mathematically
untractable model so one starts by analyzing a sim-
plified model for which it is possible to do a
rational controller design, and then one tests this
design on the real plant. If the simplifications of
the model do not overly degrade the real performance
then one has a satisfactory model, If the degrada-
tion is too severe, then a more complicated and
hopefully more accurate model is employed. This pro-
cess is iterated until the design is successful or
the model is untractable.

Proceeding from (3.1) we seek a change of state
coordinates x=x(g) and change of input coordinates
(or state feedback) u = a(E) + B(E)W which transform
(3.1) to

X = Ax + Bu (3.3)

where (A,B) is a controllable pair.

The domain of these transformations is some
open set encompassing the nominal operating point
(go,uo) which should transform to (xo,uo) = (0,0).
One could consider transformations taking (go,po)
to other (xo,uo) but we shall not do so. Since the
right side of (3.3) is 0 at x°,u”) = 0, an
immediatc necessary condition is that right side of

(3.1) be zero at (go,uo)

0- %€ +8E W . (3.4)

Since the class of transformations which we are
considering includes linear change of state
coordinates and linear state feedback and (A,B) is
assumed to be controllable, we can without loss of
generality assume (3.3) to be in Brunovsky canonical
form, i.e.,

A= [01 0 B =0 (3.5)
1 0
0 0 1 .
Let's define
k k-1
§ =c{g,...,ad gl (3.6a)
g
k
s5@) - x@ X e g (3.6b)

where C{-} denotes all ¢® linear combinations of
the enclosed vector fields. The controllability of
(A,B) leads to the second necessary condition, for

all £ in the domain of linearization
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dim ") = n 3.7)

This follows from the fact that if the transformations
exist then Qk(g) must be transformed onto

k-lB}

R denotes the span over the reals.

R{B,AB,...,A
where

The third necessary condition, which together with
the previous two form a set of sufficient conditions,
is obtained as follows. Consider a pseudo-output

y = Cx C=@0...0 (3.8)

for the linear system (3.3). Since

C = dCx
annihilates the vector fields n—ZB} which
n-2

[B,...5A
transforms to § , there must be some function

h(g) = y such that dh annihilates sn—Z. The exis-
tence of such a function where dh # 0 is equivalent

- —k-2
to the involutiveness sk 2. In other words if sk

k-2

denotes the involutive closure of ; then

—k-2 k-2

) =9 . (3.9
. . k=2 .

(The involutive closure of § is the space of all

vector fields obtained by repeated bracketing of

vector fields of Qk_z.) This condition is just the

integrability condition for the solvability of the
underdetermined system of partial differential equa-
tions.

L . ()y=290
add g
g°

where the Lie differentiation is defined by

j=0,...,n-2 (3.10)

L i (h) =<dh,adJOg> = gh adJOg .
ad” g g g
g

Summarizing we have sketched half of the proof of
the following:

Theorem Hunt-Su [1]/Jakubcyzk-Respondek [2]. There
exist change of coordinates x=x(§), u:=a(§)+B(g)p
carrying (go,po) to (xo,uo) = (0,0) and transforming
the nonlinear system (3.1) into the linear system (3.3)
and (3.5) iff (3.4), (3.7) and (3.9) hold.

The other half is proved as follows. From (3.9)
and (3.7) we deduce the solvability of the partial
differential equation (3.10) using Frobenius Theorem.
Let h(g) be a nontrivial solution, dh # 0, and define

- _ -1 i
y = h(g), and Xj = Lf h(g), j=1,...,0.

The noutriviality of h(g), (3.10) and the
controllability condition (3.7) ensure that (xl,...,gn)
are n independent coordinates and

x . +1
’ (3.11)
n-1 *
L (@) +LL )y
23 & 80

where LgLn;l(h)(g) # 0. Therefore the desired feed-

g
back is @) = L" (h)(g) and B(g) = LgL‘;o<h>(g>. It
g



follows from (3.4) that (go,uo) transforms to

(x%,u°y = (0,0) for
2 - U9 e - L U 2m - o
Iy g2’ ¢°
u =L Ml -0

g7 e e’ ¢°

A systems interpretation of the above is as
follows. Notice that the linear system (3.3) (3.5)
and (3.8) has no finite zeroes, or n infinite zeroes.
In other words one must time differentiate the output
y(t) n times before the effect of control wu(t) is
directly seen. We define the nonlinear system (3.1)
with output y=h(g) to have no finite zeroes if one
must differentiate y(t) n times before directly
seeing the effect of the control w(t). (For a more
precise definition of the zeroes of a nonlinear system
see [4]). The above theorem can be loosely para-
phrased as follows. A system (3.1) is linearizable by
state feedback and change of coordinates iff it admits
an output for which there are no finite zeroes. Of
course every linear system admits such an output, a
fact which follows immediately from controllable
companion form.

If the underdetermined PDE (3.10) is solvable on an

open set |, around go then linearization is achiev-
able on Wy, but how robust is it. If we perturb a
nonlinear system (3.1) which satisfies the theorem
we Wwill not usually obtain a system which satisfies
the theorem. Condition (3.7) is robust but (3.4) and
(3.9) are not. It is reasonable to expect that (3.4)
will be satisfied at a perturbed operating point, but
(3.9) will almost always fail to be true. Suppose as
part of design procedure we linearize by the above
technique but our actual plant is perturbation of the
model (3.1). If we stopped at this point we could not
expect the linearized model (3.3) to accurately re-
flect the behaviour of the plant under feedback.
However we do not stop at this point but we implement
a second feedback, linear in the x coordinates,
which stabilizes the linear model. For the reason
discussed in the last section the stabilizing feedback
applied both to the model and the plant improves the
accuracy of the model. Therefore we see that in the
total context of a stable feedback design the
linearization technique described above is robust.

4, Partial Linearization

The infinitesmal approximation of a linear system
is the same linear system therefore the approximation
is exact. But the infinitesmal approximation is
coordinate dependent. If we transform the linear
system (3.3) into (3.1) by change of state and input
coordinates, the infinitesmal approximation to (3.1)
will not be exact. The H-S/J-R theorem describes
those nonlinear systems for which there exist state
and input coordinates in which the infinitesmal
approximation is exact., In this section we shall
consider a generalization of this, given a nonlinear
system find coordinates in which the infinitesmal
linearization is as accurate as possible, As stated
this is a somewhat vague goal, as one way of making
this precise is to consider the existence of coordi-
nate transformations £ = £(x,£) and u =a(g) + BE)y
which transforms (3.1) into the partially linear
system

x = Ax + Bu (4.1a)
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é = 9(x,0) + §(x,0)u (4.1b)

where (A,B) is a controllable pair. Again the

o [s)
(€ ,u ) goes to

(xo,go,uo) = (O,QO,O). The dimensions of x and (
are r and n-r respectively. Clearly the
infinitesmal linearization of (4.1) is exact relative
to the x-coordinates hence one would like to make
as large as possible.

transformations are local and

r

Let g°

The index of linearity ¢

50

Definijtion
g" (€% = o.

linear system (3.1) at

be a critical point of (3.1),
of the non-
(1)

for every g

is if

(ii)
some neighborhood of Eo the dimension of Ep—l(g)

o] the

dimension Qp(go) is n. in

is n-d where d > 0.
Theorem 1. Let p be the index of linearity of (3.1)

around go. If (3.1) can be transformed to (4.1) then
r < p. Moreover there exist transformations carrying
(3.1) into (4.1) where r=p.

Proof. The proof is very similar to our proof of the
H-S/J-R theorem given in the last section. Suppose
(3.1) can be transformed to (4.1) then we can assume
(A,B) is in Brumovsky form (3.5) and define h() = Xy
A straightforward calculation shows that

LL () =0  j=0,...r-2 (4.2)
g o
g
and this is equivalent to
L (h) =0 j=0,...,r~2 (4.3)
ad o8
g
r-1 .. . —r-1
hence dh + g . This implies that dh L g and

sor<p.

On the other hand since Ep_
codimension d, there exists a function
dh # 0 and dh 1 5P L.

j-1
= 17 (h)
j o

g g
and € as any complimentary coordinates to
(xl,...,xp) then we obtain (4.1).

is of positive
h such that

If we define

P
o, 8

X

jzl,---’P, o

Q.E.D.

This result was suggested by that of Isidori and
Krener [5], where the output h is known a-priori
and the index of linearity is to be determined.
Notice that an effect of the feedback is to make the
nonlinear part (4.1b) unobservable from the pseudo-
output, h(g).

The transform of (3.1) with maximal linear part
is not necessarily unique for we can choose any h

such that dh 1 5‘3-1. We did not make any assumption
of controllability for (3.1) (except the implicit one
that p is finite) the linear part of transformed
system (4.la) is controllable. This is not a contra-
diction for the transformation u -+ u = o(€) + B(E)u

-1 :
L IP N (h)(g) = 0.
g go
O0f course there is some freedom in our choice of h,
there are d independent functions annihilating

Ep_l, denote them by hl""’h

may not be invertible because ﬁ(g)

g- While it is
possible that LgLP;l(hi)(go) = 0 for i=1,...,d, it is
g



not possible that Lng;I(hi)(g) = 0 for i=1,...,d and
g
for all g

in some neighborhood of go. For if this

where the case then each dhi annihilates sp hence
EP
every go we can choose h such that B(go) =
LgLZ;l(h) £ 0.

which is a contradiction. Therefore at almost

Supposc we chosen such an h and transformed
(3.1) to (4.1). The obvious next step is to replace
the nonlinear part by its infinitesmal linear approx-
imation. For convenience let us change notation and

denote (4.la) by,

® = Allxl + Blu . (4.4a)
The infinitesmal approximation to (&4.1b) is
X, = A21x1 + A22X2 + Bzu (4.4b)

where in the notation of (4.1)
_ 3¢ o - o _ o

A natural question is whether one can stabilize
(4.4) by linear state feedback which preserves the
block triangular structure of the system, u = Fxtu
where

Fo@, 0 (4.5)
A = A+BF = A11 + BlFl 0 (4.6)
Ay T B Ay

The reason for this is that these feedbacks leave the
Xy coordinates exact.

Since (AII’B1> is a controllable pair, clearly

one can set the spectrum of All arbitrarily up to
complex conjugation. On the other hand nothing can
~

be donc by feedback about the spectrum of A22.
For those familiar with the geometric theory of

linear systems the above is not surprising. The

first coordinate of x h(E).

Relative to this the maximal (A,B) invariant subspace
in the null space of C is y* = {xl=0} and the

1 is the pseudo-output

maximal (4,B) controllability subspace is R* = {0}.

The spectrum of T on y*/R* is the transmission
zeroes and they are invariant under feedback.

Of course we can always choose a different

pseudo~output h(g) which annihilates ﬁ‘j_l and ask
how this might change the spectrum of the infinitesmal
approximation to the nonlinear part, This spectrum is
precisely the transmission zeroes of the linear in-
finitesmal approximation to (3.1) with output y = Cx

where C = dh(g°>.

Assume that the linear infinitesmal approximation
is controllable ((3.7) is satisfied) and given by

(A,B) which we take in controllable companion form
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Theorem 4,2,

Theorem 4.3.

A= {01 0 B = 0 (4.7)
1 0
E 1

Let hl""’hd be independent functions annihilating

mp' and assume the generic situation that for at

least one hi’ LgLP;l(hi)(Eo) # 0. Then without loss
g

of generality we can assume that

0 i=1,...,d-1

LL (h)E") = (4.8)
g o i .
g 1 i=
C. = dh,(£°), th
i 7 98 ), then |
C1 0 ?
Cc = = E 0 (4.9)
Cd Y 1 1
n—ﬁ p-1
d
If we choose y = ;ilkicix as output where hi €R,
Ad=1, then the transmission zeroes are the n-p roots

of the polynomial

n-p+1 .
= )\ici,sJ 1 .
1 =1 J

Mo

p(s) =

i

Since the rows of C
the following results.

are linearly independent we have

Theorem 4.,l. Suppose the index of linearity of (3.1)

at go is p, the controllability assumption (3.7)
is satisfied and d-1 = n-p, then the spectrum of the
infinitesmal approximation to (4.16) can be set arbi-
trarily by proper choice of output.

If the polynomials

0 o . .
have a common zero s then s is always in the
spectrum of infinitesmal approximation to (4.1b).

By suitable row operations C can be transformed

to
X 10 . . . 0!
% (4.10)

3

.

.

.
o
.

.

.
—

Let K(C) be the convex cone in IR
the first part of the rows of C.

spanned by

If K(C) does not intersect the non-

. . n-p+1
negative orthant in R e then some part of the

spectrum of the infinitesmal approximation to (4.1lb)
must be unstable.

2. Conclusions

We have discussed how a system can be partially
and totally linearized by state feedback and coordi-
nate change. Since the robustness of this lineariza-
tion is dependent on the ability to stabilize the in-
finitesmal approximation of the transformed system we
have studied this question in some depth. Clearly
situations can arise where one must sacrifice linear-
izability to obtain stabilizability.

e,
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