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NEW APPROACHES TO THE DESIGN OF NONLINEAR COMPENSATORS*
Arthur J. Krener

1. INTRODUCTION. The standard approach to compensator design for a non-
linear plant is to assume that 1t will operate over a range where a linecar
approximation 1s valid. This can be done either in the state space around a
nominal state and control or in the frequency domain over a nominal range of
frequencies and amplitudes. A linear model is chosen and a compensator is
designed for that model, Among its other goals, the compensator should keep
everything close to the nominal thereby preserving the accuracy of the linear
approximation.

There are plants for which the above uuommacqn does not work. They have
significant nonlinearities over any range of values in which one could reason-
ably hope to operate. Typical among these are robots and high performance
aircraft such as helicopters. He have chosen these two examples for in both
cases the dynamics are reasonably well-known, The problems are principally
those of control rather than identification.

In thispaper we describe a new approach to compensator design for plants
with accurate but nonlinear state space models. It is based on the method
of approximately linearizing transformations. It uses the same linear model
to describe the nontinear system, but the transformations between the input,
output and state variables of the two models are no longer essentially the
identity transformation. Instead they are nonlinear transformations which
attempt to linearize the nonlinear model.

As one can see from the references, many researchers have contributed
to the development of this approach. I would especially 1ike to mention
Dr. George Meyer of NASA-Ames Research Center who has been 2 driving force
behind this program. My thinking about nonlinear systems has been strongly
influenced by our discussions. '

2. A SIMPLIFIED VIEW OF LINEAR STATE SPACE DESIGN. Consider the linear
plant

*Research supported in part by NASA under NAG 2-268 and by NSF under
MCS-8300884.
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336 ARTHUR J. KRENER
X = Ax + Bu (2.1a)
y = Cx (2.1b)
x(0) mx% =0

We seek to design a compensator of the same linear form which processes the
open loop input v and the output y of (2.1) to obtain a suitable input

u(t).
y

Typical goals of compensation are one or more of the moddozﬁzn"
(i) stability of the external and internal behavior of the plant,

(ii) the ability to track reference signals from a certain class, i.e.,
vit) = r(t) and e(t) = y(t) - r(t)+0 as t increases,
modification of the input-output behavior v(t) » y(t) so that it
approximates that of some ideal system,

(iv) reductionof the sensitivity of the plant's input-output behavior to
unmeasurable plant parameter variations,

(v) reduction of the sensitivity of the plant's input-output behavior
to external noisy (unpredictable) signals and to unmodeled and
unmodellable elements of the plant,

(vi) simultaneous on-line identification of the plant dynamics and con-
struction of a suitable compensator to achieve some of the above
goals (adaptive control).

~

For linear, stationary, finite dimensional systems, the theory of compen-
sator design to achieve the first three goals is quite satisfactory. Unfor-
tunately, this is not as true for {iv) and even less so for (v) but the
renewed interest in frequency domain techniques hold great promise. As for
the last goal, there has been exciting progress in adaptive control over the
past several years but considerable work remains to be done.

In this paper we will focus on the design of compensators to achieve
stability. This is where the new approach can most easily be employed. To
simplify the exposition we shall restrict ourselves to single input/single

output systems but almost all that we shall discuss can be extended to multi-

variable systems.

The standard approach to lincar compensator design is to split the problem

into two parts. The first probiem is to choose a state fecedback u=Fx + v

e 3 SRR LS S e
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which stabilizes (2.1a)., This assumes that the state x of (2.1) is directly
measurable. In other words, after feedback the dynamics will be given by

x = (A + BF)x + BGv (2.2)

and we wish to choose F and G so that spectrum of (A + BF) 1lies in the
left half of the complex plane and the columns of BG have certain proper-
ties. It is well-known that the controliability of the pair (A,B), 1.e.,

rank(B: ... >=-wv =n (2.3)

is a necessary and sufficient condition for the spectral assignability (up
to invariance under compiex conjugation) of A + BF,

If (A,B) 1s controllable then there are several approaches to finding a
suitable F. For example, one can choose F by transforming (2.3) into a
standard form called controller form by Kailath [6]. Alternatively one can
choose F using the theory of linear quadratic optimal control, as espoused
by Athans [1]. In this brief treatment we shall not discuss why and how to
choose G. t

Having found F and G we still have not solved the stabilizing compen-
sator problem because y and not x 1s directly measurable, Therefore we
must estimate the current value of x from past values of the measurable
quantities y and u. let X(t) denote the estimate of x(t) and suppose
x(t) evolves according to the equation

: - (A + KC)X - Ky + Bu (2.4)

The error x(t) = x(t) - X(t) of this estimate satisfies

R 2.
L]

(A+KC)X . {2.5)

If we choose K so that the spectrum of (A + KC) is intheleft half of
the complex plane then x(t) ~0 as t + o, The spectral assignability (up
to complex conjugation) of A + KC 1{s equivalent to the observability of
the pair (C,A), 1.e.,

¢
rank CA =n (2.6)

n»:-d

If (C,A) 1is observable then there are several approaches to finding a
suitable G, including transforming (2.1) to observer from [6] and reformu-
lating the estimation problem as a Kalman filtering problem [1].
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Having chosen F, G, and K, the stabilizing compensator is given by
(2.4) and

u=FX+Gv . (2.7)

The combined dynamics of x and x is most conveniently expressed in {x,%)
coordinates

X A + BF -BF X BG
= + v (2.8)

0 A+ KCS [x 0

>x

where the stability is apparent.

Notice that spectrum of the overall system is just the disjoint union of
the spectra of (A + BF) and (A + GC). This fact we call the spectral
separation principle. It is the key to the two-part approach to nonlinear
design., If F 1is chosen via a quadratic regulator and K via a Kalman
filter then the separation principle of linear n:maxmﬁ*m Gaussian optimal
control holds so our compensator is optimal in an appropriate sense [1].

3. LINEAR APPROXIMATIONS. Suppose we have an accurate but nonlinear model
of a plant of theform

£=flgm) (3.1a)
v = h(g) (3.1b)
NAOV amo Aw.._nv

where &, p and ¢ are the state, input and output vectors.

We assume £ is n-dimensional and u and ¢ are one-dimensional, but as we
mentioned before this restriction can be dropped. If (£%,1°%) 1s a criti-
cal point of the controlled differential equation (3.1a), i.e.

£(e%% =0 (3.2)

then we can attempt to approximate (3.1) by .

x = Ax + Bu (3.3a)
y = Cx (3.3b)
x{0) ms 0° (3.3c)

where xwm £ -6, u=u-30, ymy-y® (W0 =n(e) and
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f f h
A= B R R . (3.4)
But in the open loop mode the accuracy of this approximation critically
depends on the stability of A. If A 1s stable and we set

u(t) = uit) - u° (3.52)
then Lm can expect the errors to decay and

x(t) = &(t) = € + 0(g(t) - £%)? (3.5b)

y(E) = u(t) - ¥° + 0(g(t) - €%)F (3.5¢)

The notation 0( - movN denotes a quantity bounded by Mg« mo=m for small
£ -¢% If A is not stable then the errors will not decay and (3.5b,c)
need not hold.

But, of course, if A 1{s not stable then neither is the nonlinear system
(3.1) and the first goal of any compensator is to stabilize it. If we choose
F, G, and K for (3.3) as described in section 2 and implement the result-
ing compensator on (3.1) using (3,5a) we have the nonlinear system,

= f(g,1° + FX + Gv) (3.6a)

e

%= (A + BF + KC)x - K(h{g) - v°) + BGv . (3.6b)

The important fact is that the linear approximation to (3.6) around the
nominal (£%,%x%,v°) = (£°,0,0) is precisely

X = Ax + BFx + BGv (3.7a)
X = (A+BF+KC)X - KCx + BGv (3.7b)

This system is clearly stable as seen by its (x,x) description (2.8).
Hence the closed loop linear system (3.7) approximates the closed loop non-
1inear systems at both stable and unstable critical points Amo.:ov.

But suppose we wish to operate over a large range of values in (&,u)
space or equivalently suppose the nonlinearities of f(£,u) and h(g) are
so severe that the first order approximations

flgm) w 3L (€200 - 69 + ()t - 4°)
he) v + 32 (&%)

are not very accurate even for moderate values of § - mo and u - ro.

Then even in the closed loop mode we cannot expect the linear system to
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ut of this dif-
rately approximate the nonlinear system. The szmd zn« M erating point
mnnc,n is to linearize around several operating pointg. An Op nd ei .
s “m* 1ol) where (e',u!) s a critical point of (3.1a) a
is a WMoy !

i i1 b
Y
:nmiv We approximate (3.1) around the operating point (& .1 ,¥')

(3.7a)
w* = >*xA + w*:*
i (3.7b)
i
y =C'x
(3.7¢)
xaon ~ 0
where
i 3.8)
oty e (
AR GRS AOR "
" i i (1) < ¢!
i 1 = - ) Ahv S G - .
ey me(t) -6, ul(e) = ult) - w y .

r r 3 7 .e., a solution
One can also linearize around an operating Mxﬁuuweéu i.e ._
. t u‘. t e., t of (3.1a,b) for t € [0,7'] such that the matrices
Amdﬁ v- A v- A vv A cd 3

] i i
‘ 8l(t) and C'(t) given by (3.8) (with (£'(t),u (t)w'(t))

Am v Y tant over Ho-ﬂ u. 0f course
ep mﬁ__m s M -G are Qmwm:ﬂ_w: cons

every operating point is also an operating nwmuM”“o“”.mnud*nmﬂﬂozm. .
j ies tend to appear natura "
R ! n one can overcome this

>dhnv B'(t) and n*ﬁav change significantly the T e roneay
ﬁm*. 1ty by splitting up the time interval into seve e e
ifficu i !

w“ﬁﬁonanzm additional operating trajectories. >1o=“ahw=mwum1

tory one approximates (3.1a,b) by (3.7a,b), (3.8) an .9).

An wamnﬁﬂwzm regime is the do ain o Am-tv space ar OC__Q an OUQ_QH_:@

in
ar model is valid. For each ouwﬂm« 9

1ine
B O rove com zzm1m ﬁzwzm m* m* and an observer gain K so
i troller ga ,
ot zm nswmwwvnomsn A>* + x*n*v have the desired spectral u«ovmqndmm
g 1d like to
ot M i the appropriate columns. In this regime w;m wou A
Tt the 11 :* = md L a*< but since x' {s not directly
jmplement the control law

X
X bserver with
casurable we must replace it by an estimate x from an o
m

tor
i bined plant and compensa
gain k'. In this operating regime we have a com

modeled by

i (3.10a)

fefleat + F'R v aly)

(3.10b)
v = h(g)
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R R U I A (3.10¢)

If we stay close to the operatin

g point or trajectory we can expect the
first order variations to satisfy

R T e (3.11a)
xba (al 4 BtEt 4 ighyat Kehd « glely | (3.1%¢)

If we have chosen m*. m* and x_ appropriately, then the performance
in the 1-th regime wil} be mmw*mmmnnosk.

But the problem of transitions between operating regimes remain to be
solved. When do we switch compensators? Will the system be unstable
between regimes? This 1s the problem of gain acheduling.,

If the system {s only mildly nonlinear then there will be a few large
operating regimes, Transitions will not Present a great problem since they
will occur relatively infrequently. Presumably they can be handled in an
open loop, manual mode without automatic compensation, But for systems with
severe nonlinearities the transitions occur frequently and an alternate,
automatic approach is needed. In the following sections we will describe a
method that increases the accuracy of the approximations and the size of
the operating regimes. In some cases 1t reduces to a simple operating
regime,

Before closing we would like to point out that simultaneous stabilization
1s not a viable solution to the problem of frequent transitions between
operating regimes. The simultaneous stabilization approach is to seek a
single F and a single K so that A>* + m*mv and A>* + xn*v have the
desired spectral properties in all operating regimes. But notice that one
Is sti11 faced with the problem of deciding when to use the 1-th model
(3.10), i.e., when are we operating in the i-th regime? Moreover even {f
ﬁ>* + m*mv and ﬁ>* + xn*v are stable for a1l 1,
the system will be stable in its transitions betwe
time varying linear differential equation

this does not guarantee
en operating regimes. The

(3.12)

can be thought of as noniinear system with no inputs. It is well-known that
the spectrum of A(t) can be in the left half plane for all t (hence no

compensation is needed at any constant linearization) yet the differential
equation (3.12) is unstable [2, p. 158].
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4. LINEARIZING TRANSFORMATIONS. Nonlinear transformations can destroy
the linearity of a system of the form

x = Ax + Bu . (4.1)

Under the nonlinear change of state coordinates x = x(£) and the nonlinear
feedback u = u(g,u), (4.1) becomes the nonlinear system

£ = flg,u) (4.2)
where

F(Eam) = 25 (x(£)) (Ax(g) * Bu(&m)) - (4.3)

This suggests a mathematical question. When can such transformations be

used to linearize a nonlinear system? For various classes of transformations,
this question was answered by Krener [7], Brockett [3], Jakubczyk-Respondek
{51, and Hunt-Su [4].

Actually the practical application of this technique in robotics predated
the mathematical studies. More recently it has been ‘used in the design of
flight control systems for high performance atrcraft [(14].

Suppose x = x(£) and u = u(g.u) transforms (4.2) into (4.1) in some
domain in (£.u) space and the operating point Amo.:ov is transformed
into (x°,u%) = (0,0). If u =Fx stabilizes (4.1) around x =0 then
v = u(x{€),Fx(£)) will stabilize (4.2) around g% = g(x=0). This stability
is not just local but it is as global as the domain of definition of the
transformations x = x(£) and u = u{g,u) will allow. If these are
globally defined then global stability is ensured, but generally this is
too much to hope for.

We will follow the Hunt-Su approach to finding the linearizing transforma-
tions. Their work is equivalent to the earlier results of Jakubczyk-
Respondek, but the Hunt-Su formulation is preferable.

The first step is to linearize the way the control enters (4.1). Fre-
quently the nonlinear model comes in this form, i.e.,

£=9%0) +ae . (4.4)

If this is not the case then one might be able to find vector fields @oﬁmv
and g{£) and a function v = v(E£,u) so that the relation

g%(£) + g(E)v = f(&,m) : (4.5)

(almost) holds. If this is so then (4.5) can be interpreted as defining a
preliminary transformation of the control variables. If no such vector

s et

+ ————
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fields can be found then one can consider the control u as an additional
state n:+_ and define a new control v = p. Since one is introducing an
additional integrator into the system model, one can expect somewhat more
sluggish response. But this technique does accomplish the desired lineariza-
tion andit also smooths the plant input u, which may be desirable in some
cases,

Henceforth we restrict our remarks to the nonlinear system (4.4). The
inearizing feedback will be of the form u = a(£) + B(£)u. Suppose we have
a scalar function

¥ = h(E) (4.6)

which we can think of as a pseudo-output for (4.4).

The Krener-Isidori [8) concept of a zero for such a system is defined in
terms of invariant distributions, but for suchasystem m can be described as
follows. The plant {4.4) and (4.6) has no (finite) zeroes if one must time
differentiate (4.6) n times before the control appears (n = dimension of
£), These time derivatives are conveniently expressed using the concept of
the Lie derivative of a function by a vector field.

d
G W) = Lo E) ¢ Lyt (E(t)u(t)
where

r%;:cumﬁ%ﬁ :
Lyme) = 3 (0ele)

If roﬁrgo~=VVﬁmv =0 for 0<j<k then
9
Aa

-1
rMOE . JO:MO ) .

k k k-1
p(t) = L7 (h)(g(t)) + rur o (M{E(t)u(t)
g g

where

Therefore the no zero condition is just that
Lk (h) =0 0sk<ni . (4.7)
g ao

It is easy to see that every linear system (4.1) admits a linear output



344 ARTHUR J. KRENER
y = Cx Ab.mv

such that there are no zeroes. In this case the no zero condition (4.7)
reduces to

CA¥B = 0 Osk<nl .

Hence we conclude that a necessary condition for the nonlinear system (4.4)
to be transformable into a linear system (4.1) is that 1t admits an output
(4.6) which satisfies that no zero condition (4.7). This is almost suffi-
clent, all we need is a controllability condition which we describe in a
moment.

Using some elementary Lie theory, we can transform the no zero condition
(4.7) into an undetermined first order partial differential equation for the
output h(g). We define the Lie bracket ﬁoo.mu of vector fields by

[o%,91(e) = 32 (£)a°(c) - w%mﬁac
and the ad-notation for repeated brackets

ad®(g%)g = ¢

add(¢%)g = 16%ad (g%9) .

If we are seeking to linearize (4.4) in a domain which includes the opera-
ting point (£°,0) (u® has been normalized to 0) then the controllability
condition is that the linear approximation to (4.4) at this point be con-
trollable in the linear sense. This translates into the condition that

AuAmov.....maz-AAmovamovv are linearly independent. (4.7)

The no zero condition is equivalent to existence of a function h(g)
satisfying the n-1 partial differential equations

L (h) =0 0 sk <n-l (4.8a)

ad®(g%)g
and of course h should not be constant so

(h} # 0 . {4.8b)

|
-

ad" (g%)g

This system is solvable iff the mixed partial conditions are satisfied.
These can be expressed as follows.

A@.....mag-mﬁmov@v are involutive (4.9)

e

i e
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i.e., there exists functions nwhﬂmv such that for 1,3 = 0,0 .vun-2
tad' (6°)g,a¢ (¢°)) = MMM ciee) ad(s®e -
If the Hunt-Su conditions (4.7) and (4.9) are satisfied then one can find
h satisfying (4.8) but h 1s not unique. Given any such h, the lineariz-
ing transformations are defined by

xg = tlm) (4.10a)
9
g M (h) L T et B (4.10b)
mo 379
and the resulting linear system is in Brunovsky form, i.e.,
. X4 i<n

x - .
1 u i=n

(4.11)

Notice that 1f n =2 then condition (4.2) is trivially satisfied, hence
every suitably controllable nonlinear system with n=2 and m=1 can be
linearized by this technique. In robotics models typically m = 2n (one
applied torque for each two states consisting of an angle and an angular velo-
city), and the couplings between the joints enter as additional torques.

This allows the application of linearizing transformations which brings the
system to Brunovsky form. The desired pseudo-outputs {generalizing h) are
the joint angles so the Jinearizing transformations are obvious.

Recently Krener, Isidori and Respondek [10] have considered the problem of
partial linearization. If a weakened form of the Hunt-Su conditions are
satisfied then one can transform the nonlinear system (4.4) into a partially
linear system of the form

Xi41 181<p

w*- u i e . (4.12)

¢4(x) +yxu p<tsn

The index of linearity of a nonlinear system at a critical point Ano.ov is
the largest such p, and this can be easily calculated.

Typically, there are many such partial linearizations of maximal linear
size p, but they differ in their stability properties. See [10] for the

details.

5. APPROXIMATE LINEARIZATIONS. There are several difficulties with the
method of linearizing transformations described in the last section. The
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first is computational. One must solve a first order partial a*mwmxmzm*mg
equation {4.8) to find the linearizing transformations (4.10). Hhile this
can be done off-line, the resulting transformations must be stored in a way
that allows fast and accurate real time evaluation.

Ancther difficulty is that the linear coordinates (x,u) given by (4.10)
usually have no natural meaning. (Robotics is an exception to the statement.)
Typically the nonlinear coordinates (g,u) have a natural physical meaning;
e.g., positions, velocities, angles, angular velocities, applied forces,
applied torques, etc. In the course of deriving the nonlinear model (4.4)
certain physically reasonable simplifications may have been made. What do
those simplifications mean in (x,u) coordinates, If there are limits on
the state or the controls in (£,u) coordinates how do they transform
into {x,u) coordinates?

If stability is the only goal of the design process then the method of
linearizing transformations can be quite useful. But suppose one has a non-
linear servo problem, i.e., there is a natural output

v = k(g) (5.1)

associated to the system (4.4) and one wishes to design a controller so that
the closed loop systems tracks signals from a class of reference outputs.

In other words, we wish to define a compensator that accepts a function p(t)
from a given class and then drives (4.4) and (5.1) so that [p(t) - (t)| + 0
as t >, If the output (5.1) is a linearizing output, i.e., it satisfies
the no zero condition (4.8) then the method of linearizing transformations
can be used to change the problem into a linear servo problem. But this is
not usually the case.

If the reference output p(t), which y(t) 1s to track, is a smooth
function then by differentiating o(t) and comparing it with (5.1) and (4.4)
one might be able to calculate the desired state trajectory §{t) and control
u(t) (invert the system). But no such £{t) and u(t) may exist or they
may be very large. This is very often the case because p(t) is usually not
given as a smooth function but rather as a piecewise smooth function consisting
of line segments, circular arcs, etc.

We briefly describe an alternate approach which partially mitigates these
difficulties. The full details can be found in [12].

If the nonlinear system {4.4) satisfies the Hunt-Su conditions (4.7) and
(4.9) then it can be transformed to Brunovsky form (4.10). One can follow
this by a linear change of state coordinates and a linear state feedback to
get a different linear form. In other words, if a system can be linearized
then there are many possible linear forms. Moreover, even for a fixed Tinear

for the Vincarizing transtormations that achieve that form are not unlquu.,
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This 1s equivalent to the nonuniqueness of the solution h to (4.8). Which
transformation and iinear form are most natural?

One answer to this question is suggested by the first order linear approxi-
mation technique as described in section 3. We seek a change of coordinates
X = x(g) and U = u(g,u) which transforms (4.4) into

x = Ax + Ba (5.2a)
satisfying

. 0 -

Red @ Bl (5.2b)

and

xeg-g+0()?  a=uto(ewt (5.2¢)

Suppose x(E), a(£) and B(£) are defined by {4.10) and transform (4.4)
to Brunovsky form (4.1). It is easy to see that x(£), a(£) and B(£)
transforming (4.4) into (5.2) are given by

-1 .
%(e) = (¥ (&) @) (5.3a)
ae) = 870 - R (- (5.35)
Be) = 8N 08(e) . (5.3c)

The functions transform the nonlinear system into its linear approximating
system at Amo.co = 0). The nonlinear and linear coordinates agree to first
order. However, they are not unique but depend on the choice of h satisfy-
ing the partial differential equations (4.8). These formulas (5.3) are not
a convenient way of computing the transformations or their inverses which
are also needed.

Since the linear and nonlinear coordinates agree to first order (5.2¢), we
know some of the terms in a Taylor series expansion of Xx(£), a(£) and B(f)
at mo. co = 0, The higher terms can be computed term by term. We briefly
describe the computation of the second order term for a scalar input system.
The interested reader is referred to [12] for a discussion of the gencral
case,

Suppose

3(6) =g - €+ g T Kippg (6 - 66, 6) + 06 - ) (5.42)

(& - B - )+ o - €0 (5.4b)
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Ble) = 1 Ty fg - )+ 0l - £%)? (5.4c)
where

Ky * OR06 00, (60) 0 Gy 2500805 (€%)
and

B = 0B/, (€%

0f course Xikn = %95k and g T Ok
We can compute the time derivative of m* as a function of & and p  in
two ways. One way is to use (5.2a) and (5.2b) to obtain mA as a function of

X and 0 and then (5.4) to express this can function if £ and u, The
other way is to differentiate (5.4a) using (4.4). When the results of these

two ways are equated ignoring terms of order cﬂm‘cvu one obtains a system
of linear equations .
o ~ - o 0 -
9k * NW\ XisknIpjt Muu 94, 0% oike ¥ 9i% ke (5.5a)
- i s
Iiik T L Xkt T 9Pk (5.5b)
for i,k = 1,...,n and & = Kk,...,n. )
20
93, 3°g.;
- 0 0 _ 71 (.0 0 - i 0
(9; = 9;(87) » g5,y %, (€ s 94,4 T, (€7), etc.)

We have =~ﬁ:+~v\m + :m linear equations in :NA=+_V\N + n(n+1)/2 + n

unknowns. The solvability is assured if the Hunt-Su conditions (4.7) and
(4.9) are satisfied but the solution need not be unique. (Actually a weaker
form of (4.9) suffices in this case. See [12].)

Any solution to (5.5) defines quadratic functions x(&), a(g) and B(E)
which transform (4.4) into 1ts Tinear approximating system (5.2) with an
error of order cﬁm.:vu not cAmvm. The inverse transformations &£{(x) and
u(x,i) are casily computed to second order. They transform the linear
approximating system (5.2) into (4.4) with a similar third order error.

If the third order error is not acceptable one can compute additional
terms in the Taylor series expansion to make the error higher order. A
sysbolic computation package such as MACSYMA greatly simplifies the compu-
tation. The resulting transformations are polynomial with leading terms the
jdentity hence one can casily compute polynomials of the same degree which

i
t
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invert them to the desired order of accuracy. Since the transformations and
their approximate inverses are polynomial they can be easily stored and eval-
vated quickly and accurately in' real time.

Finally, notice that one is always working with the same linear system
{5.2) regardless of the order of accuracy. Hence the control law as expressed
in linear coordinates remains the same even as the order of accuracy is
increased. The lowest order of accuracy with errors of order oﬁnvm 1s Just
the standard first order approximation approach as described in section 3.

6. OBSERVERS =~q:‘rwzm>x ERROR DYNAMICS. In section 2 we briefly dis-
cussed the theory of observers for systems of the form (2.1). We would like
to describe a similar theory for a certain class of nonlinear systems of the
form

£ = f(g,u) (6.1a)
y = h(g) (6.1b)
go) W . S (6.1¢)

Suppose we can find a change of state and output coordinates £ = £(x)
and ¢ = p{y) which transforms (6.1) into

X = Ax + y{g,u) {6.2a)

y = Cx o (6.2b)

Not every system (6.1) can be so transformed, necessary and sufficient condi-
tions for the existence of such a transformation can be found in Krener-
Respondek [11]. Related work is in Krener-Isidori [9].

Before we describe these conditions, let us note that it is easy to con-
struct an observer for {6.2). We choose a K so that the spectrum of
(A + KC) is inthe left half of the complex plane. The estimate X(t) of
x(t) evolves according to the dynamics

R x (A KO - Ky * vl (6.3a)

The error X(t) = x(t) - x(t) satisfies
%= (A+ KO)X (6.3b)

hence it converges to zero exponentially fast.
The estimate E(t) of &(t) 1s just the transform of x(t) so it evolves
according to
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£ = HEwm) (6.42)

b= n(E) (6.4b)
where

FEwu) = 25 (B) (A + KOIX(E) - Ky(v) + viva)) (6.5)

This defines an observer for the nonlinear system {6.1) such that the
crror when measured fn appropriate coordinates has linear dynamics (6.3b).

We briefly sketch the development of necessary and sufficient conditions
for the existence of the transformations taking (6.1) to (6.2). Of course,
we are only interested in transforming (6.1) to an observable pair (C,A)
so we require an observability condition, Namely that the linear approxima-
tion to (6.1) at (£°,u°) be observable. This can be expressed using Lie
differentiation by the condition that '

Aron:VAmv" k = 0,...,n=1} are independent functions around mo .
f (6.6)
kere fO(€) = f(£,u°).
If this condition is satisfied and the transformation to {6.2) does exist,
then (6.6) guaranteed that (C,A) 1is an observable pair. Without Toss of
generality we can ssume that (C,A) is indeed Brunovsky form, i.e.,

- O

This is a vector field on the state space which is constant when expressed
in x coordinates. Its repeated Lie brackets by the vector field Ax are
the vector fields A->vx
bracket of constant vector fields is just 0, so B,...,(-A)
ing family of vector fields and a basis for R" Moreover, the Lie derivatives
of the output function y = Cx by these vector fields are just nA->er

which equal zero for k = 0,...,n-1. Let g(g) be the transform of B

B which are also constant in x coordinates. The

N“13 are a comut-
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into & coordinates then after some calculations one can show that g must
satisfy

{ad¥(£%)g,ad*(f%)g) = 0 0sk, £snal (6.7)

and
coph=2 {(6.8)

k
L =0 k=0
rc *oA:v

A further calculation shows that A->an and y{y,u) comute for each

constant control ¥ and k = 0,.00n=2. In § coordinates these become

the additional conditions that
6.9
Lad(f%)g, F(E)] = 0 (6.9)

0
where m:anv = ﬁnm.tv - *nm.t )
the proof of the following:

p s constant. We have sketched half of

THEOREM. Krener-Respondek [10). There exiote. traneformations X * x(&)

and y = y{¥) in some natghborhood of Amo.:ov. which carry (6.1) into

(6.2) with (C,A) obecrvable iff tha obearvability condition (6.6) holds
and there extoto a vector field g(E) oatiafying (6.7), (6.8) and (¢.9).
on the other hand, if 9 satiafied (6.7), (6.8), and (6.9) then we can

find coordinates X% guch that

{(6.10)

2. ad™K(%)g K= 1,0l

9
wxr
It is straight forward to verify that x = x(E) and ¥ = xdﬁmv accomplish

the desived transformation from (6.1) to {6.2).

This theorem is reminiscent of the nonzero condition for the linearizabil-

ity of a nonlinear system by change of state coordinates and state feed-
back. To accomplish that Jinearization there must exist a pseudo-output
h{g) such that the nonlinear system has no zeroes. To accomplish this
1inearization there must exist a pseudo-input g(g) such that the nonlinear
system has no zeroes. .

The theorem as stated is not very useful. In [11] an algorithm *m pre-
sented for finding g(g). One starts with the unique vector field g(g)
which satisfies (6.8) and an additional constraint, i.e.,

0 0 sk <n-l 6.11
X (h) = (6.11)

L-
9 ¢° 1 k=n-l
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It can be shown that if ¢ exists then 1t is a rescaling of §, g=3¢
where ¢ 1s a function only of y. (It turns out that ¢ = dy/dy.) More-
over ¢ must satisfy a linear first order differential equation,

.mw_“; = m.._n Ay)e(w) (6.12)

where A is defined by

A(E) = <dh, [ad""2(%)3, ad™ " ()51> () (6.13)

A necessary condition is that A(£) be a function of only .

The procedure is to calculate g{g) by (6.11) and then calculate A by
(6.13). If X is only a function of ¢ then we solve (6.12) for a(y).
This yields g¢(g) = g(g)e(y), which must satisfy (6.7) and (6.9) for the
transformations to exist. The multidimensional output problem (p>1) s
considerably more difficult since (6.12) becomes a partial differential equa-
tion {11].

Because of the complexities of the method we have Just described, a simpler
approach 1s needed.  In (13] observers are constructed with error dynamics
that are approximately linear, up to some order. This is in the spirit of
the approximate linearization method of section 5. We briefly sketch the
construction of an observer with error dynamics that is linear up to second
order,

We restrict our attention to a neighborhood of an operating point,
£(e°,1°) = 0. Suppose A, B, C are the matrices of the linear approxima-
tions at this point, so are given by (3.4). The second order Taylor series
expansions of x(£), y(y) = y(h(£)), and y{wy,u) are assumed to be of the
form

2
- 9 Xy
SICRERERS &, wer, (B8 - g0, - ) = 0(e)®  (6.142)
2,0
yEh =y -t Wnlwmk (v - 9%+ ow)’?
2 ,.0
e ) vy P%E (c(g - £9)? (6.14b)
+ 1 = 32 (%) 0 %) 4+ 3
Z & 9535, (g - &g, - &) + 0(¢)

|
}
|
|
M
W
!
w
!
|
|
{
!
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2
7Y 2
vy (you) = B(u = %) LM ..m_mm. W)y - v°)
2
v
+ g (00w - ¥ - 00
LY (0000 - ) + ot
t3 SV 1 TREAR T WM
s (6.14c)
ay
= Bu - 1°) + W.w.m (W) (e(s - £2)?
m~<* . 0 vy . 40 (W - 19
* o (AN 1C AR [{TEY
2
LI
+.M. ﬂ:.m. (W00 = 1) + 0(gm)°®

If the Krener-Respondek conditions (6.6-9) are satsified then we can find
the second order partial derivatives
2 2 2
X 2 Ty Ty ? Yi o0 o
e 60, S 00 . =3 0u0) g 000 — )
r . ﬁ v. d.ek UGN 13 ) vewt wtw
3
so that (6.14) transforms (6.1) into (6.2) with an error of order O(g,u)”.
Linear equations for these unknown derivatives can be found by computing

X; in two ways as in section 5 and equating the coefficient of the various
monomials. A symbolic manipulation package such as MACSYMA is admirably
suited for this computation,

The soivability of these linear equations is weaker than the Krener-
Respondek conditions and much easier to check {13]). Therefore it is prefer-
able to derive these linear equations and check their solvability. If a
solution can be found 1t can be used in (6.5) to define the second order
observer. The accuracy of the approximations is improved if (6.5) is

rewritten as

e = FE) + 25 (E)((rlwom) - v(Baw) - Ky (W) -y(9)) (6.15)

before substituting (6.14).

7. NONLINEAR COMPENSATORS. The first step in designing a nonlinear com-
pensator for {3.1) around an operating point Amo.:ov is to compute its linear
approximation (3.3). A linear compensator for this system is designed in the
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standard fashion using LQG or whatever methodology appeals to the designer.
The compensator is described by the three gain matrices F, G, and K. The
resulting plant and compensator is modeled by {3.6).

Suppose the nonlinearities of the plant are severe enough to *svm¢1 the
performance of the compensated plant over parts of its operating range. One
can use the linearizing techniques that we have described to compensate for
the nonlinearities and in effect automatically schedule the controller and
observer gains,

Suppose the state of the preseat plant is directly measurable and we can
find transformations X = X(§) and U = &(E) + B(E){n - :NV which transform
(3.1) into (5.2) with an error of order higher than two. The standard con-
trol law is

we=l + Flg - %) + Gy (7.1)

is based on the assumptions that

u = Fx + Gv (7.2a)
- 0

Uu=p-u (7.2b)
_ )

x=£-§ . (7.2c)

But it is preferable to use

po= 0+ BT(E)(FR(E) - al(E) + Gv) (7.3)

based on the assumptions that

0= FX + Gv ‘ (7.4a)
G=a(g) + BE) - 1) (7.4b)
x = x(£) (7.4c¢)

because then the closed loop linear and nonlinear to J*o:m1 order under the
state transformation (7.4c).

If the state is not directly measurable then we try to construct a non-
Vinear observer (6.4) with error dynamics that are linear to order higher
m:m: two. We use the same observer gain K as before. The state estimate
£{t) replaces &(t) in (7.3). The stability of the overall configuration
follows from a theorem of Vidyasagar [15] using Lyapunov functions.

8. CONCLUSION. We have described a new approach to nonlinear compensator

gn baved on the use of approximately linearizing transformations. fe i
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an extensfon of the standard approach using linear approximations. Parts
of the method have been widely used in nonlinear controllers for robots
and aircraft, To our knowledge the total package has never been fully
employed. Although the basic skeleton of the theory 1s pretty well under-
stood, there is considerable theoretical work left to be done, e.9., the
design of nonlinear servomechanisms and nonlinear adaptive controilers.

Perhaps more important at this time s a study of the computational
aspects of the method and how wall it performance {n sfmuiated and actual
applications.
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