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A nonlincar system can always be approximated to first
order by lincar systems. It has been shown by Jakubczyk and
Respondek (4] and Hunt and Su [3] that certain nonlinear
systems are the exact transforms of linear systems under non-
linear state coordinate change and nonlinear state feedback. In
this paper we give necessary and sufficient conditions for a
nonlinear system to be approximated to higher order by the
transform of a lincar system. The use of this technique in the
design of nonlincar compensators has been suggested recently
by the author {6]
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1. First order linear approximations

The standard approach to the design of a state
feedback law for the nonlinear system

£=f(¢ p) (1.1)

Is to approximate it by a linear system
x=Ax+ Bu (1.2)

in some region around the pair (£°, u°) consisting
of the nominal state and nominal control. Typi-
cally the pair (£°, u%) is a rest point of the system
1(E% u%)=0.

The approximation is first order in the state,

x=¢- 4+ 0(E - ) (1.3a)
but exact in the control,
we=p - pu (1.3b)
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This fixes the matrices of (1.2) as

Bzaf(

A ﬂ(%‘)» ), P £°, po). (1.4)

=3¢

The validity of the approximation depends on
the size of the second order terms which in turn
depends on the stability of 4. If the spectrum of A
lies far enough to the left in the complex plane and
the input u(r) remains close to p® then we can
expect £(¢) to remain close to £°. The second
order errors in (1.3) can be ignored and the linear
system accurately portrays the nonlinear be-
haviour.

On the other hand if A4 is unstable then the first
goal in any feedback law is to stabilize it. Suppose
we use state feedback of the form

u=Fx+uv (1.5)

where v is an open loop control, then (1.2) be-
comes

x=Ax+ B (1.6)
where
A=A+ BF. (1.7)

[t is well known that the controllability of the pair
(A, B) is equivalent to arbitrary spectral assigna-
bility (up to complex conjugation) of 4 + BF by
choice of F. This suggests the feedback

p=p(& v)=F({—£)+v (1.8)

for the nonlinear system, where » is the nonlinear
open loop control whose nominal value is »% = .
The resulting nonlinear system is

£=1(¢ ) (1.9)

where

f(& v)=1(& m(£, v)). (1.10)

It is easy to see that the linear approximation to
(1.10) at (£°, »0) is precisely (1.6). The linear and
nonlinear states agree to first order as before (1.3a).
The linear and nonlinear open loop controls satisfy
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a similar relationship,
r=v '+ O(¢ - ¢) (1.11)

The stability of A4 tends to keep O(£ — ¢)2
negligible. With the accuracy of the approximation
of (1.9) by (1.6) assured we can go on with the
problem choosing a state feedback to accomplish
our desired goals, provided the closed loop system
remains stable. We can view this additional feed-
back as a modification of (1.9) rather than the
original system (1.1). In other words we seek a
function »(£. w) (where w is another open loop
control) which suitably modifies the behaviour of
(1.9).

The usual approach is to find a feedback
v(x, w) which achieves the desired behaviour in
the linear system (1.6). This can be transformed
into »(§, w) by (1.3a) and (1.11) ignoring the
second order errors. The hope is that the nonlinear
system will inherit the desired behaviour from the
linear system despite these errors.

2. Higher order linear approximations

There are systems where the nonlinearities are
so severe that the method described in the previ-
ous section fails. The second order terms O(£ — £)?
cannot be neglected over the full range of the
systems. The method of linearizing transforma-
tions can overcome these difficulties. One seeks a
change of state coordinate and a state feedback
which transforms (1.1) into a linear system. Varia-
tions on this question have been treated by Krener
[5]. Brockett [1], Jakubczyk and Respondek [4] and
Hunt and Su {3]. Meyer and Cicolani [7] have
applied this to automatic flight control systems.
Even before the general theory was developed,
Freund [2] was using this method in robotics.
Krener [6] has suggested a new approach to com-
pensator design based on this and related work.

We describe an approximate version of this
approach, which is computationally much easier.
For simplicity, we restrict our attention to a non-
linear system where the control u enters the dy-
namics in a linear fashion,

£=g&)+g(¢)u
=g"(&) + X g/ (O,

J=1

(2.1a)
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£(0)=£". (2.1b)

The state £ lies in R” and the control g in R™.
The nominal operating point (£°, u°=0) is pre-
sumed to be a critical point (g°(£¢%) = 0), although
this can be weakened.

The first step is to compute the linearization of
(2.1) at ¢°, namely

x=Ax+ Bl{, (2.2a)
8 0
A:aig(go), B =g(£°). (2.2b)

One seeks a change of coordinates x = x(&) and
u=u(§, p) which transforms (2.2) into (2.1) with
an error of order O(£ — £)*. Clearly only the lower
order terms of the coordinate changes come into
play, so we can assume that

x, =~ £

2
" 0°x,

= k. i=1 agkafl(go)(gk N ‘52)(5/ - g,o)

+0(¢ - £°), (2.3a)
> a%’@°m& (& -¢
U, =p +s3 , - -
Tl TR o agkagl k fk 5/ g/ )

H m 2

u.
J 0 0 . ¢0
+ /\z::l hgl agka‘uh (g s )(gl\ ‘Ek)p‘h

+0(£—£% u). (2.3b)
We can express %, as a function of £ and p with
an error term of order O(¢ — £¢°, u)? in two ways.
The first is to substitute (2.3) into the right side of
(2.2). The other is to time differentiate the right
side of (2.3) with the help of (2.1). If we equate the
second order terms in these expressions we obtain
a system of n*(n + 1)/2 + n’m linear equations in
the n*(n+1)/2+ mn(n+1)/2+ m*n unknown
second partial derivatives found in (2.3), namely

9%g? o " dx, o Lg:,) o
agag, ()12 X arai ()5, ()

2 m azu

_v ?g_io 97, 0 i(£0 J
Pgl a'sp agkagl(£ )+j§1g,'(£ )8§k8$,

(2.4a)




Volume 5, Number 3

forT<i<snmand 1 <k <l<n

,a_g_'/, - i)le O\, /{ ¢0
ag/\ + Z agl\agl(g )gl(g )

/=1

i a2

d
= X8l ) g (£0.0)
h=1

o (2.4b)

for1 <i, k<nand1<;<m.

In Section 3 we shall give necessary and suffi-
cient conditions for the solvability of (2.4). Sup-
pose it is solvable, typically the solution will not
be unique but that need not concern us. Notice
that (2.3) agrees with the identity transformations
to first order and hence it is easy to invert them at
least to second order,

T a%x
&= oL Y (89X, x, + O(x),
gl SI I A/\‘/Z:l aé;/\aél(g )XkXI (X)
(2.5a)
p,=u, - (£°.0)x,x
/ / ~A'I;l agkag/ N k7l
n alul

-y Y

k=1 h=1 agka‘“h

(€%, 0)xu, + O(x, u)’.

(2.5b)

By ignoring the third order terms in (2.3) and
(2.5) we can pass back and forth between the
nonlinear system (2.1) and its linear approxima-
tion (2.2) with at most third order error. A stabiliz-
ing state feedback

u=Fx+o (2.6)

which produces the desired performance for the
linear system (2.2) can be transformed into a non-
linear feedback by substituting (2.3a) into (2.6)
and then substituting the result into (2.5b). Hope-
fully this feedback will give the desired perfor-
mance for the nonlinear system (2.1).

If it does not, then the above method can be
generalized to find transformations between (2.1)
and (2.2) with fourth order error. The third par-
tials of these transformations must satisfy a set of
linear equations found as before by computing X
as a function of £ and p in two ways. Needless to
say, the computations are somewhat messy. Since
they are all polynomials they can be done auto-
matically using a symbolic manipulation package
such as MACSYMA.
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One can iterate this procedure to find transfor-
mations with any degree of accuracy provided
certain conditions, which we present in the next
section, are met. At each stage the previous solu-
tion can be taken as the lower order terms of the
transformations, so only the highest terms need to
be computed.

The resulting transformations and their ap-
proximate inverses are polynomial hence they can
be easily stored and evaluated in real time. The
actual computation of the transformations need
only be done once and off-line. Since the higher
order transformations agree with the previous ones
in their lower order terms, we can continue to
iterate this procedure until satisfactory perfor-
mance of the closed loop nonlinear system is
achieved.

3. Necessary and sufficient conditions

In this section we derive necessary and suffi-
cient conditions for the existence of transforma-
tions

x=x(§),
u=u(é, p)=a(&)+B(H)Hp,

which transform the nonlinear system (2.1) into a
nearly linear system

(3.1a)
(3.1b)

%=Ax+Bu+O(& p)" " (3.2)

The transformations (3.1) exist and are invertible
from some open domain of (x, u) space onto an
open domain of (£, u) space. In particular, (x, u)
= (0, 0) is mapped to (£, p) = (£, u°).

Jakubczyk and Respondek [4] and Hunt and Su
[3] gave necessary and sufficient conditions when
there is no error term. At the other extreme, as was
shown in Section 1, it is always possible to find
such transformations when p=1. The identity
transformations (or any other linear transforma-
tions) suffice.

There are two ‘natural’ choices for the linear
system (3.2), one is the first order linear approxi-
mation (2.2), the other is the Brunovsky form of
this linear system. Most researchers have focused
on the latter, but the former is more appropriate in
applications since then the linear and nonlinear
coordinates can agree to first order [6].
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But as far as existence of an approximate lin-
earization is concerned, the choice of linear form is
immaterial. Any higher order approximate lineari-
zation of (2.1) must have the same controllability
indices as its first order approximation (2.2). If
there exist transformations (3.1) carrying (2.1) into
its linear approximation (2.2) with an error of
O(&, p)?*! then these can be followed by linear
transformations to obtain the Brunovsky form of
(2.2). On the other hand if (3.1) transforms (2.1)
into any linear form with error O(¢, p)?*! then
TS (o), (3.32)

n=p e )(a(g) E)(E-£)+B(Hu

(3.3b)

g(

transform (2.2) into its linear approximation (3.2)
with the same order error. This is because

v=f- g o6 £1)
w=p+0(f £ pn),

To state the necessary and sufficient conditions
we need some notation. The Lie bracket of vector
fields 1s another vector field defined by

(3.4a)
(3.4b)

[£". g](g)* (&)g” (5) (£).

The ad notation 1s used for repeated Lie brackets,

ad®(g%) g’ =g/,
ad*(g%)g’ =g’ ad* (g% g’].

A distribution 2 is a module of vector fields
(over the C* functions). &£ has an order p local
basis around £° if there exist vector fields
X', ..., X¥ which are linearly independent at £°
and such that for every Y €9 there exists func-
tions ¢, such that

d
Y=Y ¢, X +0(£—-£9)"", (3.5)
k1
The integer d is the order p dimension of 9 at £°.
Such a distribution is said to order p involutive at
£9 if there exist functions ¢/ such that

d

[X. X=X /X +0(¢-¢%)". (3.6)

A=l
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Such a distribution is said to be order p integrable
at ¢% if there exist n —d independent functions
hyits---» h, such that

(dh,, X7y =0(£)". (3.7)

The classical Frobenius theorem can be gener-
alized as follows.

Theorem (Frobenius with remainder). Letr Z be a
distribution Wwith order p basis {Xl, e, Xd} at £°.
D is order p integrable at £° iff D is order p
involutive at £°.

Certainly this theorem has appeared before in
some form or other, but we shall sketch a proof in
lieu of a reference.

Proof. Suppose @ is order p integrable at £, then
X'((dhe. X7))

- X/(¢dhy, X))

=0(¢)”

By nonsingularity there exists ¢}/ satisfying (3.6).

On the other hand suppose (3.6) is satisfied. Let
X4l . X" be vector fields which are linearly
independent of X!, . .. X9 at £° and let ¢'(s, £)
denote the flow of X'. Consider the map

(s, £0) ).

This map 1s locally invertible hence we can con-
sider s, = 5,(£). Define 4, (§) = s,. By repeated use
of the Lie-Taylor series

- N si)k
AElad(/\")xf(k! ,

(dh, [ X, X)) =

B(sy, .o 5,) =0 (5, 92 (55, ..

(Pi(sl )* Xj =
it can be shown that (3.7) holds.

Given the nonlinear system (2.1) define distri-
butions

2* = C* span{ad’(g’)g’
0<Ii<k,j=1,...,m}.

We can now state a weaker version of the Jakubc-
zyk—Respondek and Hunt-Su linearization result.

Theorem. The nonlinear system (2.1) can be trans-
formed into the order p linear system (3.2) where
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(A, By is a controllable pair with controllability
indices k| = --- =k, iff
(1Y D* has an order p local basis at &9 consisting

of
{ad’(g“)g/: O</<min(k, k); j=1...., m}.

(iiy 2%' is order p involutive ar £ for J=
1...., m.

Proof. Suppose the transformations (3.1) exist; let
g'(¢) and g'(§). .... g"(&) denote the transforms
of Ax and B .... B™ into ¢ coordinates. Define
distributions

Z* = C* span{ad’(g°)g’:
0<l<k, j:l,....m}.

It is straightforward to verify that 2* satisfies (i)
and (ii) with phrase “order p” deleted. Moreover
from the form of (3.1) one can verify that 2% and
G* agree to order p at £°, ie.. any vector field of
one agrees with a vector field of the other to order
p. Hence (1) and (11) follow.

On the other hand suppose (i) and (ii) hold. Let
[y = --- =1, be the distinct controllability indices
of multiplicities m . ..., m . Let [ =[,, by control-
lability, @' is of codimension zero. 2! ! is of
codimension m; and by (ii) is order p involutive.
Therefore we can find m, independent functions
hi(§), ..., h,, (£) which annihilate it to order p as
in (3.7).

If /—1 is not a controllability index then @/~?
has twice the codimension of 27! Of course
h,(£) annihilates 22 but it is easy to verify that
the Lie derivative of h, by gY defined by

Lo(h,)(£) =%($)g“(€)

does so also since g(¢)=0. So 2'"? is order p
involutive.

If /=1 1is also a controllability index of multipl-
icity m, then 2’ 2 must be order p involutive by
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(i1). So in addition to A, ..., hm, and Lgo(/’ll),
- L,o(h,, ) there must be m, independent func-
tions h,, ,y,..., h, ., annihilating it to order p.
One continues on in this fashion finding func-
tions hy, ..., h, anmbhilating the various Z%’s.
These functions and their Lie derivatives define
the desired linearizing coordinates (3.1a)

x/ = Lgt;l(hl)

where k; 4 - +k,_ <j<k + --- +k, and
k=j—k, — -+ —k,_,. In these coordinates, (2.1)
becomes

(x,,, +0(& p)"!

if jek + - +k,,

k, k1 e+l
Lgo(hl)+Lng0 (ht)li+0(£’ ‘U,)

if j=l, + - +k,.

X

The linearizing feedback (3.1b) is given by
Tk, k-1
u,=Lg(h,)+ L, L (k).
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