SIAM J. CONTROL AND OPTIMIZATION © 1985 Society for Industrial and Applied Mathematics
Vol. 23, No. 2, March 1985 003

NONLINEAR OBSERVERS WITH LINEARIZABLE
ERROR DYNAMICS*

ARTHUR J. KRENER{ AND WITOLD RESPONDEK:

Abstract. We present a new method for designing asymptotic observers for a class of nonlinear systems.
The error between the state of the system and the state of the observer in appropriate coordinates evolves
linearly and can be made to decay arbitrarily exponentially fast.
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1. Introduction. The problem of approximating the state x € R" of a linear system
(1.1a) X = Ax+ Bu,
(1.1b) y=Cx

based on knowledge of the input u€R" and output y € R® has a well-known solution
provided only that (C, A) be an observable pair, i.e.

C
(1.2) ‘ rank C;A =n.
car
We define z(¢), an estimate of x(t), to evolve according to the dynamics
(1.3) 2=(A+GC)z—-Gy+Bu

where G is an n X p matrix to be chosen. Then the error e = x — z satisfies
(1.4) é=(A+GC)e

The observability hypothesis (1.2) ensures that for any set of n complex numbers
invariant under complex conjugation there exists a G so that the spectrum of (A+ GC)
is that set. In particular G can be chosen so that the spectrum is sufficiently to the left
in the complex plane so that error decays arbitrarily exponentially fast. See [6] for
details.

In this paper we identify a class of nonlinear systems of the form

(1.5a), E=f(&u),
(1.5b) ¢ =h(¢)

for which there exists observers with arbitrary exponential error decay at least locally.
We give necessary and sufficient conditions in the form of a constructive algorithm
for there to exist changes of coordinates

(1.6a) &= £(x),
(1.6b) v=4(y)
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198 ARTHUR J. KRENER AND WITOLD RESPONDEK

in a suitable domain transforming (1.5) into
(1.7a) xX=Ax+y(y, u),
(1.7b) y=Cx

where (C, A) is an observable pair. If (C, A) is in dual Brunovsky canonical form we
say that (1.7) is in observer form. A slight modification of (1.3) yields an observer for
(1.6)

(1.8) Z2=(A+GC)z—Gy+v(y, u)

with the same error dynamics (1.4) as before.
If we transform (1.8) back by (1.6), we obtain a differential equation for {(¢) =
£(z(1))

(1.9) (=1 v, 0.

On a compact subdomain one can achieve arbitrary exponential decay of the error
between £(¢) and {(¢) by proper choice of G.

This paper grew out of earlier work of Krener-Isidori [1] who considered the
above question when p =1, ¢ = y and with no inputs. Essentially we shall reduce the
more general question to the multi-output (p = 1) version of that. In some loose sense
the question which we address is the mathematical dual of that solved by Jakubcyzk-
Respondek [2] and Hunt-Su [3]. They considered the problem of linearization of (1.5a)
using change of coordinates in the state space and state dependent change of coordinates
in the input space (nonlinear state feedback). We refer the reader to [1]-[3] for a fuller
discussion of these points.

A referee called to our attention similar work of Bestle and Zeitz [7]. They assumed
the existence of the linearizing transformations and showed how the observer could
be constructed when p=1.

The paper is organized as follows. Section 2 discusses the observability of a
nonlinear system and § 3 develops a key necessary condition (Proposition 3.3), for the
existence of an observer form. Section 4 is the heart of the paper, in which the two
theorems which reduce the general problem to the multivariable version of [1] are
presented. In § 5 the multivariable version of [1] is given. Sections 2-5 consider systems
without inputs, while § 6 generalizes to systems with inputs. We close by a series of
examples in § 7. The reader may wish to consult these immediately after reading the
statements of Theorems 4.1, 4.2 and 5.1 and the associated remarks.

2. Observability. Consider the problem of estimating the current state £(¢) of the
nonlinear system without inputs

(2.1a) E=f(§), EeR",
(2.1b) Yy=h(¢), YeR?,
(2.1¢) _ £7= £(0)

from knowledge of the past outputs ¢/(s), 0= s = ¢, but with no knowledge of the initial
state £(0) except that it is near ¢°. Later in § 6 we shall treat systems with inputs. We
are not using the term “estimation” in a statistical sense although one could make
additional assumptions about (2.1) and formulate the problem as such. Rather we
desire that our estimate £(t) converge to £(¢) “sufficiently fast” as ¢ increases. The
initial displacement £(0)— £° represents an error in our current estimate of the state
due to the accumulation of past disturbances. The estimate should converge fast enough
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so that the error becomes negligible in a short length of time and future disturbances
are dampened at a rate faster than they arrive. On the other hand if one attempts too
high a rate of decay, the inaccuracies of the observations (2.1b) can play havoc with
the estimate.

The mathematical extreme of this approach is to estimate £(¢) by differentiating
the output ¢ (1) several times. While this is not a practical approach, it does set a limit
on the observability inherent in the model (2.1). Of course this requires that (2.1) be
sufficiently differentiable or €, we shall implicitly assume this throughout this paper.
If from the knowledge of () and its derivatives at t one can uniquely determine
&(1), then (2.1) is observable.

To make this mathematically precise we must introduce some terminology. Let
¢(1) denote the jth time derivative of the ith output. This can be expressed using
Lie differentiation of the functions h; by the vector field f

(2.2) ¢(1) = Ly (h)(£(D)).
L} (h)(€) is the jth Lie derivative of h; by f and a function of £ defined inductively by
(2.3a) L7 (h)(&) = hi(§),

(2.3b) Li(h)(©) =§’—§<Lr'(h.~>(§)>f(§>.

The symbol (3/3€)(h;) stands for the gradient of the function h; and is a | Xn
vector valued function of & It is the local coordinate description of the one form dh;,
which can also be Lie differentiated by f. For our purposes the following suffices as a
definition

(2.4) Ly(dh;)=d(Ls(h))).
DerFiNITION 2.1. This system (2.1) is observable at £ if there exists a neighborhood
U of ¢° and p-tuple of integers (k,, - - -, k,) such that
() kyzk,= - zk,z0and },/_ ki=n.
(ii) After suitable reordering of the h/’s, at each £€ U the n row vectors

{Ly"Ndh):i=1,---,p;j=1,- -, k} are linearly independent.
(iii) If (I, --,1,) satisfies (i) and after suitable reordering the n row vectors
{Li7'(dh)(¢): i=1,---,p; j=1, -, k} are linearly independent at some

&e U then (I, - -+, 1)=(ky, " - -, k) in the lexographic ordering [(I,> k) or
(), =k, and L>ky) or (I, =k,, =k, and > k;) or - - - or (ly =k, =~ -, [, =
k)]

The integers (k,, - - -, k,) are called the observability indices at &°.

This definition of observability is not the only one which has appeared in the
literature. See [4] and [5] for alternatives. It is equivalent to being able to take the n
functions {L}"'(h):i=1,---,p; j=1, -, k} as coordinates in a neighborhood of
£° where no set of lower derivatives would suffice. If we abuse notation by letting
& = Li{(h)(£), then (2.1) becomes

g =& e ¢’p=§pl
511:512 épl=§p2
(2.5) £n=E
épk,,:fp(f)
Eu, =fie

where f, = L}(h;).
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Following Kailath [6] we refer to (2.5) as a system in observable form. 1t is not a
canonical form relative to the pseudo-group of state and output coordinate changes
because different output coordinates (or even different ordering of the outputs) lead
to different f’s.

LeEMMA 2.2. The system (2.1) admits an observable form around £° iff (2.1) is
observable at £°. The observability indices at £° are the same as the k;'s of any observable
form (2.5) at &°.

Let us consider how one might verify Definition 2.1 and Lemma 2.2 for a system
(2.1). Define €°={0} and

& =Span (L} '(dh):i=1, -+, pij=1,"- k)

where Span indicates all linear combinations over the €~ functions of £ Each € is
a module of one forms over this ring of functions; such an object is called a codistribution
or Pfaffian system. Let E*(¢) denote the space of cotangent vectors obtained by
evaluating the one forms of €* at £ Each E*(£) can be thought of as a space of 1 Xn
vectors. Clearly €' €* and E*"'(¢) < E*(&). Let d,(¢) denote the codimension of
E*"!(¢) in E(¢).

LemMa 2.3. The system (2.1) is observable at ¢° with observability indices
(ky, -+, k) :ffd,.(g-‘) is constant in a neighborhood of £° fori=1,---,nand d,(£)=n.
The relation between these sets of integers is given by

(2.6a) dy =card {k;: k; =k},
(2.6b) k;=max {k: d, = i}.

The proof amounts to an algorithm for transforming (2.1) to (2.5). It uses the fact
that &€~ is invariant under change of output and state coordinates.

Proof. Suppose (2.1) is observable with indices (k;, - - -, k,); then E*(¢) has as a
basis {L} '(dh,}:i=1, -, p;j=1,--- min(k, k)} hence is of constant dimension.

On the other hand suppose d,(£) is constant for each k. After reordering the
outputs we can assume that the first d, of the dh;’s are a basis for E'(¢). We can
reorder the first d, of the outputs so that Ly(dh;) i=1,---,d, and dh,i=1, -, d,
are a basis for E*(¢). We repeat the processes reordering the first d, of the outputs so
that L}(dh,—): i=1,---,d; and the previous chosen basis for E%(¢) forms a basis for
E*(¢). In this way we obtain n linearly independent exact one forms. The corresponding
functions are the desired coordinates &;. Q.E.D.

3. Necessary conditions. While observable form is useful for deciding the observa-
bility of a system, it is not particularly helpful in constructing an observer. Suppose
there exist changes of coordinates x =x(¢) and y = y(¢) around &° and ¢°=h(&°)
which transform (2.1) into observer form

y=x S Y =Xy
X =xpta,(y) xplzxp2+apl(y)

(3.1) X=X+ ap(y)

xpkp = apkp(y)

x'llq :alk,(y)
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The construction of an observer for (3.1) is straightforward. Let z; evolve according
to

Zq :le+fill()’)+CI|1()’|_Zu) o ipl:zp2+apl(y)+qpl(y—zpl)

(3.2) 2'12:'Zl3+“12(J’)+(11z()’1_211)

. Z.pk,, = apkp(y)+qpkp(yp—zpl)
Zi = @ (V) i (i~ 200)
where g; are constants to be chosen.
If e; = x; — z;;, then

én=en—que " € =Ppr"qp1€y
(3.3) €12 = €13~ 12611
epkf = _qpk,,epl
€1, =g, €1

The characteristic polynomial of this linear system is

P k; )
(3.4) p(M)=11 (Z qM""’)

i=1 \j=0
where g;,=1. Clearly we can set the spectrum arbitrarily so that the error decays
exponentially fast at any desired rate.

It is well known that every observable linear system can be transformed into
observer form where «; is linear in y by linear coordinate changes in the state and
output [6]. However, even if we allow nonlinear coordinate changes and nonlinear a;,
the analogous result for nonlinear systems does not hold.

PROPOSITION 3.1. If the system (2.1) admits an observer form (3.1) at £°, it must
be observable at £° with observability indices given by the k;’s of (3.1).

Proof. Let ¥ =(ay,/9y;); then

d(.ﬁ, dy,
dyg=1{ - =‘Ifdy=\lf(dyp>,
dys,
50
&' =Span{dy, ---,dy,} =Span{dx,, - -, dx,}.
Assume by induction that
L7 (dy) =Y L} *(dy) mod €’7%;
then
Ly (dg)=VY Ly (dy)+ L(¥)L;*(dy)  mod Lg( & =8,
Ly (dy)y=v L} '(dy) mod &/,
But
L (dy,) = {gx'jﬂ 18:115:: mod €’/

so &' is spanned by dx;, j =k, mod €’'. From this we see that the dimensions of
E’(&) are constant. Q.E.D.
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DEeFiNiTION 3.2. Suppose the nonlinear system (2.1) is in observable form (2.5).
We denote P(¢) the ring of polynomials in £ with coefficients that are € function
of 4. The degree of &, is defined to be j—1 and the degree of the monomial
iyt &, 1s the sum of the degrees of its factors, (Gi=D+ -+, -1). X
denotes the polynomials of degree k or less and P4(&) those polynomials of PE(E)
which are generated by elements of #*7'(¢). In particular, &, is in 2*(£) but not
in P5(¢).
With this terminology available we can introduce our second necessary condition.
PROPOSITION 3.3. Suppose the system (2.1) admits an observer form at £°; then in
any observable form (2.5) the functions f,(¢) are in PE(E) fori=1,--- , D
Proof. Let ?(x) denote the polynomials in x with coefficients that are €~ functions
of y;inasimilar fashion we define the degree of x; tobe j — 1. 2*(x) are the polynomials
of degree = k and P§(x) the subset of P*(x) generated by elements of 2% !(x).
Itis easy to see that L(?“"'(x)) = #*(x) and L(P%'(x)) <= PX(x). For example
X, kK =k, is of degree k—1 and
. Xier1 (), k <k,
s == {70 K=k

is clearly of degree at most k. A similar calculation using the Leibniz rule shows that
monomials of degree k—1 go into monomials of degree k under Lie differentiation
by f. \

Notice that the changes of coordinates transform 2°(¢) onto P(x),ie., PU&(x)) =
P°(x) and P°(¢) = PO(&(x)). Moreover Pl(¢) = PO(£) and Pi(x) = P(x) so PNE) is
transformed into Py(x).

We show induction that ?*(¢) is transformed to 2*(x) and 25*'(¢) is transformed
to 2§ (x) for ail k. If k; =2, then

.2
En=61= ) Xt
j=19Y;
(3.5) "
&= ) —'sz"'Piz(X)
k=2 dY;
where

2 ay
pio(x) =Y a_ajz()") € -@(l)(x) = g)o(x)'
j=10Y;
This proves the above statement for k = 1.
Suppose it is true for k — 1 and suppose also that the generalization of (3.5) holds,
ie,if k,=k

(3.6) b= ) a—d/ixjk+1)ik(x),

kzk a)’j

where py(x)e P57 (x). If k;= k+1, then

g,
(3.7) §ik+1=Lf(§ik):§ik: 2 ——xjk+l+pik+l(x)
k=k+1 Y
where .
Iy awi) >
. wer1(x) = e+ Ll = ) x ) + Li( pu(x)),
(3.8) Pik+1(x) kazk (ayja’k 1 f(ay,- Xin s pu(x))

and hence py, (x)e P%(x). From (3.7) the statement follows for k+1. Q.E.D.
Actually we can deduce a slightly stronger result from the above argument.
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PROPOSITION 3.4. If a system (2.1) admits an observer form (3.1) around &°, then
it admits an observable form (2.5) around ¢° which satisfies f,(£) € Ph(E), i=1, -, p.
Proof. Suppose y = . Differentiating (3.6) with k= k; yields

oy
ay

J

(3.9) f-‘(f):é.’k, = Le(&x,)= Zk Xig, t Pirca1(X)
kizk;

where p, .1 (x) e P&(x) is given by (3.8). Since ;= y; and xy, = ay, € #°(x), the result
follows. Q.E.D.

DEFINITION 3.5. A system (2.5) is in special observable form if fi(&) e P(8),
i=1,---,p

Of course a system need not have a special observable form and such forms are
not always unique. As we shall see in the next section, they are a very useful intermediate
step between the observable and observer forms. We will also give necessary and
sufficient conditions for the existence of a special observable form. Notice that if

k,=---=k, (e.g. p=1), then any observable form satisfying Proposition 3.3 is special.
This is because P§(&) =P (&).

4. Change of output coordinates and prolongation. Consider a system satisfying
the two necessary conditions of Propositions 3.1 and 3.3, namely, that it can be
transformed to observable form (2.5) where fi(§) € P5(¢). Suppose we take the obvious
approach and compare (2.5) and (3.1) to obtain differential equations for ¢(y) and
a(y) = (ay(y)). For simplicity assume p = 1 and hence k, = n. This approach yields

& =(xy),

. d
&H=§ :d_xdj(xz‘*‘ ay),

2

. d d d
(4.1) §3=52:——¢(x3+a2+——a1(x2+a,))+—-¢(x2+al),
dx dx, dx,

. d d"
fal&) =&, dx, (gt )+t "

The result is an nth order system of nonlinear ordinary differential equations for the
1+ n unknowns ¢, ay, - - -, a,. If p> 1 the situation is even worse, for we obtain a k;th
order system of nonlinear partial differential equations for the p+ n unknown ¢; and
a;. Clearly a better approach is needed for all but the smallest value of p and n.

Our approach will be to separate the problem into two parts. The first step is to
derive a first order linear differential equation which essentially determines the change
of output coordinates ¥ (y) if it exists. Once we have this, then we can use the method
of Krener and Isidori [1] to decide if the system can be transformed into observer
form and to compute the change of coordinates and a(y). This latter task we postpone
to § 5. The rest of this section will be devoted to proving the following.

THEOREM 4.1. Consider a system in special observable form. If it can be transformed
to observer form, then the Jacobian ¥ = (W}) = (a;/dy;) of the change of output coordin-
ates must satisfy

(xt+ ay)"

(4.22) V=0 ifk>k
and

a . 12 .
(42b) ——\P{:_ Z fi;lk,;rZ‘PJr-

8'-//1 ki r=|
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We can normalize V() by specifying that
(4.2¢) Yy =1

A different initial condition amounts to a linear change of state and output coordinates.
Notation. We are using the semicolon to denote partial differentiation, e.g.,

o, ¥,
. ) fi;sk,;lz:,—'*_~
A&, A&y 0y,

Remark 4.1. Note that f; 4 € P°(¢) since the system is assumed to be in special
observable form. Therefore the differential equation (4.2b) lives not on the state space
but on the output space as it should.

Remark 4.2. The equations (4.2b) are locally solvable iff the mixed partial condi-
tions are satisfied

f(;\’k, =

a a : a 9 .
= S ()= (W)
) g,

Since ¥ must be invertible, this reduces to

P P
(43) fi;lk,;rZ;mI + Z _flilk,;vzfx:mk\;r2 :fi;mk,;rZ;II + Z ;fi:mk,:SZfs:lk‘;rZ
s=1 s

s=1 R2

fori,m,LLr=1,---,p.

Moreover, a solution of (4.2b) need not automatically satisfy (4.2a). This imposes
additional necessary conditions on the f;’s, namely that their partials have the same
block upper triangular structure as V¥, i.e.

(44) fi;lkl;jZ =0 lf kj > k,-.
Remark 4.3. Suppose ¥ is a solution to (4.2); then (y) satisfies
Y, .
(4.5) Wiy
ay;

Equation (4.5) is integrable iff the mixed partials commute. This is equivalent to

(463.) fi:.ck,:rz = fi;rk.-;s2.

It is useful to choose the solution so that ¢° transforms to y°=0, i.e.,

(4.6b) $(0)=¢° = h(£").

Remark 4.4. Proposition 4.1 deals with a system in special observable form. Of
course any system which can be transformed into observer form must satisfy f;(¢)e
PH(¢) in any observable form. To bring it to special observable form requires a change
of output coordinates ¢ = () as described below.

Let Y'(), - - -, YT(4) be vector fields defined on the output space whose coordin-
ate descriptions relativeto ¢ are given by

I if i=],
(4~7) LYj(ll’i): fi;jk,+| if kj>kis
0 otherwise.

Notice that f,.; ., is a function of ¢ alone since f,(£)e P*(¢).

.
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THEOREM 4.2. Consider a system is observable form satisfying f,~(§)§ @f'(g). It is
in special observable form relative to the transformed output coordinates ¢ = () iff

(4.8) Lyj(§:)=0 for k;> ki
There exists such a change of coordinates () iff the distributions
U'=Span {Y'(¢): k;> ki}

are involutive fori=1,---,p.

Recall that a distribution is a family of vector fields closed under addition and
multiplication by € functions. It is involutive if the Lie bracket of any two vector
fields from the distribution is again in the distribution. The Lie bracket is defined in
local coordinates by

] t
[Yi, Yj]:ﬂ/_ y"_g_ Yj;
Ay W
note that it is again a vector field on the same space, in this case the output space.

Proof of Theorem 4.1. We start with a system in special observable form. For the
time being assume all of the observability indices are the same, k,=k,=---= k, =k,
so that n = p - k. Let g’(£) be the vector field on the state space which is the unit vector

in the & -direction, for j=1, - - -, p. Equivalently these p vector fields are characterized
by the equations

0, 0=l<k-1,

(4.9a) LgJL}(wi)={8,,;’ = k-1,

where &/ is the Kronecker § symbol.
We introduce the ad-notation for repeated Lie brackets

ad®(-f)g' =g,  ad"'(=f)g =[~f, ad'(~f)g’]
and the pairing of a one-form w(&) and vector field X (&)
(@, X)(&) = 0(£)X(§).

In local coordinates the right side is the product of 1xn and n X1 vector valued
functions of & The Leibniz formula holds for this pairing under Lie differentiation

Li{w, X) =({Li(w), X)+ (o, [f, XD

Therefore (4.9a) is equivalent to

(Llfﬁr(dd’i)a ad'(—f)gj) = Lad’(—f)gf }—r(dlﬁi)
(4.9b) _{0, 0=r=l<k-1,
e, - osrsl=k-l

Suppose the system can be transformed into observer form by change of state and
output coordinates. Let B’ be the vector field on the state space which is the unit vector
in the x; direction and &’ (£) be the representation of this vector field in £ coordinates.
Let /(£) and & (&) be the representations in £ coordinates of the vector fields represented
in x coordinates by Ax and a(y) where Ax is the linear part of the right side of the
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differential equation of (3.1). In other words if x is the x;s in lexographic ordering, then

0 1
11 0 0
0
(4.10a) A= 0 0
0 1
0 0 1
0
The output is given by y = Cx and B=(B',- - -, B?) where
0
clofo
0
|
(4.10b) B=| 0
0
0olo]:
0
1
1 0 00 0
(4.10c¢) C= 0 0
0 1 0 --- 0

The ith diagonal blocks of A, B and C are of dimensions k; Xk;, k;x1 and 1xk;
respectively.
Viewing y; = y,(£) as a function of ¢ we have
ngL'f-(y.-) =(Lf"(dy,), ad"(-f)g")
= Lad'(—f)g‘L‘lfir(dyi)
_{0, O=sr=sl<k-1,
A 0sr=l=k-1.
From the proof of Proposition 3.1 we see that both g(£) = (g'(£), - - -, g°(§)) and

g(&)=(g'(&),- - -, g°(¢)) annihilate the codistribution €*~! which is of codimension
p- Moreover

LE'(dy)=W¥LE ' (dy) mod €%
where ¥ = (W) = (3y,/3y;), hence (L; ™' (dy), g(£€)) =¥ and so

(4.10) g=gv.
Next we show by induction that
(4.11) ad'(-f)g’ =ad'(-f)g forj=1,---,p, 1=0,--- k-L

Suppose (4.11) holds for I —1; then since f(£) = f(&)+ a(¢), we have
ad'(-f)g' =—-[f+a,ad""'(-f)&']
=ad'(-f)& -[a ad" ' ()&}
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In x coordinates ad''(—f)g =A'"'B’ and —[4, ad"'(F)g'] is (8a/3y)CA"'B=0.
Moreover since ad'(—f)g°(¢) is the constant vector field A'B* in x coordinates for
s=1,---,pand =0, -, k-1, it follows that

(4.12) [ad’(=f)g", ad'(=f)g’]=0

forr,s=1,---,pand jI[=0,-"-, k—1. (Note: A is the Ith power of A, B’ the sth
column of B.)
The Leibniz rule applied to (4.10) yields

k-1

s k_
(4.13a) ad'(-Ng'=Y L ( ,1) ad' (=g L 7 (¥s),

1=1 o=1

k-2 r k__ . .
(4.13b) ad“ (g = ¥ z( jz) ad' (~f)g° L7 (V).

j=1p=1

From (4.12) we see that
(4.14) 0= (L (d), [ad**(~f)g" ad* '(=NE’D

and if we expand the right side using (4.13), most of the terms drop out because of
(4.9). We are left with

0= § (L) ad* =Ng" ad* DDV

(4.15) + (k= D)(L(d,), ad* (=g Lad*per L (¥ V5
(L), ad* (=g Moaa - (Y)Y }-

From (4.13) and the identity Lf(dy;) =f; we obtain

R SR {(k—l)iw;)\lfﬁi(\v;)w;}

po=1 po=1 all/p ad’a—
P9 P 9°
(4.16) (k- 3 ey ¥ L3
P=|ayrays U=lays ayr
roogv
k3 Zrw
ﬂ.:;:‘ a(/ja

Multiplication by ¥~! yields the desired result (4.2).

Now suppose the observability indices are not all the same k; =" -z k, By
hypothesis the system is in special observable form relative to the output ¢. Moreover
by the proof of Proposition 3.4 the system will also be in special observable form
relative to the output y.

Theorem 4.2 implies that the change of coordinates y = y(¢) satisfies the equations
(4.8) with y = ¢, i.e.,

E’Yi: 0 for k;>k;
Y,
because [+ =0. This implies (4.2a).
To show (4.2b) we prolong the system, i.e., define a new system similar to the old
but with all observability indices equal to the largest index k; of the old. We do this
in such a way that the new system is transformable to observer form by ¢ and « iff
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the original system is also. Moreover the form of the differential equations (4.2b) for
W is left invariant.

In order to simplify the exposition, we will restrict to the case where there are
two distinct observability indices k, =k and k, =k — 1 of multiplicities p, and p,. The

general case follows by repeated application of this technique. Let y, denote the first.

Py ouptuts and y, the last p, outputs; each £; is a p; vector, etc. The original system
and its transformed version are

Ui =&y, Yi = Xiys
(4.17) é.-,:{f"'“’ ==k x.-,-={x"“'+a"'(”’ 1=
S j=k, Qik(y)s j=k,
for i=1 and 2.

The prolonged system and its transformed version are in different variables but
the same function () and «(-) should accomplish the transformation,

(17(‘:5:‘1, Vi=ZX,

&, 1=j<k, . [Ftey(d), 1=jsk,
(4.18) i:{f‘ ) n={’ 7 )

§] is j=k, i aik(y), j=k,
where
(4193) Ay =0,
(4.19b) fi=h,

_ Fi] o -t = 2 K _
(4.19¢) fzzw(‘l’z)fzzq'z (o, —f)+ L Zlfz,ijfijﬂ-
> i=fj=

Of course the functions on the right side of (4.19) are to be evaluated on the new
(barred) variables. Recall also that by Proposition 4.2

P
w1 =9y

ay,

The claim is that (4.17) holds if (4.18) does. To see this notice that the straightfor-
ward approach (4.1) described at the beginning of this section yields almost the same
set of differential equations. The only difference occurs at the k, and k,=k,+1 time
derivatives of ¢, and ¢,. At the k,th derivative we have

(4.20a) fo(€) = oy =W i(agpy+ - )+,
(4.20b) oty = iy = V3% + Qg+ 0 0).

Assuming that (4.17) holds and (4.18) holds up to this equation, then comparing (4.20)
and the earlier equations yields

(4.21) bk, = W%y, + fr(£).
Now (4.18) will hold if the derivative of this is consistent with
(4~22) Ezk,:f_z(é)~

But differentiating (4.21) yields

ks dJ — 2 k;
(4.23) &, =6—%(‘I’§)§uxzk,+ Z > fz;ij§ij+1

i=12j=1
as desired.

~ A e

wn

li

il

t
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On the other hand suppose (4.18) holds. The differential equation on the right
restricts to the hyperplane given by x,,, = 0. This transforms to the hypersurface given
by §_2k] = £,(£). The restricted systems are precisely those of the original (4.17). Q.E.D.

This completes the proof of Theorem 4.1 in the course of which we have used
Theorem 4.2.

Proof of Theorem 4.2. We start with a system in observable form satisfying
fi(£) e PX(€) and at least two distinct observability indices, (if the observability indices
are all the same there is nothing to prove.) Similar to before we define vector fields

g'(&), -+, gP(£) to be the unit vectors in the £y, - - -, &, directions, ie.,
0 0=l<k—1

4.24 WLi(g) =1 L

( ) Lg f(¢t) {51,, l:k,-_l.

As we noted before in § 2 the codistributions
&* =Span {L}(dh,-): 1=i=p;0=1<k}

are invariant under changes of state and output coordinates. The vector fields g, -,g"
and their brackets under f span the dual distributions, g* = g%+, given by

@* =Span {ad'(—f)g’: k;> k0= 1<k;—k};

hence these are also invariant. Moreover the distribution obtained by bracketing the
elements of &% with f up to k; times is also invariant; we denote this by Pk

G4 ={ad (-f)g': k> k;; 0= 1<k}

It is straightforward to verify that

1 ifi=jand I=k—1,
Leaa' g/ () =3 fisjr1 if k;> k; and I=k-1,
0 otherwise,

so the image of @ under dy is precisely the distribution %" on the output space. This
shows that %' is independent of the output coordinates.

Now suppose we wish to choose output coordinates df so that relative to these
coordmates we have the special observable form; then dzJ/, must annihilate %’ Hence
d/, must satisfy (4.8).

But¥'c¥%’c---c¥ sody, -, dd;,, also must annihilate the p — i dimensional
distribution ¥'; hence %' must be involutive.

On the_other hand if each @' is involutive, then we can choose p independent
functions df,, cee l[/p such that dd/, 1 %' This is the desired output coordinate
change. Q.E.D.

. Sufficient condition. Let us review the previous sections. We start with a non-
lmear system (2.1) around some nominal operating pomt &° for which we desire to
build an observer. We first check that it is observable at £° by attempting to transform
it into observable form (2.5); then we check if f;(¢) € P (¢) as described in Proposition
3.3. Next we attempt to make a change of output coordinates to get it into special
observable form as described in Thegrem 4.2. If this can be achieved, then we attempt
to solve equation (4.6) using Theorem 4.1 to find the output y = y(¢). If we are able
to accomplish all of this, we have the system in the form

(5.1a) E=1(9),
(5.1b) y =h(§),
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(5.1¢) £0)=¢°

which we wish to transform by change of state coordinates ¢ = £(x) into
(5.2a) Xx=Ax+a(y),

(5.2b) y = 6x,

(5.2¢) y(0)~0

where A, C are as in (4.10) but with possibly varying block sizes determined by the
observability indices k, - - -, k,. The diagonal blocks of A and C are k; X ki and 1 X k;
respectively.

The scalar output ( p = 1) version of this problem was solved by Krener and Isidori
[1]; the following theorems are straightforward generalizations.

THEOREM 5.1. Let g'(&),- -+, gP(&) be vector fields defined by the equations

(5.3) Lgfo(y.-)={g’,;, ?f;é_';‘__l’

There exists a change of coordinates transforming (5.1) to (5.2) iff

(5.4) [ad“(=/)g’, ad'(=f)g']=0

forij=1,---,p, k=0,--- k—1;1=0,---,k—1. The appropriate coordinates x =
(x,) are such that the vector field ad* *(—f)g" is the unit vector in the x; direction,
(5.5) Loa** g (%) = 83681

The appropriate functions & = (a;) can be computed by applying the state coordin-
ate transformation to (5.1) and comparing the result with (5.2) or by solving the
equations

(’)CY-[
(5.6) a_yj,.: Loa*—prg (Xn)-
These are always solvable if (5.4) holds.

Remark 5.1. The repeated Lie brackets of vector fields X', X* and X satisfy the

Jacobi identity

(5.7) (XX X =[0X", X IX*1+ (X[ X", X*]].

This leads to considerable redundancy in the conditions (5.4). Suppose the conditions
hold for any k<k, I<k; and k+I<r.
If k+1=r, applying (5.7) we obtain

[ad"(~f)g", ad'(-f)g']=—[ad""'(-f)g’, ad"" ' (-f)g']
+[flad* (=1, ad'(=f)g'N]

but the second on the right is zero by assumption. Hence for each i, j and r we need
check (5.4) for only one value of k and ! summing to r. Moreover because of the
skewsymmetry of the bracket, (5.8) is skewsymmetric in i and j if r is even and
symmetric if r is odd. Therefore for even r we need only check for i <j and for odd
rfori=j.

In particular if p =1, (5.4) need only be checked for k=I~1andl=1,---,n—1L

The condition that f;(£)e ?%(¢) and the basic differential equation (4.2) are
implied by (5.4) and as we shall see in the examples are sometimes equivalent to (5.4).

(5.8)
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Remark 5.2. Suppose we have a system in special observable form relative to the
output  and we have computed ¥, the solution of (4.2). It is not necessary to compute
y(y) to verify (5.4).

If g',---,g" are the vector fields defined by (4.24), then they are related to
g', .-+, g by (4.10). With the help of (4.13) we can convert (5.4) into a family of
differential equations which ¥ must satisfy.

Proof of Theorem 5.1. Suppose there exists a change of coordinates £=£(x)
transforming (5.1) to (5.2), then the vector fields g', - - -, g¥ are transformed to constant
vector fields in the x,, direction. Let B be as in (4.10) with block sizes determined by
the observability indices, the diagonal blocks are k; X1.

Then ad'(~f)g’ = A'B’ for j=1,---,pand =0,--- ki s0 clearly (5.4) holds.
(Note: A'is Ith power of A, B’ the jth column of B.)

On the other hand suppose (5.4) holds. These are the integrability conditions for
the set of partial differential equations (5.5) so there must exist coordinates x in which
ad" '(~f)g is the unit vector in the x; direction.

We wish to compute X; = L(x;).

fl=k=k,

9%,
Ixa Lo+ (-pg Ly(x;) = Laat ' -ng(x0) + LL gt g (%i)-
ik
From (5.5) we see that .
ﬁﬁ*{ajﬁf“ if k>1,
X Ladk (_f)g'(Xﬂ) if k=1.
But x;; =y; so
% :{le+l+ajl(y)’ l<kjs
! ajk,()’), I=k

where a; is the solution of (5.6).

These are first order partial differential equations so they are solvable if the mixed
partials agree.

0 dy

ay, ay;

= Ladk"‘(vf)é'Ladk'(Af)é"(xﬂ)

= Ligas\(—p)g".ad (g Xit) = Laa*«-ng' Laa*'-ng (Xi)-

The second term on the right is zero by (5.5). Skew symmetry, the Jacobi identity
(5.7) and (5.4) yield

lad* (~f)g", ad*(~f)g')=[ad" (-8, ad*"'(-f)g']
so the mixed partials agree. Q.E.D.

6. Systems with inputs. The previous method can be easily generalized to handle
systems with inputs ’

(6.1a) £=f(&u),
(6.1b) ¢ = h(§),
(6.1¢) £~ ¢(0),

(6.1d) ¥ = h(£’).
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We seek a change of output and state coordinates which transforms (6.1) into

(6.2a) x=Ax+vy(y, u),
(6.2b) y=0Cx,

(6.2¢) x°=x(£)=0,
(6.2d) Y =u(y®) =0.

If A, C is in dual Brunovsky form as given by (4.10), we say that (6.2) is in
observer form. The system

(6.3a) 2=(A+GC)z+y(y, u) — Gy,
(6.3b) z(0)=0

tracks (6.2) with the error e = x — z having dynamics
(6.3¢) é={A+GC)e,

(6.3d) e(0) = x(£(0)) =0.

Once again by proper choice of G we can insure that e(t) goes to zero with arbitrary
exponential decay.

To reduce this problem to the one considered previously we first choose a nominal
input, either a constant u° or a function of ¢, u°(¢). From a mathematical point of
view the choice is immaterial. But of course the mathematical model is never an exact
description of the real world; to reduce the effect of modeling errors the nominal
control should be typical or average in some sense of the controls that will be employed.

We then rewrite (6.1a) as

(6.4) E=L(O+f(&u)

where

(6.5a) &) =f(& u’(y(8))),

(6.5b) S E W) =& w)=f°(&)

and proceed as before with the unforced system (6.6) and (6.1b, c, d)
(6.6) £=1°8).

If this can be transformed into observer form (6.7) and (6.2b, c, d)
(6.7) X=Ax+a(y)

by change of state and output coordinates, then all one need check is that f'(£ u) is
transformed into a vector field of the form

(6.8) B(y, u).

If this is possible, then y(y, u)=a(y)+B(y, u) and the problem is solved. If
unforced system (6.6) and (6.1b, ¢, d) cannot be transformed into observer form or
f'(& u) does not transform into (6.8) then the original system (6.1) cannot be trans-
formed into observer form (6.2).

As we remarked before the choice of the nominal control u®(¢) is immaterial; a
system (6.1) can be transformed into observer form (6.2) iff every unforced closed
loop version (6.6) can be transformed into observer form by the same changes of
coordinates,
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Two nonlinear coordinate changes which transform a system (with or without
inputs) into observer form differ by a linear change of coordinates. For such systems
the output feedback u = u®(y) affects neither the observability nor the observability
indices. However it is possibie that (6.1) does not have an observer form yet one or
more unforced closed loop versions do. If there is more than one, then typically these
will involve different coordinate changes and perhaps even different observability
indices.

7. Examples. We consider several simple cases of the above method for transform-
ing a system into observer form.
Example 7.1. p=1, n=k =2. In observable form we have the system

l{/zfl, go
(7.1 §1:§2, §0:(§<1)), l/’():f(l)-
&=1(6), :

Proposition 3.3 requires that f,e ?>(£); hence

(7.2) fz<§>=a<§l>+b<§l)§z+c(§l>%.

If this holds then since there is only one output the system is in special observable
form, i.e., f,€ P{(£). The differential equation (4.2) for ¥ =dy/dy is

. dv 1 1
{7.3) _dazifl;z;zxy(d’)zic(ll/)\y(l//)i
the solution is
¥
(7.4) \If(([/)zexp(J‘ E(u)dv)
o’

where we have normalized the constant of integration so that ¥(°) = 1. Next we check
condition (5.4) using the identities (4.13)

g ad(-flg ¢ ad(-f)g (8, ad(-N)E]

: [0 P Pty
" U\ fio/\W/\fio¥ =¥ VE\f2,¥ -2 )

Equation (7.3) implies that (5.4) holds and hence the system can be transformed into
observer form.

The required change of output coordinates is obtained by integrating (7.4) to

[ “ e
(7.6) y(¢) =J exp (—j —(v) dV> du
o° woz

where ¢° = ¢° and the limits of integration have been chosen so that y(¢°) =0. Since
J = £, and y = x, this gives half of the change of state coordinates. The other coordinate
x,(£) must satisfy (5.5) which reduce to

(7.7) Loy =1 Laac-ngen =0.

From (7.5) this becomes

(7.8) Qi‘zz_qr—*<———b+c§2>, 0 g,
€, 2 &,
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These are easily integrated to obtain
£

(7.9) xz(§)=‘1’"§z—§3-I W (b(y) dv
£

where the constant of integration has been chosen so that x,(£°) =0.
Finally we compute a. Comparing the time derivative of (7.6) with (7.9) yields

0
1

&
(7.10) a;(§|)=§3+j ¥ i(v)b(v) dv.
£

Time differentiating (7.9) yields

(7.11) az(gl)z‘y~l(fl)a(§l)-

Notice a; = a;(#) = a(¥(y)) as desired.
Hence we have that an n=2, p =1 system can be transformed to observer form
iff it satisfies Proposition 3.3.

Example 72. n=20,k;=-"-= k,=2. The analysis is very similar to previous
example. In observable form we have for i=1, -+, p.
i =&,
(7.12) én =i,
&x=1(€).
Let
£ £ ‘xll X21
=l |, &=\ |, =} |, X7
Eip, & Z1p X2p

Again f; must be quadratic in &5 S0

fi(g)= a(é)+ bi(§l)§2+%§lzci(§l)§2

where a; is a scalar and b;=(by) and ¢;= (xi) are 1 Xp and symmetric p Xp matrix
valued functions. The partial differential equations (4.2) become

(7.13) Lwieg § ewvi,
It is convenient to define p X p matrix valued functions

*(y) = (T5(4)) = Geuwg(¥))
for k=1, -, p. We rewrite (7.13) as

9
(7.14) — ¥ =Ty,
a
If the integrability conditions
ar* oI
(7.15) 2 = orirk-rfr
Y

are satisfied, we have the solution

14 ¥
(7.16) ‘If(tl/)zexp<2 j ' (v) dv,—).
ol

i=1
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Again (7.14) insures us that (5.4) holds, so the changes of coordinates exist. The change
of output is obtained by integrating (7.15) via the line integral

W
(7.17) y(lp):J O‘P"(V) dv.
¥

This is also half of the state coordinate change; the other half x,(&) satisfies (5.5)
which becomes similar to

o

P
(7.18) —\If"(b+ Y F"gkz), — =¥
k=1

a&
where b is the p X p matrix whose i, jth entry is the jth entry of b.. The solution (7.18)
is

£
(7.19) x2(§)=\v"§2—§2—j T (nb() dv
31
where the last term is a line integral. The computation of «a is as before and given by
the vector versions of (7.10) and (7.11).
Hence a 2p=n, k, =+ =k, system can be transformed to observer form iff it
satisfies Proposition 3.3 and the integrability conditions (7.15).
Example 73. p=1,n=k = 3. In observable form we have the system

y=4£&,

) élz‘fz,
(7.20) bt
27763

észfl-

Proposition 3.3 requires that f, be of the form

2 3
£16) = al) +blE)E (60 a(ens

(7.21)
+ (P(fl) + U(§1)§2)§3-
The basic differential equation (42) is
dv 1 1

(7.22) _d_djzgfl;a;z‘l':‘jo'(ll/)‘y
and the solution is

Y a(v)
(7.23) W(y)=exp | 3 dv.

wo

If we use (4.13), then after a laborious calculation (5.4) reduces to the two differential
equations

do 3 2

7.24 i =d+- 2

(7.242) i, 27737
dp

(7.24b) o + po.

Hence a p=1, n=3 system can be transformed to observer form ift Proposition 3.3
and equations (7.24) are satisfied. The rest of the calculations proceed as before.
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Example 74. p=2,n=3,k =2, k,=1. In observable form we have

Iy =&y, =&y,
(7.25) éu:‘flz, é2l:f2(§)s‘ ¢:§I:<§u>,
élzzﬁ(f),. *

where by Proposition 3.3

2 b2
T £16) = a(&) +be)En+ e(6) 2,

(7.26b) f2(‘f)=p(§l)+a(§l)§l2-

First we transform this to special observable form by Theorem 4.2. We seek ([72(([/)
such that

-~ l 1
. YY) = Y‘: =
(7.27) Ly(42) =0 where <f2;12> <a(§l>)

or

3y, 3y,

—+o(p)—=0.

Y Y,
This is always solvable. In observable form (2.5) relative to the new outputs (/;l =iy
and ¢, we have

(7.282) Fud = )+ B @)+ e @) R,

(7.28b) (€)= p5(&).

At this point the presence of the second output is immaterial and we proceed essentially
as in Example 7.1 carrying ¢, = &, as a parameter. Hence a p =2, n=3,k =2, k=1
system is transformable to observer form iff it satisfies Proposition 3.3.
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