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Reciprocal processes were introduced in 1932 by S, Bernstein
as a generalization of Markov processes. Acausal linear
systems were introduced in 1978 by A. Krener as a generali-
zation of causal linear systems. We discuss the relation-
ships between these four concepts.

1. ACAUSAL SYSTEMS

Acausal linear systems (or boundary value linear systems) were introduced in

[11] and further studied in [2,8-10,12-15]. They are mathematical models of the

form

(1.1a) x = Ax + Bu

1) VOx(e) + vix(e) = v
(1.1¢) y = Cx + Du

1) w = W'k + whx(e))

where x(t), v, w ¢ ng u(t) € R"® and y(t) ¢ RP, The matrices A, B, C, D, VO,

Vl, WO and wl are dimensioned accordingly. The matrices A, B, C and D may be
time varying; we are primarily interested in the case when these are either con-
stant or real analytic functions of time. We assume throughout that (1.la,b) is
well posed, i.e., for each sufficiently regular input u(t) and boundary condition
v there exists a unique solution x(t)., This is equivalent to assuming that
after a change of v coordinates we have

(1.2) V0 + Vlé(tl,to) =1

where §(t,s) is the fundamental matrix solution of the differential equation
(1.3a) g% (t,8) = A(£)3(t,s)
(1.3b) 3(t,t) = 1,
The system (2.1) induces a linear mapping from pairs (v,u(.)) to pairs
(w,y(+)). 1In particular
. Cl

(L.8)  y(e) = cOa(e,tdv + [ Ce)E(e,)B()uls) ds + D(tu(t)

t

0

where G(t,s) is the Green's matrix of the boundary value problem given by
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@(t,to)v%(to,s) if £t > s
(105) G(t,S) = 1
@(t,to)v @(tl,s) if t < s,

Models such as (l.1) are useful because they give a convenient representa-
tion of the map between function spaces (l.4). For the moment let v = 0 and
D = O, The kernel of (1.4)

(1.6) W(t,s) = C(t)G(t,s)B(s)

is called the impulse response or weighing pattern of the system (1.1).

Deterministic realization theory is concerned with the inverse question,

i.e., given a weighing pattern W(t,s) defining an input output map

1
(1.7)  y(e) = J‘ W(t,s)uls) ds

o
(v 1is assumed to be 0), describe any and all state space realizations of the
form (1.1). One 1is particularly interested in minimal realizations, i.e., those
of minimal state dimension among a given class of realization, e.g. real analy-
tic or stationary. These two categories admit a complete realization theory
given in [15]. We briefly review this work in the next section.

If we excite (1.1) with a standard white Gaussian noise u(t) and take v
as an independent Gaussian zero mean random variable, then both x(t) and y(t)
are zero mean Gaussian processes with covarilances Rx(t,s) and Ry(t,s).

Stochastic realization theory is concerned with the inverse problem. Given
a covariance R(t,s), describe any and all realizations of it either as the state
covariance Rx(t,s) or the outpug covari§nce Ry(t,s) of a model such as (1.1).

For causal models, i.e., V' = I, V' = 0, these questions have received con-
siderable attention and have been completely solved for stationary covariances
R(t,s) = R(t-s). Under the assumption of causality, the state process is
Markov. From the work of Doob [7] and others, we know that every Gauss Markov
process can be realized as the state process of a causal system,

The question of which stationary covariances can be realized as the output
process of a causal system has been solved but is considerably more complicated,
involving questions of spectral factorizations, splitting subspaces, etc. We
will not go into this, but refer the interested reader to the recent survey arti-
cle {14] and its references.

Generally speaking the state process of an acausal model (1.1) is not
Markov. 1In 1932, Serge Bernstein {3] introduced a generalization of the Markov
property which he called reciprocal. A process x(t) defined on an interval
{to,tll is reciprocal 1f for any subinterval [70,11] c [to,tll, the values of
the process x(t), 7 € [TO,TIJ inside the subinterval are conditionally independ-
ent of the values x(t), t ¢ (TO,TI) outside the subinterval given the values of
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the process, x(wo), X(Tl)’ on the boundary.

In Section 5, we show that the state process of an acausal linear system
(1.1) is reciprocal. However, even in the stationary Gaussian case, not every
reciprocal process 1s the state process of an acausal linear system (1.1). We
show this by describing all stationary Gaussian processes that can be realized
as the state process of a one-dimensional acausal linear system, >This list is
a proper subset of the list of all one-dimensional stationary reciprocal pro-
cesses as given by Jamison [11], Chay [5], and Carmichael, Mass& and Theodorescu
[4l1.

2, DETERMINISTIC REALIZATION THEORY

A linear mapping from a space of inputs u(t) to outputs y(t) is said to be
causal 1f whenever two inputs agree up to time Ty the corresponding outputs
also agree up to time To* The key to understanding the realization theory for
such mapping is the Hankel point of view that was perhaps most clearly put forth

by R. Kalman,

The Hankel point of view can be loosely described as follows. Given Ty one
considers only inputs with support to the left of TO and observes the outputs
only to the right of TO' To obtain a finite dimensional realization this map
must be of finite rank. If this holds, then one factors the mapping through a
finite dimensional vector space which plays the role of the state space at time

TO' If this factorization can be done with a common state space for all T

0
then one can construct a realization. The realization is controllable at o if
the right factor is onto the state space. It is observable at T. if the left

0
factor is 1-1. A realization is minimal 1ff it is controllable and observable

at some .
s TO

In the acausal context the situation is more complex, One chooses two
times Tg < Ty First we consider how an input with support outside of [TO,TI]‘
affects the output on [TO,TI]. Second, we can consider how an input with sup-
port on [TO,TI] affects the output off[To,TI]. We assume that each of these
maps factors through an n-dimensional space and the combined 2n-dimensional
space can be thought of as the direct sum of state spaces at T and T1e

To be more concrete consider the system (1.1) and define n xn matrices

0 _ 0
(2.18) K™ = @(‘T’O;to)v Q(CO’TO)

(2.1) k- 8(Tgs £V 8 (t , 7))
@.10) 30 = ~5(r,7))

1
(.19 J'=1

The inward and outward boundary values k(TO,TI) and j(TO,Tl) are the n-vectors
defined by
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k(To:Tl)

an [Tl NI

This is an invertible transformation by the well-posed assumption (1.2).
The space of k's serves to factor the map from inputs with support off

[70,71] to outputs on [70,11]. This 1s because for any input u{t) and v = 0
(2.38) k(7 T)) = (J )3('ro,s)B(s)u(s) ds.

If the support of u(t) is off [TO,TI] and t ¢ [TO,TI] then
(2.3b) y(e) = ce)a e, Tdulry, ).

Similarly the space of j's serves to factor the map from inputs with sup-

port on [TO,TI] to outputs off [T 1. For any input u(t)

0’ 1

r

(2.4a) j(TO,Tl) = L @(TI,S)B(S)u(S) ds.
0

If the support of u(t) is on [70,71], v =0 and t ¢ [70,71] then
(2.4D) y(t) = C(t)G(e, ) 5(T4,7)e

Corresponding to these two factorizations we have two definitions of con-
trollability and observability. In each case the formulas (2.3a) and (2.4a)
((2.3b) and (2.4b)) should be viewed as a mapping from (to) a function space
to (from) R". The system (1.1) 1s controllable off [TO,TI] if (2.3a) is onto
and is controllable on [TO,TII if (2.48) is onto. It is observable on [70,71]
if (2.3b) is one~to-one and observable off [TO,TI] if (2.4b) is one-to-one.

We have shown that if one of the factorizations (2.3) or (2.4) is epi-mono
(i.e., the (a) part is onto and the (b) part one-to-one), then the realization
is minimal [15]. We have also given necessary and sufficient conditions for
minimality within the category of real analytic systems and within the category
of statlonary systems [15]. Loosely speaking, these conditions are that the
systems be both controllable and observable off every proper subinterval and
that every direction of the state which is unobservable on some subinterval must
be controllable on that subinterval.

We refer the reader to [15] for the exact statements of the theorems and
their proofs,

Notice that k(TO,Tl), j(TO,Tl) contain the same information as x(TO),
x(Tl). We consider the former as functions of the subinterval [TO,TI]. Rela-
tive to the inclusion, ordering the mappings from the input u(t) to k(To,Tl) and
j(TO,Tl) have a causal property in that k(TO,Tl) does not depend on u(r) for

TE (TO,Tl) and j(TO,Tl) does not depend on u(t) for t £ [70,71].
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3. STATIONARY GAUSS MARKOV REALIZATION THEORY

A stochastic process x(t) on [to,tll is Markov i1f for any T € [TO,TI] the
sigma algebras generated by the past {x(t): to <t< TO} and the future
{x(7): g ST tl} are conditionally independent given the present x(TO). The
definition was formulated in 1906 by Markov for what are now called Markov
chains and generalized by Kolmogorov in 1931. They were motivateé by the work
of the physicists of the day, people like Chapman, Fokker, Planck, Ornstein,
and Uhlenbeck,

A zero mean nonsingular Gaugsian process x(t) is Markov iff its covariance

matrix Rx(T,t) satisfies the functional relation
-1
G R (7)) = R (TR (g, TR (10,6)

for all tg St < To

for to < o < tl') In the stationary case where Rx(T,t) = Rx(T—t), this be-

<7< . (By nonsingular, we mean Rx(TO,TO) is nonsingular

comes
(3.2) R (t+s) = Rx(t)R-l(O)Rx(s) for t, s > 0.

It is not clear who to credit for the realization theory of stationary
Gauss Markov processes which follows, Certainly we must give at least partial
credit to Ornstein, Uhlenbeck, Doob, and Kalman.,

Consider an autonomous causal linear system

(3.4a) X = Ax + Bu
(3.4b) x(0) = xO

where u(t) and xO are independent and satisfy

(3.4¢) u(t) ~ N(0,15(t-8))
(3.44d) xO«w N(0,P)

The state process x(t) is a zero mean Gauss Markov process defined for all

t > 0 with covariance
* inft,s} *
*
R (t,8) = e*pet © 4 fm ATr%er T ar,
0

The following facts are well known.

Proposition 3.1, The process x(t) defined by (3.4) is stationary iff
* *

(3.5) AP + PA = -BB .

Propogition 3.2. If the process x(t) defined by (3.4) is stationary and non-

degenerate then the eigenvalues of A have nonpositive real part.

Proposition 3.3. If the process x(t) defined by (3.4) is stationary and (A,B)

is a controllable pair then x(t) in nondegenerate and the eigenvalues of A
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have negative real part.

Now we turn to the inverse question and prove the following well-known

result,

Theorem 3.,4. Every stationary nonsingular zero mean Gauss Markov process with

continuous covariance has a realization of the form (3.4) on [Q,»),
Proof. TIntegrate (3.2) with respect to s from O to &§ > O to obtain

(3.6) J.t+6R (s) ds = R_(t)R_1(0) IGR (s) ds.

. X X 0 %
By the nonsingularity of Rx(O) the integral on the right is invertible for small
8, so (3.6) implies that Rx(t) is C1 and by induction C°, We differentiate
(3.2) with respect to t at t = O to obtain

(.72) R (s) = K (OR(OR (o).

Let A = Rx(O)Rx(O)’ then

A

At
(3.7b) Rx(t) = e RX(O).

The desired realization (3.4) is obtained by setting P = Rx(O) and letting B

be any solution of (3.5).
4. RECIPROCAL PROCESSES

A stochastic process x(t) on [tO’t1] is reciprocal if for any subinterval
[TO,Tll < [to,tll the sigma algebras generated by the process on the inside
ofx(t): 7 ¢ [TO,TI]} and on the outside of{x(t): t ¢ [to,tll\(To,Tl)} are condi-
tionally independent given the boundary values x(TO) and x(Tl). This definition
was formulated by Bernsgtein [3] in 1932 who was motivated by work of
Schrodinger.

It 1s easy to see that a zero mean Gaussian process x(t) is reciprocal iff

its covariance matrix Rx(t,ﬂ satisfies the relation

R(Th,Ty)  R(T,,T,)_ -1 R(T,,T)
_ 0*0 0’1 0
“.1) R(E,m) = [RCE, 1 IRCE, T )][R(TI,TO) R(T 7)) [R(Tlﬂ')]

for any T € [TO,Tll and t ¢ (TO,Tl). Implicit in this formulation is the assump-
tion that the indicated Inverse exists. A process for which this holds for all

t0 < TO < Tl < t1 is called nonsingular of order 2. Henceforth we only consider

such processes,

Jamison [11] studied one-dimensional zero mean stationary Gaussian recipro-
cal processes. By a technique similar to that of the last section, he showed
that if the covarlance Rx(t) is continuous then it is ¢~ and must satisfy a

differential equation of the form
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2
d B 2
7 Rx(t) =+a Rx(t).

dt
He mistakenly concluded that the covariances had to be one of the following

forms

(1) R (£) = e*"R (0) a>0, 0<tg<o
(1i) Rx(t) = (I-at)RX(O) a >0, <t<g 2a
(iii) Rx(t) = (cos at)Rx(O) a>0, 0<t<w

In 1972, Chay [5] partially corrected Jamison by adding to the list covar-

iances of the form

¢3D) R (6) = (aeC+ (l-A)e_at)Rx(O)
a>0 <AL L 0<t<T
’ —_ -~ 1 —_ = .
1-eaT 1+eaT

Finally in 1982, Carmichael, Massé, and Theodorescu {4] correctly completed the

list by adding
(1ii") Rx(t) = (cos at + B gin at)Rx(O)

0<a< n/R, -cotan‘az—TSBSO, 0<t<T.

This latter work utilized the concept of a conditionally Markov process in-
troduced by Mehr and McFadden {17] in connection with the study of first passage
times of Gaussian processes. A Gaussian process x(t) defined on [to,tll is
conditionally Markov at T if for every xo the process obtained from x(t) by
conditioning an x(TO) = x0 is Markov on [To,tll. These conditional processes

0
vary with T0 and x ., They are generally not zero mean. However because of the

Gaussian assumption their covariances are independent of xO. (See Cramer [6,

Sec. 24.6].) Hence we can conveniently condition on x0 = 0 to obtain a zero

mean process.
Let's extend the definition of Mehr and McFadden, A process x(t) is con-

ditionally Markov on [to,tll if x(t) 1s conditionally Markov at every

o € [tO’tl] and x(-t) is conditionally Markov at every -7, € [-tl,-tO]. With

this definition we have a generalization of Abraham and Thomas {1].
Proposition 4.1. A Gaussian process is reciprocal on [tO’tll iff it is condi-
tionally Markov on [to,tll.

Suppose x(t) is a reciprocal Gaussian process on [to,tll. Let
To € [to,tll and'E(t‘TO) be the process obtained from x(t) by restricting

x(TO) = 0, By the above,'}(t|¢o) is Markov on [TO,tI] and is zero mean, Denote

its covariance by

*
(4.3) R;(_‘TO)(t,T) = E(x(t)x (1) |x(15) = 0).
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Following [17] and [ 1] we obtain

4.8) R (6,m) = R (£,T)R (rg, TOR (10,7 + R (t,m)

}(.lTO)

where ty < i 1 1°

The reader should contrast (4.4) with (4.1). 1In particular if x(t) is a

<T<L<T, <t<t

stationary reciprocal Gaussian process then (4.,1) becomes

R_(0) R (TO-TI) -1 R (TO-T)
(4.5a) R (t-T) = [R (£-T )R (t-1.)1 |_% x x
a (AT x 07 1 [RX(TI-TO) R (0) ] [Rx(T1’T)]
and (4.4) becomes
(4.5) R (e-7) = Rx(t-TO)R;l(O)Rx(TO-T) +R (€£,7).
x(- 7o)

Note that'}(-]To) is not a stationary process.
The close relationship between conditionally Markov and reciprocal
processes allowed Carmichael, Mass€ and Theodorescu [4] to exhibit all one-

dimensional stationary reciprocal processes as
(4.68) x(t) = g(E)W(E(t)/g(t)) + h(t)Z

where W(t) is a one-dimensional Wiener process and Z an independent Gaussian

variable. For the cases listed above h(t) = Rx(t) and

an £(t) = e - 8F () = A%t - (1-a)Ze7ot
(11" £(t) = ¢, g(t) = 2a - a’t
(iii'") f(t) = sin at, g(t) = (I-Bz)sin at - 2B cos at,

In each case f(t), g(t) and h(t) satisfy
(4.6b) h(t-1) = h(t)h(r) + glt)£(T)

which is just a particular case of (4.5b) with v, = 0.

o]
Now suppose Rx(t-T) is continuous and we integrate (4.5) with respect to

t from m to 714-6 for small § > 0, Recall that (4.5a) is valid for
T € (1,7 ] and £ £ (15,7)).

'rl-’T+6 R (Tr-T)
(4.78) I R (s)ds = [I6+0(5) °(5)1[RX(TO-T)]
x 1

TI'T

vhere o(6)/6 + 0 as & + 0. Similarly if we integrate (4.5) with respect to t
from T " § to To We obtain

T.-T R (‘T -T)

@m [ R = te  Tero X0 ] -
X

-T)
Ty~ T8 1
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By differentiating (4.7) with respect to T we see that RX(TO-T) and
Rx(Tl-T) are c! (and by induction C°) for T¢€ (TO,TI). But [TO,TI] is arbitrary

so we have shown the following

Proposition 4.2, Let x(t) be a stationary reciprocal zero mean Gaussian process
on [tO’tI] with continuous covariance Rx(t). Then the covariance is ¢~ for
t € (tO-tl,O) U (O’tl'to)'

This proposition allows us to derive a differential equation for such co-

variances generalizing Jamison [11], Let s = t - T and g=T -~ T = T T,
Then (4,5) becomes
H
(4.8a) R (s) = [R (sto) R (s-c)][ 1(0)]
‘ X x x HZ(G)
where
H. (o) -1

1 _ TR(0) R(-20) R(-0)

@ (o] ken ro ) ke -

If we assume x(t) is nonsingular of order 2, then it is not hard to see that
HI(G) and Hz(c) are continuous for all small o and C° except possibly at
o = 0. Moreover Hl(o) = Hz(-o) so HI(O) = HZ(O) = $1. We differentiate (4.8a)

twice with respect to ¢ and evaluate at g = 0 to obtain
@9 R (e) = 2R (o) (1y(0)-) (0)) - R (s) H, (0)4%,(0)).
We formalize this as follows.

Proposition 4.3, Let x(t) be a stationary reciprocal zero mean Gaussian pro-
cess on [to,tll with continuous covariance. Then the covariance satisfies a

second order n-dimensional linear autonomous differential equation on [to,tll.
5. ACAUSAL STATE PROCESSES

We return to the study of state space models (1.1) excited by standard white

Gaussian noise u(t) and independent zero mean Gaussian boundary value

(5.1a)  E(u(t)u (1)) = Ts(t-7)
(5.1b)  E(w) = Q
(5.1c)  E(u(t)v) = 0

The state process x(t) is a zero mean Gaussian process given by

1

(5.2) x(t) = 8(t,tp)v + I C(t,s)B(s)u(s) ds.
t
[o]

The covariance is
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*
(5.3) R (t,7) = 8(£,£5)Q8 (7,t4)
t
1 * *
+ [ ale,9)B()8 ()67 (7,5) ds.
¥
o
The inward and outward boundary value processes k(TO,Tl) and j(TO,TI) are
defined by (2.2) and given by >
o 5
Guta) k() = s epv + ([ o [ ) atrg,eB)ute) ds
t T
0 1
T

1
(5.60)  §(Tg7)) = L 3(T;,8)B(s)u(s) ds.
0

We consider k(TO,Tl) and j(TO,T ) as stochastic processes where the
parameter is the interval [TO’TI]' In particular, they have the following

three properties which can be easily verified.

I. The Gaussian vectors k(TO,Tl) and j(TO,Tl) are & linear transform of x(TO)

. .
and x( 1) and k(TO,Tl) is orthogonal to J(TO,TI).

11, K(TO,T )} and j(TO,Tl) are Markov processes relative to the inclusion order-

ing on intervals,

Suppose T € [TO’TII and t £ (TO,TI). Let #(T|k(T 1)) be the optimal estimate

o7
of x(7) glven k(TO,Tl) and'E(le(TO,Tl)) be the error of this estimate. Let

ﬁ(tlj(TO,Tl)) be the optimal estimate of x(t) given j(To,Tl) and'}(t‘j(TO,Tl))
be the error of this estimate. It is easy to see that

(5.58)  &(r|k(T, 7)) = (T, TIK(TG,T))

(S.Sb) x(t|j(TosT1)) = G(t’Tl)j(TO”rl)°

The third property then can be stated as follows.

III.'§(T|K(TO,T1)) is orthogonal to'}(t‘j(To,Tl)).

Theorem 5.1. The state process of an acausal system (l.1) excited by white

Gaussian noise and independent Gaussian boundary values is a reciprocal Gaussian

process.

Proof. For any + € [TO’TII’ t ¢ (TO’Tl)
x(T1) = %(TIK(TO,TI)) +';(TIK(TO,T1))
x(6) = R(e]3(7y, ™)) + X3y,

Using properties I and IIT above, it 1s easy to see that Rx(t,T) satisfies (4.1).
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At this point one might be tempted to conjecture that every stationary re-
ciprocal process can be realized by the state process of an autonomous acausal
model. But this is not true as can be seen by listing all the one-dimensional
statlionary processes ariging in such a fashion.

Suppose x(t) is a one-dimensional stationary process arising from (1.1)

and (5.1) where ty = 0 and t, = T. From (5.3) it follows that

B

1
(5.6a) 2R (0) = B2(1-2v%)

T

.66) R (0) = q + (v'B)? I e g,
0

We enumerate the cases,

Cagse 1. B = 0. Then (5.6a) implies A = 0 and x(t) is a constant random

process,
.7 Rx(t) = RX(O).

Case 2, B# 0 and A= 0, Then (5.6a) implies V0 = % and (1.2) implies

V1 = %, Using (5.3) we obtain

2
(5.8) Rx(t) =Q+ T(T’Zt)

which we recognize as a reformulation of (§i) of the list of stationary recipro-

cal processes of Section 4,
Case 3. B # 0 and A # 0, Without loss of generality we can assume A < O,

From (5.6a) we obtain

2, .0
(5.92) R (0) = 3—(;;&1

From (5.6b) and (1.2) we obtain

2
_ _ B . 0.2 L T2AT
(5.9b) 0<Q RX(O) 2A(1 V)" (1-e ).
From (5.9) we obtain a quadratic inequality for VO,

-2AT _, -2AT,

2
.10 o< 2¢"ATY0, (1-672ATy 40y 2y

This constrains V0 to satisfy
1 0 1
—_—— < —,
1*!—eAT 1- eAT

Next we solve (5.3) to obtain

2
(5.12) R (6) = Z((1-v0)e At 0At)

(5.11)

which we recognize as (i') of Section 4.
At this point we have exhausted all the processes obtainable from the one-
dimensional acausal models (1.1), (5.1), yet we have not obtained (ii1'). Hence

we conclude that the acausal state processes are & proper subset of the
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reciprocal processes.

We conjecture that every stationary Gaussian reciprocal process of dimen-
sion n can be realized as the output process of an acausal model of dimension
less than or equal to 2n. We also conjecture that those stationary reciprocal
Gaussian processes which can be realized as an acausal state process are char-
acterized by Properties I, II and III above. *

We close with two further observations. Suppose x(t) is a stationary
Gaussian process realized on [0,T] as an acausal autonomous state process (1l.1),
(5.1). By differentiating (5.3) we obtain a differential equation for Rx(t),

i,e.,
. % A% (mo *
(5.13) R () = AR (t) - BB A (TE)yl
Clearly Rx(t) satisfies the boundary conditions
0 1
(5.14) v Rx(O) + vV RX(T) = Q.
If we differentiate a second time we obtain

.o . - * *
(5.15) Rx(t) = ARx(t) - Rx(t)A + ARx(t)A

This should be compared with (4.9).
Second, the unrealized one-dimensional reciprocal processes (1ii') do have
realizations as the output process of nonautonomous and nonstationary causal

state processes,

(5.16a) <zi>=Q; ;><z;>+<ﬁ;¢>u

g(t)

(5.16b)  y(t) = x,(t)
where

g(t) = (1-B2)sin at - 2B cos at
and

b = 4-2a8".
The initial condition is
(5.16c) x(0) = xo
where

1 aB 1 0
RX(O) = Ry(O) . asz if B# 0 and Rx(O) = Ry(O) o 1 if B = 0,

iy
o
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