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Abstract: We define the concepts of conditioned invariant and
locally conditioned invariant distributions for nonlinear system
and show how they can be used to solve the problem of
tracking an output signal of a nonlinear system in spite of
unknown disturbances.
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1. Introduction

The mathematically dual concepts of (A, B)
(or controlled) invariance and (C, 4) (or condi-
tioned) invariance play an important role in the
geometric theory of linear systems. These concepts
were introduced by Basile and Marro [1] and
Wonham and Morse [12] and were used by them
and others [2,9,11,13] to study the problems of
disturbance rejection and tracking for linear sys-
tems in state space form.

The concept of (A4, B) invariance was gener-
alized to nonlinear systems by Isidori, Krener,
Gori-Giorgi and Monaco [6] and Hirschorn [5]
and used by them and others [3,4,8,10] to solve
problems of disturbance rejection and noninter-
acting control for nonlinear systems. This concept,
called (f, g) invariance in [6], seemed at first to
be a straightforward generalization of the linear
one, utilizing nonlinear state feedback in the obvi-
ous way. But later it becomes apparent that there
are at least two distinct generalizations of (A, B)
invariance called ( f, g)invariance and local (£, g)
invariance [7]. Both are needed for a complete
treatment of the problem of nonlinear disturbance
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rejection. If one considers singular distributions
then even more distinctions must be made [8]. For
the sake of brevity we shall not consider singular
distributions in this paper.

Progress on the nonlinear generalizations of
(C, A)invariance has been slower because there is
no obvious way of extending the concept of out-
put injection to nonlinear systems. In [6], (&, f)
invariance was defined and used to solve problems
of disturbance rejection using static and dynamic
output feedback. That work followed the linear
paradigm found in [11]. This paper, which builds
on [6], proposes two generalizations of (C, A)
invariance which we call (4, f) invariance and
local (h, f) invariance. The latter is the (4, f)
invariance of {6]. We show that both concepts are
needed for a complete treatment of the problem of
nonlinear tracking.

Van der Schaft [14] has discussed the problem
of constructing observers and partial observers for
nonlinear systems. He showed that the existence
of a partial observer without stability require-
ments is locally equivalent to the existence of a
conditioned invariant distribution. The partial ob-
server problem can be viewed as the tracking
problem when the external noise is absent.

The rest of the paper is organized as follows.
Section 2 reviews the linear geometric theory of
tracking. This is generalized to nonlinear systems
in Section 3. The conclusion follows in Section 4.

2. Linear paradigm

To motivate the definition of (4, f) (or condi-
tioned) invariance for nonlinear systems we review
the linear theory. A simple (perhaps too simple)
problem which motivates this concept is the track-
ing of a signal in the presence of unknown noise.
Consider the linear autonomous system

X =Ax+ Bu+ Ew, (2.1a)

y=Cx, (2.1b)
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z= Dx,
x(0) = x",

(2.1¢)
(2.1d)

where the state variable or memory of the process
is x(1), the control is u(r), the noise is w(r), the
observation is y(¢) and the signal is z(z). The
problem is to track the signal z(7) exactly from
knowledge of the system, i.e. the matrices 4, B,
C, D, E. the control u(r), the observation y(r)
and the initial condition x° in spite of the effects
of the unknown noise w(r).

The type of solution that we are looking for is
another linear system

Y =A%+ Bu+ Ky, (2.2a)
2=DR+ Ly, (2.2b)
£(0) =32"= Px", (2.2¢)
and a linear mapping

P:x—-2x. (2.2d)

Hopefully if (2.2) is chosen properly then z(7) =
2(r) for all 1> 0 and all x°, u(t) and w(t). Notice
that if a tracking system exists we need only know
x? modulo the kernel of P, or in other words we
need only know %= Px°.

The following result is a standard application
of the geometric method of Basile and Marro [2].

Theorem 2.1. There exists a system of the form
(2.2) which tracks the signal z(t) of (2.1) iff there
exists subspace of ¥'C R" such that

¥ is (C, A) invariant, (2.3a)
R(E)C ¥, (2.3b)
YN (C)CH (D), (2.3¢)

where
#(E)=Range E:R' > R"

and

A (D) =Kernel D:R" - R,

Recall that a subspace ¥” is (C, A4) invariant
(also called conditioned invariant) if one of the
following equivalent conditions holds, there exists
an n X p matrix K such that

(A+KC)yyC¥ (2.4a)

or

A(YNAH(C)) . (2.4b)

We refer to (2.4a) and (2.4b) as the local and
global characterizations of (C, 4) invariance for
reasons that will become apparent when we gener-
alize to nonlinear systems.

The proof of Theorem 2.1 is a straightforward
exercise in geometric linear systems theory. One
shows that the global characterization of (C, A4)
invariance (2.4a) and conditions (2.3b) and (2.3c)
imply the existence of a tracking system (2.2).
From ¥~ one can explicitly compute the tracking
system (2.2) by choosing the appropriate state
coordinates as we describe in the next section
(3.5). The next step is to show that if a tracking
system exists then there exists a subspace ¥~ which
satisfies the local characterization of (C, A4) in-
variance (2.4b) and conditions (2.3b) and (2.3c).
The final step is to show the equivalence of the
two characterizations (2.4a,b) of (C, 4) invari-
ance. It is clear that the global characterization
implies the local, the reverse implication is only a
little harder to show.

As the proof of the theorem suggests, the global
characterization of (C, A) invariance is more use-
ful in constructing a tracking system. On the other
hand the local characterization is more useful in
finding a subspace 7~ satisfying (2.3b,c). It is
readily apparent that the collection of all sub-
spaces of the state space which satisfy the local
characterization of (C, A) invariance forms a
semilattice under inclusion and intersection. Since
(2.3b) is a lower bound on ¥, it is convenient to
construct the minimal (C, A4) invariant subspace
¥« containing Z( E). This can be found by stan-
dard techniques [2,13]. We define an expanding
sequence of subspace

v '=R(E), (2.5a)

V’”=V’+A(V’OJV(C)), (2.5b)

and finally

V= U7 (2.5¢)
r=0

Because the state space is finite dimensional the
algorithm terminates in a finite number of steps,
te. ¥, =¥ for some r. This construction allows
us to express Theorem 2.1 as follows.
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Theorem 2.2. There exists a system of the form
(2.2) which tracks the signal z(t) of (2.1) iff the
minimal (C, A) invariant subspace ¥, containing
R(E) satisfies (2.3¢).

3. Nonlinear conditioned invariance

Consider the following nonlinear generalization
of (2.1):

=[x uow)=g"(x) + g(x)u+q(x)w,

(3.1a)
v="h(x), (3.1b)
z=k(x), (3.1¢)
x(0) =x". (3.1d)

The state space is a smooth (C™) manifold M
and the state is described in local coordinates x(1)
on M. For convenience we assume that the con-
trol u(r) and the noise w(r) enter the dynamics
linearly and that u(s) € R™ and w(s) € R’. The
observable take values in a smooth p-dimensional
manifold N and is given in local coordinates by
v(1). The signal z(7) € R One can easily extend
what follows to the more complicated situations
where all of the above spaces are nonlinear and
where the control and noise enter the dynamics in
a nonlinear fashion.

The vector fields described in local coordinates
by g g'.....g™ gq'.....q' are assumed to be
smooth as are the outputs maps 4 and k.

As in the linear case, we wish to track the signal
z(t) from knowledge of the system (3.1), the con-
trol u(t), the observable y(7) and the initial con-
dition x°, but without knowledge of the noise
wi(t).

More specifically we are interested in finding a
nonlinear system which tracks (3.1) of the form

F=f(2 p ) =82 p) + 8%, y)u,  (3.2a)
2=k(%. y). (3.2b)
2(0) = 20 =II(x°), (3.2¢)
: M— M, (3.2d)

where % denotes local coordinates on a smooth
manifold M of dimension d and II is a smooth
mapping. Notice that if the tracking system exists,
we need only know £° = IT(x°).

Notice that the vector fields g%, g',..., §™ de-

pend both on the state % of (3.2) and on the
observable y of (3.1). In other words they are
smooth sections of the vector bundle (TM) X N
with base space M XN and fibers the various
tangent spaces of M. Hopefully if (3.2) is properly
chosen then z(7)=2(¢) for all >0 and ail x°,
u(t) and w(s).

The nonlinear generalization of Theorem 2.1 is
not as straightforward. First, we shall give rather
strong sufficient conditions for the existence of a
tracking system (3.2). These conditions include a
generalization of the global characterization of
(C, A) invariance which we call (A, f) invariance
(or conditioned invariance). Next we shall give
weaker necessary conditions for the existence of a
tracking system. These involve the concept of lo-
cal (h, f) invariance (or local conditioned invari-
ance). Then we show that the necessary and suffi-
cient conditions are equivalent locally around a
generic point of the state space. Finally as in the
linear case we present an algorithm which facili-
tates checking the necessary conditions.

A distributions & on the state space M of (3.1)
is (h, f) invariant if these exists a smooth sub-
mersion

IH:M—->M, II:x—3% (3.3a)

(M is another smooth manifold with local coordi-
nates %) and vector fields 8%(&, »),..., 8™(%, »)
parameterized by y € N such that

I,g/(x)=8/(II(x), h(x)), j=0,...,m,

' (3.3b)
for all x € M and
9=w(11,). (3.3¢)

See [8] for the definition of a distribution and
other background material. This definition makes
the next theorem almost a tautology.

Theorem 3.1. There exists a system (3.2) which
tracks the signal z(¢) of (3.1) if there exists a
distribution & such that

D is (h, f) invariant,
#(q)C D,

(3.4¢)
(3.4b)

and there exists a function k: M X N — RY such
that for all x e M,

k(x)=k(II(x), h(x)). (3.4c)
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R(q) is the distribution spanned over smooth func-
tions by the vector fields of q.

Proof. We define the system (3.2) using (3.3) and
(3.4). Let e(r)=1z(t)— 2(z), then from (3.4c) we
see that e(r) will be zero if the solution %(t) of
(3.2a,¢) equals II(x(¢)) where x(z) is the solution
of (3.1a,d). But this is assured by (3.3b) and (3.4b).
O

We would like to emphasize that (4, f) invari-
ance (3.3) is a generalization of the global char-
acterization (2.4a) of (C, A) invariance. Given K
and ¥ satisfying (2.4a) we can choose coordinates
v =(x, x;) so that ¥={x,=0). Let A=4+
K(C; then in these coordinates (2.1a) becomes (with

w = 0)
1 )
AR

X _ A~11
X, A
Kl
Kz (Cl CZ)

0
A,

X1

+ (3.5a)

2 2

Let M=R"/¥ and IT: x = % = x,. Then II car-
ries (3.5a) onto
V-A11x+1<1 v+ Bu (3.5b)
as in (3.3b). Moreover condition (3.4c¢) is a global
and nonlinear generalization of (2.3c¢).

A distribution & on the state space M of (3.1)
is locally (h, f) invariant if

ad( g’ (@0 (dh))c @ (3.6)

for j=0,..., m. (A7 (dh) is the distribution of all
vector fields in the kernel of dh = h,.) In other
words if X e 2n.A"(dh),

ad(g/)X=|g’. X] €2.

This is a generalization of the local characteriza-
tion of (C, A4) invariance (2.4b). In [6] this prop-
erty (3.6) was called (A4, f) invariance, we have
added the adverb ‘locally’ to distinguish it from
(3.3).

Theorem 3.2. If there exists a system (3.2) which
tracks the signal z(t) of (3.1) then these exists an
distribution @ on M such that

9 is involutive and locally (h, f) invariant,

(3.7a)
2(q)< 2, (3.7b)
DN (dh) c A (dk). (3.7¢)

Proof. Suppose (3.2) exists, and consider the com-
bined system on M= M X M with local coordi-
nates ¥ = (x, X).

x=2%(%) +g(x)u+g(2)w,

[l

(3.8a)

(%, h(x))

+( g(x) )u+ (q(x))w, (3.8b)
g(x, h(x)) 0

e=k(x, &) =k(x)—-k(%, h(x)), (3.8¢)
%(0)= (ii) = (HZCXOO))‘ (3.8d)

We define an expanding sequence of codistri-
butions on M by

=2(dk), (3.9a)
Eil=6"+ Y L (&), (3.9b)
j=0
= é&", (3.9¢)
r=90
and a distribution 2 by
D=N(&). (3.10)

Z(dk) denotes all C* combinations of the one
forms d7c1,,..,dl~<g. /V((?) is the distribution of
vector fields on M which are annihilated by all
the one forms of &. It is not hard to see that at
least locally & is spanned by exact one forms
hence 9 is involutive. By definition & is invariant
under g/, j=0,...,m,

ad 3/(2)c 9, (3.11a)

and £ is the maximal such distribution satisfying

S (dk). (3.11b)

Since tracking is achieved, w is decoupled from e.
Hence

2(§)c 2. (3.11c)
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Next we define a distribution 2 on M as
9= {X(x): (X(OX)) E@}.

Since Z is involutive so is &. Conditions (3.11a)
implies (3.7a), (3.11b) implies (3.7b) and (3.11c)
implies (3.7¢). O

The next two lemmas relates the necessary con-
ditions of the last theorem with the sufficient
conditions of Theorem 3.1.

Lemma 3.3. Suppose & is an (h, f) invariant
distribution on M; then 2 is involutive and locally
(h. [) invariant. Suppose 2 is involutive and lo-
cally (h, f) invariant; then for an open and dense
subset of x° € M there exists an open neighborhood
U of x° such that restricted to ¥, D is (h, )
invariant.

Proof. Suppose 2 is (A, f) invariant (3.3); then,
as the kernel of a map (3.3¢) 2 is involutive.

We choose local coordinates x = (x;, Xx;)
around any x° so that x; =% o II. In these coor-
dinates,

Xy Za‘:’?(xl’ h(x)) +§1(x1, h(x))u,
%, =g7(x) + g (x)u.
If X(x)e2n A (dk) then

X(x) - (Xz(()x))

and
: g{(x,, h(x)) 0
J L X(x)| = ,
[g/(x). Xx(x)] [( o1 () () ]
88{ oh
- e =(2)
as desired.

On the other hand suppose £ is an involutive
and locally (h, f) invariant distribution. Let x°
be a point where 2, A°(dh) and 2N A"(dh) are
of constant dimension in a neighborhood of x°.
Such points are open and dense in M. We can
choose local coordinates x = (x,, x,) around x°
where 2=A4"(dx,). Since 2, A°(dh) and ¥N
A°(dh) are nonsingular around x° it is easy to

verify that the local (4, f) invariant condition
(3.6) is equivalent to

L, (2)c2* +2%(dh). (3.12a)

2+ is the codistribution of one forms which
annihilates the vector fields of 2. In the above
local coordinates 2 * = 2(dx,). From (3.12a) we
have

dg/(x)=L,(dx,) €(dx,) + Z(dh) (3.12b)

where
Xy =810()‘) +g1(x)u.

The implicit function and (3.12b) ensure that lo-
cally there exists g/(x,, y) such that

glj(x)zg'lj(xla y). a

We omit the proof of the next result since it is
similar to the above. ‘

Lemma 3.4. Suppose 2 is (h, f) invariant and
there exists a function k satisfying (3.4c); then
(3.7¢) is satisfied. Suppose @ is an involutive lo-
cally (h, f) invariant distribution and (3.7c) is
satisfied; then for an open dense subset of x° =M
there exists an open neighborhood U of x° such that
(3.4c¢) is satisfied on %.

Notice that it is considerably more difficult to
find the f, &, etc. of a nonlinear tracking system
than it is to find the 4 R 13, etc., of a linear tracking
system. This is because the latter problem involves
inverses and generalized inverses of linear map-
pings while the former involves inverses and gen-
eralized inverses of nonlinear mappings.

As in the linear case, the collection of involu-
tive and locally (4, f) invariant distributions
forms a semilattice under inclusion and intersec-
tion. Therefore there exists a minimal such distri-
bution containing %(q) which can be found by a
straightforward generalization of (2.5). We define
an expanding family of involutive distribution
(where 2 denotes the involutive closure of 2) by

2°=2%(q),

2" =9+ iad(gf)(,@’mm(dh)), (3.13b)

j=0

(3.13a)
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and finally
2,=U 2"

r=0

(3.13¢)

Of course this algorithm need not terminate in
a finite number of steps at all x € M but it will do
so at a generic x. We can express Theorem 3.2 as
follows.

Theorem 3.5. If there exists a system (3.2) which
tracks the signal z(t) of (3.1) then the minimal
involutive locally (h, f) invariant distribution D,
containing #(q) satisfies (3.7¢).

4. Conclusion

We have presented a nonlinear generalization
of a linear tracking problem. The solution is very
similar to the linear theory but differs from it in
two essential ways. The first is that the nonlinear
necessary and sufficient conditions are not equiv-
alent as are the linear conditions. While this is
important it is not a crucial defect of the nonlin-
ear theory because locally around a generic state
the conditions are equivalent.

The second difference is more substantial,
namely that we have not treated the stability of
the error of tracking system. If there is any noise
in the observation, or inaccuracies in the model
and its initial condition the tracking system will
not exactly track the signal. Of course, stability is
always one of the most difficult aspects of nonlin-
ear systems theory. In linear theory, one has avail-
able convenient pole placement techniques and
perhaps this is the principle advantage of linearity.
It is clear that more work must be done on nonlin-
ear stability in the geometric context of invariant
foliations.

In closing we note that some of our earlier
work with Isidori, Gori-Giorgi and Monaco [6]
can be reformulated along the lines of Section 3.
For example consider the problem of decoupling

the noise w(t) from the signal z(z) in (3.1) by
static state feedback. Sufficient conditions involve
the concept of (f, g) invariance, necessary condi-
tions involve the concept of local (f, g) invari-
ance and locally around a generic point these
conditions are equivalent. See also [8].
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