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Abstract- In this paper we present an application of a new filtering technique based on

geometric linearization and asymptotic analysis. The technique is compared (o the conventional extended
Kalman filter to demonstrate its computational efficiency.

Introduction

While the theory of linear filtering has been well developed and understood,
practical nonlinear filtering has typically relied on heuristic techniques. One of these is
the extended Kalman filter which is based on a linear approximation of the system
equations around a trajectory. The asymptotic geometric nonlinear filtering technique
was developed by Krener in [5]. Itis based on the so-called observer normal form which
linearizes the dynamics by a change of state coordinates and output injection. The
development of the observer normal form is due to Krener and Isidori [1], Krener and
Respondek [2), Bestle and Zeitz (8], Zeitz {11,12], Fritz and Keller [9], Keller {6,71, and
Li and Tao {10].

The approach is geometric and consists of finding a change of coordinates, in
general nonlinear, such that the equations of the system transform to their most linear
form. Once the system is in "nearly linear” form it will be possible to apply
asvmptotically the theory of linear filtering. This has many advantages. In fact it is
possible to formally define optimality and asymptotic stability. Moreover, the gains of
the filter may be computed off-line because the Riccat differential equation is independent
of the states. This reduces the on-line computational burden of the filter.

The only drawback of the technique is that the change of coordinates generally
requires a very heavy algebraic computational effort. One solution to this is to use
already existing software packages for symbolic computations. Naturally the technique is
not applicable to all nonlinear systems; otherwise we would have discovered that
everything in nature is linear in some appropriate coordinate set. The class of “nearly
linearizable” systems is substantial, and gives to the method a certain flavor of generality.
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In this paper we will illustrate the technique for a specific example. We will
estimate the height, the velocity and the ballistic coefficient of a falling object in an
atmosphere with variable density. We will also implement the extended Kalman filter for
the same problem and compare the two filtering techniques in terms of performance and
computation time. Throughout the paper we will refer to the geometric asymptotic
nonlinear filter, the new technique, as the GANF and to the extended Kalman filter as the

EKF.

1- Brief description of the EKF and the GANF techniques

We say that a given nonlinear system without input:

L=£1),
y=h®. (1)

where { € R" and y € R, is observable if it can be transformed into observable normal

form. This corresponds, in some sense, to the property of observability for a linear
system. Normal forms have the advantage of making transparent the effect of an input on
the dynamics of the system. There are four such normal forms: Observer, observable,
controller and controllable. In the present application, and in the case of nonlinear
observers in general, we will have occasion to use only the first two:

Observable form:

x = Ax - Ba(x)

y =Cx )
Observer form:

x = Ax - a(Cx)

y = ¥(Cx) €))

In some particular cases (in the application treated in this paper, for example) we
will require a modified observer form.
Modified observer form:

n-1

x = Ax - a(Cx,CAXx,..,CA" " x)
y =Y(Cx) @

where A, B, C are the standard matrices of the Brunovsky canonical form. For the case -

of a three dimensional system with a single output:

i
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010 0
A=001. B=0. C=[100] (5)
000 1

The system (1) can be transformed into observable form if y and its first n-1 time

Jerivatives are local coordinates on the state space.

A physical system will never satisfy exactly a set of differential equations like (1).
In reality each of the states is affected by random process noise, the parameters are not
known exactly, and the measurement of the output will be affected by observation noise

due to the physical and technical limitations on the measurement procedure. The system

(1) can then be expressed in its stochastic equivalent:
dg = f({)dt + Gdw

dy = h({)dt + Ddv (6)
£(0) = Nq. Py)

Where w and v are standard Wiener processes. The covariances of the driving and
measurement noises are, respectively, Q = GGT and R = D2. For our work we will

assume the measurement noise to be small, ie. D=¢? whereeisa small parameter.

Then the problem is to estimate the states of (6) at time t given the measurement of y at
.'me less than or equal to t. It is clear that in the absence of noise and if (1) is observable
ine problem is easily solved because the states could be computed exactly as nonlinear
functions of derivatives up to order n - 1 of the output.

We compute the estimates by introducing the filter:

dt = £©dt + g@dy — h@)d)

dy =h({)dt M
The conventional extended Kalman filter technique computes the estimates

from:

dt = £yt + POHTE, OR @y — h(©)d)

dy = h(Q)dt (®)

where P is the solution to the Riccati differential equation
. A T A T A 1 A
P=F({, 0P +PF ({, ) +Q)-PH €. OR"HE, 0P

P(t)) =P,

)

P
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A oh(L, )
HE, 0= { m kze} a0
of.(L, 1)
2o [ ——— N 11
F(c,t)_{ x Ic=c} (11)

and P, Q and R are, respectively, the covariance matrices of the estimate error, the
process noise and the observation noise.

The GANF computes the filter in observer form coordinates. In these coordinates
the system (6) can be written as:

dx = (Ax — a(y))dt + Gdw
dy = Cxdt + €2dv (12)
x(0) = N(xg, P)

where, if J is the Jacobian of the change of coordinates, G = JG. If the measurement
noise is small, and a(y) is smooth enough, then a(y) is approximately equal to a(CQ)

and we can use the filter equations

d = AXdt - o(CR)dt + PC'R ™ (dy - Cxdt) (13)

The dynamics of the error are given by:

d% = (A - PCTR7IC) K dt + (a(CR) — afy))dt + Gdw — PCTR'Ce’dv (14)

which can also be written as:

4% = (A - BCTR7IC) K dt + (& (CR) = (y))dt + Gdw - PCTR'Celdv (14)

where
A
A. A+ da(Cx)
dy
do(CX)

o (x) = ax) - Tcx
P is obtained from the solution to the Riccati differential equation

P=AP+PAT+Q-PCR'CP

where Q = GGT. The Riccati equation (15) is state independent and hence can be
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integrated off-line. The dynamics of the error are nearly linear up to output injection, and

the covariance of X asymptotically equals P(1). We have assumed, without loss of

generality, that the output injection term can be expanded in a Taylor series starting from
the second order term:

da(Cx)
dy2

o (CX) - o (y) = (Cx + €2dv)? + 0(3) (16)
In fact, we have combined the linear term of o in A*. Then, if the second derivative of o

is small and the dynamics of the filter is stable, then the output injection term can be
neglected. Practically, we are requiring o to have a small “curvature” in some sense.

One should note that these two filters are not being compared on exactly the same

grounds because the noise covariances of the system are assumed to be state independent
in { coordinates for the EKF, and in x coordinates for the GANF. However, since

Q = JQIT and R is invariant under the change of coordinaies, the comparison is justified
if the Jacobian of the change of coordinates J is nearly constant along the trajectory. The
main advantage of the GANF over the EKF is that the Riccati equation (14) can be solved
off-line. This allows the computation of g(g) off-line, while when using the EKF it is

necessary to integrate (9) and compute (10) and (11) on-line. In particular if the problem
can be transformed into observer form with a(y) = O then the GANEF is the optimal filter
while the extended Kalman filter is generally not.

2- An Application of GANF

We consider a falling object in an atmosphere of varying density. The problem is to
estimate the position, the velocity and the ballistic coefficient of the object. This problem
has been discussed previously by Gelb [3] and Wishner et al [4].

The dynamic model consists of:

y=g,

£ =t

¢,= -8+ pE )L, an
=0

LO=0

L=

=8
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where Ql is the vertical position, { , the velocity, % the inverse of the ballistic coefficient

and
C1
p(C)=pyexp(- 1 (18)
P

represents the variation of the atmospheric density with the height {;. It can be verified

that this system is observable according to the observability condition defined in section

1. In fact
grady = [1 0 0]
grady = [010]
grady = S

PL YL PEIRL PEIT (19)
p

span R>, except at the singular point 'Y , = 0 where, the object being stationary, it is

impossible to observe any of its dynamics. Hence it is possible to write (17) in

QObservable form:

j=t,
£=%,
&2= §3

£
5

The Jacobian of the transformation between Land & is

d
2k, + 28 @0
p

5

£,=f,0= —g-f% +(Q2
p

1.0 0l
0 1 0
2= @
o 2%
L"PTP_ ZP%% DC§

Unfortunately (20) does not satisfy the conditions for the transformation to observer
form, but it can be transformed into the modified observer form.
If we let
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ballistic coefficient

(18)

1- It can be verified

n defined in section

19

ing stationary, it is

e to write (17) in

(20)

an

1mation to observer

and

% -5

(342
o €)= - —éz—

.

_ 8.
o, &)= €Dk In 2+ £

S (S

]

€
Xy = Ez'ﬁs +a2(§2)

then the system can be written in modified observer form:

y=x,

’.‘x =x, - cnl(éz)
x, =x3- o ()
x; ==, )

229

22)

23

24)

In some sense this change of coordinates linearizes the system "as much as possible".

corresponding stochastic differential equations become:

with

dy =x,dt + Ddv

dx, =(x,- 3 (g))dt +B, dw,
dx, =(x;- uz(%))dt +B,dw,

dx, =- a3(£;2)dt +Bydw,

Assuming the model to be affected by random process and measurement noises, the

@25)
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x,(0) = N( x?.P(l,l)) .
x,(0) = N(xg.P(2,2))
x,(0) = N(xg.P(3,3))

Q=BB", R=DD'
where R is the measurement noise covariance and Q(1,1), Q(2,2), Q(3,3) are the process
), P(2,2), P(3,3) are the variances of the errors in the initial

noise variances. P(1,1

conditions.
The filter dynamic equations are:
d? = Qldt
A N A
&, = &, -al(ﬁzA)yn +K,(dy - d9)
d, = (R, - o (€ )t + Ky(dy 4% 26)

& =- o )dt + K (dy - 4
X,y =- a3(§2)dt K, (dy - dy
Rewriting the system in the original coordinates, the filter equations become:

dg, ={,dt+ K (dy - g,do
A A A_A 2
ot = (g + o€ B8yt + GBI Kdy - € ) @n
G

&, = (K, Ky + ey L0
o kp@@P T PGP

where K. K, K, are the gains computed as K=PC'R! and P is obtained from (14)'.

v -
The Jacobian of the transformation from physical coordinates to observer form is:
[ 1 0 0]
g
o (2 oo .
-Q/
1= 5 p=pge (28)

S5 5% a1
k 0y2 0

L P kpp(Cz) p(Cz)z_

The Jacobian turns out to be close to a unitary operator. This is clear for the 2x2

upper left minor. In fact, simulations were computed both assuming the Jacobian
constant evaluated at {0, and computing its actual value on line. The results were not

affected in an appreciable manner.
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3 . Simulations and Results

In this section we present the results of some simulations, run for different noise
regimes and with the following constants:

initial height = 30,000 m
initial velocity = - 2,000 m/sec
initial inverse ballistic coefficient = 1.025"104 mszg.

) are the process

rs in the initial

h .
atmospheric decay constant kp= 10,000 m

atmospheric density at sea level p = 1.230 kgjm3
gravity acceleration g = 9.81 m/ sec”

Additionally, the results correspond to the following noise regime:

R =100 m’sec

(26)

process noises LL
Q(1,1) = 100 m’
Q(2,2) =100 mz/se,c2 'EH
Q(33) = 1.0+10"°m* / kg’ e
uncertainties on the initial conditions 1 .
P(1,1) = 5000 m’ HEHE
P(2,2) = 2000 m?/ sec? j 3
P(3.3) = 1.0%10° m* kg j
The object falls from an initial height of 30,000 m with an initial downward speed
of 2,000 m/sec. It has an initial ballistic coefficient of 9,756 kg/mz, which is equivalent
10 the object weighing approximately ten metric tons per square meter of surface
perpendicular to the direction of the fall.

me:d

v2)

/ -/Clldt)

ed from (14).

‘bserver form is:

The errors in the initial conditions are, probably, not unrealistic for a radar tracking
problem. The process noise covariances are also close to reality if we consider the
possible random effects of changes in the conditions of the atmosphere and wind

(28) 4 encountered on the way to the ground along the trajectory. Finally, the process noise on
the ballistic coefficient could be interpreted as variations of the shape or orientation of the
object during the fall.

The behavior of the real system is presented in Fig. 1, which portrays a typical
is clear for the 2x2 trajectory of the three states affected by the noises. Note that the first state is the height of
ming the Jacob ) the object, the second the velocity and the third the inverse ballistic coefficient.

he results were notg In Fig. 2(a) are shown the errors between the estimates of the height of the two
4 filters and the height of the real system (Fig. 1(a)). The EKF and the GANF, compared

in terms of performance in the estimate of the height, are nearly equivalent. The EKF
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performed slightly better, but the time history of the error is nearly identical. Similarly,
in Figs. 2(b) and 2(c) are shown the estimates of the velocity and the inverse ballistic
coefficient, respectively. Although the two filters showed a very similar behavior, the
EKF performed slightly better, the difference being mainly due to the approximation
introduced in assuming that the noise covariances were constant in observer coordinates
for the GANF. In Fig. 2(d) is shown the behavior of the real inverse ballistic coefficient
and of its estimates to give the reader an idea of the initial error in the estimates and of
the effect of the process noise. Without process noise the real coefficient would be
constant,

Shown in Fig. 3(a) is the logarithm of the average covariance of the error in the
estimates of the height for 25 Monte Carlo runs. As can be seen from the Figs. 3(a) and
2(a) the recovery from errors in the initial guess is very fast after which the covariance
settles down to values close to process noise covariance for the height. There is no
appreciable difference in the behavior of the two filters. In Figs. 3(b) and 3(c) are
shown the logarithms of the average covariance, for 25 Monte Carlo runs, of the error in
the estimates of the velocity and the inverse ballistic coefficient, respectively. Again the
two filters performed very similarly. In Fig. 3(c) the two filters behaved so similarly
that the two curves are almost indistinguishable. All these results were checked by
insuring that the covariances of the errors were near the values of the covariances
theoretically predicted by the solution of the Riccati differential equation.

Conclusion:

The simulation results demonstrate that the GANF filter performed practically as
well as the extended Kalman filter from the point of view the accuracy of the estimates.

In terms of the algebraic efforts in developing the filter equations, the EKF is
obviously more straightforward, since one need only evaluate a first order
approximation to the nonlinear equations along the trajectory. The GANF, on the other
hand, relies on differential geometric concepts, and require considerably more difficult
algebraic computations off-line. However, the development of the algebra may
eventually become a simple exercise in computer programming if currently popular
symbolic manipulation programs like MACSYMA or SMP are used.

The real advantage of the GANF filter over the extended Kalman filter is in its
computational efficiency. In fact, as mentioned previously, we can compute the gains of
the GANF filter off-line, whereas the gains of the extended Kalman filter must be
calculated on-line. For the particular simulation presented in this paper, written in
FORTRAN language and executed on 2 VAX 785 computer running under the VMS
operating system, the integration of the GANF filter along the entire trajectory required
1.06 seconds of CPU time, while the integration of the extended Kalman filter took 3.2
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seconds. Thus the GANF filter has performed three times faster.  With higher order
systems the computational advantage will be further emphasized since the on-line
computational burden of the extended Kalman filter grows as (n* + 3n)/2 while that of
the asymptotic nonlinear filter grows only as n. In fact, solving the Riccati differential
equation on-line requires the integration of (n2 + n)/2 scalar differential equations.

List of figures:
Fig. 1 Nominal trajectory of the states of the falling object in the presence of random
noise. (a): height, (b): velocity, (c): inverse ballistic coefficient.
Fig. 2 Errors of the extended Kalman filter and of the geometric asymptotic nonlinear
filter in the estimates of the states of the falling object. (a): height, (b): velocity, (c):
inverse ballistic coefficient, (d): estimates of the inverse ballistic coefficient together with
the actual inverse ballistic coefficient.
Fig. 3 Variances of the errors of the extended Kalman filter and of the geometric
asymptotic nonlinear filter in the estimates of the states of the falling object after 25
Monte Carlo runs. Plotted using logarithmic scale. (a): height, (b): velocity, (c): inverse
ballistic coefficient.
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