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1. INTRODUCTION

The close connection between Markov processes, diffusions and parabolic partial
differential equations is of course well-known. In this paper we shall describe the
beginning of a new theory which links reciprocal processes, second order diffusions and
the partial differential equations of fluid mechanics, i.e., the continuity, Euler and
energy balance equations.

2. RECIPROCAL PROCESSES

In the early thirties E. Schrodinger [2,3] introduced a new class of stochastic processes
in attempt to formalize the stochastic aspects of Quantum Mechanics. This concept was
formalized by S. Bernstein [1] in an address to the International Congress of
Mathematicians in Zurich in 1932. Bernstein defined a reciprocal process x(t) as one
where conditioned on the values x(to) and x(t) of the process at two times tq < t, the

process exterior to [to,tl] is independent of the process interior to [to,tl]. This is readily
seen to be a generalization of the Markov property, i.e., conditioned on single time t
the process before tg is independent of the process after to- Hence every Markov process

is reciprocal but the converse is not true.

The reciprocal property is the specialization to one dimension of P. Levy's definition
of a Markov random field {20]. There are two other ways of viewing the reciprocal
property. Suppose x(t) is a random process taking values in R™ and defined for t € [0,T].
We define another process X(to,tl) = (x(to),x(tl)) taking values in RZ™. We view this

process as parametrized by pairs (to,tl) where £, <t; or equivalently by

subintervals (t()’tl)' Subintervals are partially ordered by inclusion. It is easy to see
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that the original process x(t) is reciprocal iff the two time process X(to,tl) is Markov

relative to this partial ordering.
Alternatively we can view a reciprocal process as being conditionally Markov in the

following sense. Given any t, € [0,T] and Qe R™, we define a conditioned process

%(t] to,xo) consisting of all sample paths of x(t) satisfying x(to) = x0 with the
conditional probabilty measure. The process x(t) is said to be conditionally Markov if
every X(t| to,xo) is Markov for ¢ € [0,ty] and is also Markov for t € [t T]- (It need not
be Markov on [0,T].) It is straightforward to note that a process x(t) is reciprocal iff it
is conditionally Markov.

To essentially specify a stochastic process one must describe all finite dimensional
distributions of the process, e.g., give the probability distribution of
x(to),x(tl), ce ,x(tn) where 0 <t <... <t <. One reason that Markov processes
are so well—studied is that they are completely determined by only two functions. The

first is po(xo), the probability density of x(0). (Throughout we assume that probability

densities exist although the discussion can be easily extended using probability
distributions.) The second p(s,x;t,y) is the Markov transition density of x(t) = y given
that x(s) = x. By Bayes' formula the probability density of x(t;) = xl, s x(tn) =x"

where0§t1§t2§...StHSTisgivenby
1

n 0 0 1 n—1 ny, . 0
p(tl,x e bpX ) = f po(x ) p(0,x AR ). p(tn_l,x it X ) dx”.

A function p(s,x;t,y) is a Markov transition density iff it satisfies the well-known
Chapman—Kolmogorov relations, i.e.,

S plsxity) dy = 1
and

poua) = [ p(siity) pliyine) dy

where 0 <s<t<u<T.

There is a similar development for reciprocal process due to Schrédinger (2] and
Jamison [5]. A reciprocal process x(t) is completely determined by the joint density
/)O’T(xo,x ) of the end points x(0) and x(T) and a reciprocal transition density

q(s,x;t,y;u,z). The latter is the probability density of x(t) = y given that x(s) = x and

x(u) = z where 0 <s < t <u <'T. The finite dimensional densities of x(t) are then given
by
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1

0.T 0 1 T
p(tl,x e ,tn,xn) = fPO,T(X X )q(to,x tx5Tx )

q(tl,xl;t2,x2;T,xT) e q(tn_l,xn—l;tn,xn;T,xT) dxPdx T

To be a reciprocal transition density, q(s,x;t,y;u,z) must satisfy the
Schrodinger—Jamison relations

[ alsxityuz) dy =1
and

q(r,wis,xu,z) q(s,xt,y;u,2) = q(r,wit,y;u,2) q(r,wisx;t,y)

where 0 <r<s<t<u<Tandwxy,zEe€ R™.
Suppose x(t) is a reciprocal process and X(to,tl) is the associated two time process

which is Markov relative to the inclusion partial ordering. One can show that the
Chapman—Kolmogorov relations for the Markov transition density of X(to,tl) are

equivalent to the Schrodinger—Jamison relations for the reciprocal transition density of
x(t).

Schrodinger realized that there is Bayesian way of constructing a reciprocal transition
density q from a Markov transition density p,

4 vogg) = PXtY) p(t,y5u.z)
q(S,X,t,y,U,Z) - p(S,X;t,y)

Of course the conditionally Markov property allows one to reverse the process and define
a Markov transition density p from a reciprocal transition density g,

p(s,x;t,y) = Q(s,X;t,y;T,XT)-

If we start with a reciprocal transition density q, which we use to define a Markov
transition density p which we use to define another reciprocal density g then by the
second Schrédinger—Jamison relation, § = g. If we start with a Markov transition
density p which we use to define a reciprocal transition density q which we use to define
another Markov transition density p, it does not follow that p = p.

Schridinger used a Markov transition density p to construct reciprocal transition
density q. With this and an end point density Po T he was able to construct reciprocal

processes. Jamison [6] showed that the resulting reciprocal process is actually Markov
iff the end point density satisfies
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0.T 0 T 0 T
o, 00T = 1) w7 (0 TxT)

for some nonnegative functions ro(xo) and rT(xT).

Jamison [6] also studied one dimensional stationary Gaussian reciprocal processes.
He showed that covariance r(t) of such a process must satisfy a second order linear
differential equation

where a is a constant. He then used this in an attempt to classify all such processes and
this program was successfully completed by Chay [8] and Carmichael-Masse—
Theodorescu [11].

The author became interested in reciprocal process through his study of acausal linear

systems [14] driven by white noise and satisfying independent random boundary
conditions of the form

dx = A(t) x dt + B(t) dw
v=V0 x(0) + vl x(t).

Here x(t) is an n dimensional Gaussian process, w(t) is a standard n dimensional Wiener
process and v is an n dimensional random vector independent of w(t). We assume that
the above boundary value problem is well—posed so that the Green's matrix T'(t,s)
exists. We can express the solution of the stochastic differential equation as

T ‘
x(t) = 8(t,0) v + [ . T'(t,5) B(s) dw(s)

where the integral is a Wiener integral and 3(t,s) is the fundamental matrix solution of
% = Ax. We have normalized so that V¥ + v* $(T,0) =1L

We have proved [14] that the solution of such a stochastic boundary value problem is
a reciprocal process and we speculated that every Gaussian reciprocal process is the
solution of such a stochastic boundary value problem. This conjecture was motivated by
the fact that every Gaussian Markov process is the solution of a stochastic initial value
problem, i.e., VO =T and V1 = 0. This conjecture is not true and this led us to discover
a theory of reciprocal diffusions and stochastic differential equations of second order.

3. Diffusions

We recall the Feller postulates for a Markov diffusion x(t). First some notation, let
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x* denote the transpose of a n dimensional column vector x and x*2 the outer product of

x with itself x*2 = xx*, this is n x n matrix. The forward difference operator dtis
defined by

dTx(t;dt) = x(t+dt) — x(t)

where dt > 0 is a small positive quantity. Typically we suppress arguments as in dtx.
Conditional expectation given that x(t) = x is denoted by

E ) ()=E(] x(t)=x)

The symbol O(dt)k denotes a function of x,t and dt for which there exist €,6>0 such
that if dt < § then |O(dt)| < e dt¥ for all x ¢ R and t ¢ (0,T). The symbol o{dt)"
denotes function of x,t and dt which for every e > 0 there exists a 6 > 0 such that if
dt < §then |o(dt)¥| < e dtX.

A Markov process x(t) is a Markov diffusion if there exists n x 1 and n x m valued
functions f(x,t) and g(x,t) such that

(MD1)  Prob {| x(t+dt) —x| > € | x(t) = x} = O(dt)

(MD2)  Eyq) (d¥x) = f(x,t) dt + o(dt)

(MD3)  E,) @T*2 = (gx,t))*2 dt + o(dt)

(MD4)  Third and higher centered conditional moments of dx vanish like o(dt).

The interpertation of these postulates is that conditioned on x(t) = x, the forward
increment d¥x of the process has a mean value approximately equal to f dt and variance
approximately equal to g*2 dt. In other words x(t) is mean differential but the
individual sample paths are not for they have an extremely large standard deviation
o(dr)M/2,

From these postulates one can deduce that the density p(x,t) of x(t) satisiies the
Fokker—Plank equation

& 9 15
3% + })X—l (Pfi) =97 Wi ; (» gikgjk) =0.

Moreover using the Ito stochastic integral we can realize x(t) as the solution of the
stochastic differential equation

dtx = f(x,t) dt + g(x,t) dtw

x(0) =x".
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We now sketch out the foundations of a parallel theory of reciprocal diffusions that
we have recently developed. More details can be found in [21]. We need some more

notation. We define the centered average, centered first difference and centered second
difference as

%(t;dt) _ X(t-+dt) er x(t—dt)
x(t+dt) — x(t—dt)
dx(t;dt) = >

d2x(t;dt) = x(t-+dt) =2 x(t) + x(t—dt)

Frequently we suppress argument as in X(t) or dx. We also introduce another
conditional expectation operation

Bst) () =E (- |x(t;dt) =x)
A reciprocal process x(t) is a reciprocal diffusion if there exists n x 1 valued functions

f(x,t) and u(x,t), n x n valued functions g(x,t) and 7(x,t) and n x m valued function
h(x,t) such that

(RD1)  Prob { |x(t) —x| > ¢ | X(t;dt) =x } = O(dt)

(RD2) (t) (dx) = u(x,t) dt + o(dt)

(RD3)  Egp) (d x) (t (x,t) + g(x,t) u(x,t)) dt? + o(dt)?

(RD) B,y (d 72 = L ()2 dt + a(x,t) i + ofdt)?

(RDS)  Eqgqy (@ 202 = 9 (h(xt)) *2 4t + o(dt)?

(RD6)  Egyyy (a% dx*) = L g(x,0)(n(x,0)*2 di? + o(dt)?

(RD7)  Third and higher joint centered conditional moments of dx and d%x vanish like

o(dt)?

Basically these postulates assert that the first and second joint conditional moments
of dx and d2x exist and have the indicated expansions in power series in dt. They define
the coefficients f,g,h,u and 7 of the power series and they imply certain relation between
these coefficients. These definitions and relations are as follows:

(i) The dt part of RD2 defines u.

(it) The dt? part of RD3 defines f + g u.

(i)  Thedt and dt? parts of RD4 deﬁnes 1*2 and 7.
(iv) The dt? part of RD6 defines g n*2
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v) The dt part of RD3 vanishes.
(vi) The dt2 part of RD5 vanishes and the dt part is four times the dt part of RD4.

Any process satisfying (RD1—6) is called a second order diffusion.

We refer to u as the mean velocity, p u as the mean momentum, f + g u as the mean
acceleration, h as the noise coefficient and p 7 as the mean momentum flux of the
process x(t). A related quantity p o = p(u u* — 1) is called the stress tensor. The
reason for the terminology will become apparent in a moment.

A reciprocal diffusion satisfying RD1-7 is said to be a solution of the second order
stochastic differential equation.

% = f(x,t) dt? + g(x,t) dx dt + h(x,t) d%w

where w(t) is a standard m dimensional Wiener process. This is a (partial) mnemonic
for the above portulates. In particular applying E)’((t) (-) we obtain RD3 from RD2
under the assumption that a%wis independent of x(t). Applying E)‘((t) (-) to (d2x)*2
yields RD5. Finally RD6 follows from applying E)‘((t) (+) to d%x dx* using RD4.

To get a feeling for these axioms it is convenient to introduce another conditional
expectation

Ex(tidt) ()= E (] x(txdt) = x#¢v dt )

Suppose x(t) is a reciprocal diffusion which also satisfies the stronger conditions.

(RD3%) Ey(uqp) (@2%) = (f(xt) + g(x,t) v) dt? + o(dt)?

(RDL7) Eyiuqpy (@29™? = 2(0(x,t)) 2 dt + o(dt)?

(RDE)  Egyyy (a3 dx*) = & g(xt)(n(x0) 2 at’
+1(,0) ulxt)* + glxt) 7(ot) dtd + o(dt)3

Then x(t) is called a strongly reciprocal diffusion.

Conditioned on x(txdt) = x#v dt the mean sample path of the process over the time
interval [t—dt, t+dt] traces out a parabola in (t,x) space passing through (txdt, x + v dt)
and with second derivative equal to f(x,t) + g(x,t) v. Hence the mean path deviates
from the straight line between (t+dt, x2v dt) by O(dt)2. Compared to this, the
standard deviation of sample paths from the mean path is very large, O(dt)l/ 2

Conditioning on %(t;dt) = x rather than x(t) = x is crucial to the above development.
Even for very nice processes, such as an Ornstein Uhlenbeck process, the quantity
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Ex(t) (d2x) is O(dt) rather than O(dt)z. In the stochastic mechanics of Nelson [18] the

dt part of this quantity is twice the osmotic velocity. Nelson's current velocity, the dt
part of Ex(t) (dx) is generally equal to our mean velocity u(x,t) from (RD2).

The first question that comes to mind is "Are there any reciprocal diffusions?". In
[21] we showed that answer is decidely yes. In particular we showed that any reciprocal
Gaussian process with smooth covariance R(t,s) satisfying certain technical conditions is
a strongly reciprocal diffusion. This includes such Markov processes. For a Gaussian
reciprocal process the second order stochastic differential is linear of the form

d%x = F(1) x dt? + G(t) dx dt + H(t) d2w

where
f(x,t) = F(t) x = 32 IR -G B, t)]

() = G() = [ZR ‘"’2 R” N

o2 (t,5) — (t,t)

R (1)~ B (m)]

2 2 *
(h(X,t))* = (H(t))* == [g%— (trt) _'g% (t>t)]
*2
The principle technical conditions are that R(t,t) = I and H(t) is invertible. The other
quantities u(x,t) and r(x,t) are given by

I's

u(x,t) = U(t) x = 5 [3— (t,t) + (t t)]

7(x,t) = u(x,t) u*(x,t) — o(x,t)

PR

o(x,t) = gf—%— () + Frgg (4| + U(L) U*(h).

All of the above evaluations are at s =t~
Suppose x(t) is Gaussian process and a solution of the first order stochastic boundary
value problem

dx = A{t) x dt + B(t) dw

v=0 x(0) + vl x(t)
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in the sense defined above using the Green's matrix. Assume R(t,t) = I and B(t) is
invertible. Then x(t) is a reciprocal diffusion satisfying the second order linear
stochastic differential equation above with

H(t) = B(t)
G(t) = — (A2(5) — A*2(1) + A(t) — A*(1) (B(t) B¥()) "
F(t) = A2(t) + A(t) — G(t) A(t).

Because of the complexity of these relations, it is possible for a process to satisfy a
relatively simple first order equation and a relatively complicated second order equation
or vice versa. The latter is the case for the Brownian Bridge or pinned Wiener process
x(t) which satisfies the first order equation
| +

d'x= =3 xdt+d'w

x(0)=0
and the second order equation

d2x = d2w

x(0) = x(1) = 0.

The density p of a Markov diffusion satisfies the Fokker—Plank equation. For a

strongly reciprocal diffusion the density p, mean momentum p u and mean momentum
flux p 7 satisfy at least in a weak sense a system of hyperbolic conservation laws similar

to the continuity, Euler and kinetic energy balance equations of fluid mechanics. They
are

‘ggl’=—;6)x—k(ﬂuk)

%Q}

(ruy) =p(f+gu)i—g;£(p T

and

0 * * *
Bf(prij)zp(fu +uf +gr+ 78 )ij

d
T, (o (o 05wy — o35y = o3y 05— Oy u;))
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with summation on repeated indices understood. A second order or reciprocal diffusion
need only satisfy the first two of these equations.

Suppose we consider a volume with boundary in x—space. If we integrate p over this
volume we obtain the probability measure of the volume. The first equation states that
the time rate of change of the probability of the volume is equal to the flux of particles
through the boundary due to the mean velocity.

If we integrate p u over the volume, we obtain the total momentum in the volume.
The second equation states that the time rate of change of momentum in the volume is
equal to the forces acting on the particles in the volume plus the net flux of momentum
through the boundary.

If we integrate p 7 over the volume we obtain the total momentum flux in the
volume. Physically this is somewhat hard to comprehend but for smooth processes the
contraction % p 7;; is the kinetic energy. Hence we view % pmjasa tensor form of

kinetic energy. More precisely, if ’\i is a constant n vector then the scalar valued
process z(t) = Ax;(t) has kinetic energy equal to %— P ’\i’\j' With this interpertation
the third equation states that time rate of change of tensor kinetic energy in the volume
is equal to the mean work done on the particles in the volume by the force d2x/dt2

acting through the distance dx plus the flux of tensor kinetic energy through the surface
of the volume. This flux is due to mean tensor kinetic energy % pu; Uy (called internal

energy) transported by mean velocity u, random tensor kinetic energy — % p o j

transported by mean velocity u; and mixed random/mean kinetic energy transported by

random velocity. The latter represented by the last two terms of the flux are usually
described as viscosity or stress terms in fluid dynamics. They represent the transport of
energy due to random jumps of particles between regions of differing mean velocity.

The third equation expresses kinetic energy balance at the standard time scale, i.e.,
the dt2 part of E)_((t) (dx)*2. There is also a form of energy at a fast time scale, i.e., the

dt part E)_((t) (dx)*2. We call this hyperkinetic energy and its balance is described by
another conservation law

7]
& (i =G (ghh* +hb" g%,

i
‘&E (o (b h*)ij )
which is also satisfied by second order diffusions.
Notice that the first three equations can be viewed independently of this last. We

chose the name "hyperkinetic" to suggest a hyperkinetic child sitting at his school desk
whose endless fidgeting is to no net effect (except possibly on his teacher).
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In [21] we formally derived the four conservation laws from the postulates of a
strongly reciprocal diffusion. Although they can be thought of in physical terms, they
are not consequences of physical principles or assumptions. We verified that these
conservation laws are satisfied by the reciprocal Gaussian processes discussed above.
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