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1. Introduction. Over the past several years a group of faculty and graduate
students at UC Davis have been developing a set of tools for the design of controllers
and observers for nonlinear systems. Our approach has been based on normal forms
and approximate normal forms for nonlinear systems. When a nonlinear system
admits a normal form the design of a controller or observer is greatly simplified and
standard linear design tools can be employed. The people that have been involved in
this program are Mont Hubbard, Sinan Karahan, Andrew Phelps, Yi Zhu Ruggero

Frezza and myself. This work has been supported in part by AFOSR. In this paper
I'll give an overview of our program.

2. Normal Forms. Following Kailath’s terminology, [10], there are four nor-
mal forms for linear systems, i.e., controllable, observable, controller and observer
form. The first two are relatively straightforward to obtain, provided the system is
controllable or observable. However, the latter two are more useful in the design of
stabilizing state feedback control laws and asymptotic state observers. If a linear
svstem is both controllable and observable then it admits all four normal forms.

In [14] we discussed the nonlinear generalizations of the four linear normal
forms. Unfortunately, even controllable and observable nonlinear systems do not
admit all four nonlinear normal forms. A nonlinear system which admits controller
normal form is sometimes said to be state feedback linearizable in the sense of Hunt-
Su [8] and Jakubczyk-Respondek [9]. For a system in controller normal form, the
design of a stabilizing state feedback control law is a straightforward task. However,
most systems do not admit a controller normal form and even when one does, the
transformation of a system into controller normal form involves solving a system of
first order linear partial differential equations which can be quite difficult.

Similar remarks are even more appropriate for observer normal form. For a
svstem in observer form, the design of an observer is a straightforward task. But
ﬁ <r\ few systems admit such forms and the computation of observer normal form

5.1n general, e‘remely difficult.

For these reasons, we have introduced approximate versions of nonlinear con-
‘roller and observer form (15, 16]. These may be thought of as finding systems
“earby to the original which admit controller or observer form. The computation
of such a system is relatively straightforward, and reduces to solving a set of linear
“uations. Unfortunately, these linear equations are not always solvable and they

é “iCrease in size quite rapidly with the dimension of the system.
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We start by introducing modified versions of controller and observer normal
forms of the nonlinear system.

(2.1a) €= f(€) + g(€)u
(2.1b) y = h(¢)
(2.1¢c) £(0) ~¢° =0

around the nominal operating point £°, which for convenience we assume to be 0. We
assume f(0) = 0 and h(0) = 0. If this is not the case, then in many important cases
it can be made so by a possibly time varying change of state and output coordinates.
As is usual, the state £ is n dimensional, the control u is m dimensional and the
output y is p dimensional. It is relatively straightforward generalization to consider
systems where y depends directly on u, as in

(2.1d) y = k() + k(§)u,

however to simplify the exposition we shall not do so.

We are interested in studying (2.1) under the pseudogroup of state coordinate
transformations around £° = 0. In [14] we studied arbitrary change of coordinates
and attempted to bring the systems into normal form based on prime systems. Such
normal forms are closely related to Brunovsky form and its dual. In this article we
shall restrict our attention to changes of state coordinates z = z(€) whose Jacobian
at £ =0 is the identity

Oz
% (0)=1.

Such transformations have two virtues. The first is that they leave invariant the
first order linear approximation to (2.1),

(2.2a) z = Az + Bu +0(z,u)?
(2.2b) y=Cz +0(z2)* .
(2.2¢) z(t) = &(t) + 0(2)?
where

_ 9
(2.3a) A= —82 (0
(2.3b) B = ¢(0)

oh

(2.3¢) C = 0—£ (0)

The second is that the nonlinear coordinates € and the normal form coordinates
T agree to first order,

(2.4a) €=z +d(z)
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where
a0 9 0=
(2.4b) H0) =0, Z (0)=0.

Typically, the original coordinates in which the system is described have some nat-
ural meaning and the coordinates have different dimensions, e.g., distance, velocity,
mass, etc. Property (2.4) means that at least to ficst order the normal form coordi-
nates have the same dimensions and intuitive meanings as the nataral coordinates.

The system (2.1) admits a modified controller form if there exists a change of
state coordinates (2.4) which transforms (2.1) into

(2.5a) i = Az + Bu + B(a(z) + B(z)u)
(2.5b) y = Cz +7(x)

It follows from (2.4) that the nonlinear terms are quadratic or higher in (z,u), i.e

(2.6a) a(0) =0, %% (0)=20
(2.65) B(0) =0,
(2.6¢) 7(0) =0, -g:l- (0) =0.

We require that the m x m matnx 1+ B(z) be invertible for z of interest. These
conditions (2.4) and (2.6) insure that A,B,C are given by (2.3). Hence the linear
part of modified controller form of (2.1) is the same as the first order approximation
(2.2) to (2.1).

The system (2.1) admits a modified observer form if there exists a change of
state coordinates (2.4) which transforms (2.1) into

(2.7a) i = Az + Bu + o(¥) + B@)u,
(2.70) y=7+70)
(2.7¢) y=Cz.

It follows from (2.1) that the nonlinear terms are quadratic or higher

3. Poincaré Linearization. Henri Poincaré considered the problem of trans-
forming a nonlinear vector field into a linear field by a change of coordinates around
a critical point. We briefly describe his theory, a fuller description can be found in
Guckenheimer and Holmes (6] and Arnold [1].

We are given a single vector field

(3.1c) €= f(€)
(3.10) £(0) =0

with a critical point at £° = 0. We are interested in finding a change of coordinates
(2.4) which transforms (3.1) into a linear vector field,

(3.2) z= Az
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where A is given by (2.3a).
Poincaré noted that one could d

in homogeneous powers of z. At degree two we seek

6)(z) whose entries are homogeneous polynomials of

evelop the change of coordinates term by term
an n dimensional vector field
degree 2 in z such that under

T """W"W% I

the change of coordinates

(3.3) £ =z + ¢ (z)
the differential equation (3.1) is transformed to
(3.4) i = Az 4+ O(z)° .

whose O(z)* denotes cubic and higher terms in z. Superscripts in parentheses will
be used to indicate that the function is homogeneous of the degree of the superscript

in its arguments. If we expand f(€) in homogeneous powers of &,

(3.5) £(6) = A+ fOE) + [P ) + -

then (3.1) is transformed into (3.4) iff 6@ (€) satisfies the so called homological

equation
(3.6a) [Az, 6P (z)) = fP(=)
where [, ] is the Lie-Jacobi bracket

(2)
agI (z) Az — 40P(z)

(3.6b) [Az, 0P (z)] =

It is straightforward to verify that [4z, -] is linear map from homogeneous
vector fields of degree 2 into homogeneous vector fields of degree 2. Moreover the
homogeneous n dimensional vector fields of degree 2 form a linear space of dimension
n?(n +1)/2. Hence (3.6a) 1s solvable for arbitrary f? iff zero is not an eigenvalue
of the linear mapping defined by [Az, . Poincaré noted that the eigenvalues of

this mapping are related to the eigenvalues of A 1n a simple fashion. To see why,

suppose A is semisimple, i.e., there exists a basis v!,...,v" of eigenvectors of A

(3.7a) Av' =\ vt

possibly over the complex numbers.

Let wy,...,wn be a cobasis of left eigenvectors of A,
(37b) w,-A = ,\'-w,-
Then the space of n vector fields homogeneous of degree 2 has as a basis

(3.8) qu](x) = v¥(w;z) (w,r)

W

(3

w}

(3.
pa

thi

transf

1.3a)
1.3b)



when 1 <1< j<nand1<k<n. A straightforward calculation yields

[Az, ¢5(2)] = (\i + Xj — M) ¢5(x).
Hence the eigenvalues of {Az, -] on vector fields homogencous of degree 2 are
(3.9) AitAj =X

whenl <i:<nand1<k<n.

Hence the homological equation (3.6a) is solvable if no expression of the form
(3.9) is zero. Of course this is a sufficient but not necessary condition because a
particular f(2) might well be the range of [Az, 4], e.g., f? = 0.

If (3.6a) is solvable one can proceed to look for a transformation canceling the
third degree terms in f,

(3.10) €=z + ¢ (z)

and [Az, -] is linear mapping of tilese vector fields homogeneous of degree 3 into
themselves. The eigenvalues of this mapping are

(3.12) Ai+ A+ =X
where 1 <:<j<k<n, 1<0<n.

Hence (3.11) is solvable for arbitrary ) iff none of (3.12) is zero. This generalizes
to higher degree. If one of (3.9) or (3.12) or their gencralization is zero then there

1s “resonance” and linearization is not always possible. We refer the reader to (1]
and [6] for more details.

4. Approximate Controller Form. S. Karahan in his Ph.D. thesis [12] stud-

1ed the application of Poincaré’s method to finding controller forms and approximate
controller forms. We give a brief description of his work.

One starts by expanding (2.1) into homogeneous powers of (£, u),

(4.1a) £=AE+Bu+ fOE) +¢D(E)u+---
(4.1b) y=CE+hD(E) +---

One seeks a change of coordinates
(4.2) £ =z+¢P(x)

transforming (4.1) into approximate controller form

(4.3a)
(4.3h)

7 = Az + Bu + B(a'®(z) + g (z)u) + Oz, u)?
y = Cz++v¥(z) + O(z)
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Following Poincaré, we see that this will happen iff

(4.4a) M@¢mun+3am@g=ﬂ”u)
(44b) (Bu, $P(z)] + BBV (z)u = g (z)u

where (4.4b) must hold for each constant u. We refer to these as the generalized
homological equations. Like the homological equations, they are linear equations
but they are generally not square. The space of unknown ¢ (z), a'?(z) and M) ()
isn?(n+1)/2+mn(n+1)/2+ m2n dimensional. The constraint space of £ and
¢ is n2(n +1)/2 + n*m space. These dimensions agree iff n = 2m + 1. Generally
the map ¢®,a®, 1) — £ ¢ is not of full rank so it is not always solvable
even when n = 2m + 1.

Karahan has analyzed this mapping using 2 basis and cobasis related to the
controllability matrix (B,AB,.-., An—1B. We refer the reader to [12] for details.

Since the system (4.4a) is generally not solvable one is forced to seek approxi-
mate solutions. One way of doing this is to find f® and G in the range of the
mapping (4.2) which is closest in some least squares sense to the given 3 and g,
Moreover one would like to choose the smallest $? @ and 1) which maps into
@ and §V. Again we refer the reader to [12] for more details.

Before closing this section it should be mentioned how an approximate controller
form (4.3) can be used to stabilize a nonlinear system (2.1) (or equivalently (4.1))
by state feedback. The standard approach is to approximate the nonlinear system
to first order by (2.2), choose a stabilizing feedback law for (2.2), u = F'z, transform
this back into original coordinates,

(4.5) u = F¢.
Expressed in homogeneous terms the closed loop dynamics 1s
(4.6) £ = (A + BF) + fP(€) + ¢V (OF¢ + 0(¢)

and hence the system is locally stable around £° = 0. Of course, if it is too far from
¢° = 0, the quadratic and higher terms may drive it unstable.

In the normal form approach, we typically will use the same stabilizing state
feedback gain F but to apply it to the second order linearization (4.3) rather than
the first order linearization (2.2). The resulting feedback is

(4.7) u+ P (z) + BV (z)u = Fz
which results in z coordinates the closed loop system
(4.8) t=(A+BF)x+ o(z)®

Generally speaking, it is better to implement the feedback in the original £ coordi-
nates taking advantage of the fact that the inverse to (4.2) is

(4.9) z =€ — (&) +0(€)
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Neglecting higher than quadratic terms we obtain from (4.7) the feedback
(4.10) u=FE— (F¢(z) +aP(€) + BV (E)FE) + O(¢).

Note that to first degree the standard feedback (4.5) and the feedback (4.9)
agree. However, the second degree terms of (4.10) cancel the second degree terms
of (4.6) to obtain in z coordinates (4.8). One expects that (4.10) is asymptotically
stabilizing over a larger neighborhood of £° then (4.5).

Of course one can also seek a higher degree approximate controller form. The
dimensions of the homological and generalized homological equations grow expo-
nentially in the degree of the approximation. Hence this approach may not be rec-
ommended. It might be more efficient and effective to find approximate controller
forms of degree two around several operating points rather than an approximate
controller form of degree three around a single point.

5. Approximate Observer Form. The work I’m about to describe is joint
with Andrew Phelps. We seek a change of coordinates of the form (4.2) which
transforms (4.1) into approximate observer form

(5.1a) = Az + Bu+ oD (y) + BD(H)u + O(z,u)?
(5.1b) y=Cz + %) + O(z)°
(5.1¢) y=Cxz.

As before this is possible iff we can solve another set of generalized homolozical
equations

(5.22) 42,6 (2)] + a@D(Cz) = £P(2)
(52b) (Bu, $3)(z)] + BI(Czyu = dV(z)u
(5.2¢) YP(Cz) - €D (z) = KV (2)

As before (5.2b) must hold for each constant .

These equations are linear mapping from the space of functions ¢ (z).a!?
(Cz),¥®(Cz) to the space of functions f(®(z), ¢ (z), A (z). the dimension of
the domain is n?(n+1)/2+ np(p+1)/2+m 2p+p*(p+ 1)/2 and that of the range
is n*(n +1)/2 + mn(n +1)/2+ pn(n + 1)/2. In general, these equations (5.2} are
not solvable so as before one must seek a least squares solution. We shall repor: on
that in more detail at another time.

If (2.1) (equivalently (4.1)) can be transformed to approximate observer form
N1t is easy to construct an observer., We choose H so that A+ HC is sufficiently
stable. An approximation Z(t) to z(t) is defined to evolve according to

the

(5.3) 2 =(A+HC)2 + Bu— H(y — v¥(y))

+a Dy —1P(y)) + 8Dy — 1D (y))u
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then the error z(t) = z(t) — z(t) satisfies
(5.4) i=(A+ HC)i + O(z,z,u).

Hence if the initial error is not too large and u is also not too large, we can
expect Z(t) — 0 as t — co.

Of course, it is preferable to implement the observer in natural coordinates so
we transform (5.3) using £ = z + ¢(¥(2) to obtain

(5.52) E= AT+ But HG —y) + FOE) + ¢V @)u
+a®P(y) — a?(g) + (BD(y) — B (§))u

2) _
L HyP(y) - /D) + % OHG - v)

+ O, €, u)®
(5.5b) §=CE+hD(E)

(5.5¢) £0)=¢° =0.

Notice that the linear part of (5.5) is the observer for (2.1) one would obtain from
the linear approximation (2.2), namely

(5.6a) :=Az+ Bu+ H(j —y)
(5.6b) §=Cs
(5.6¢) 30)=¢€°=0.

The error 2 = £ — 2 between (2.1) and (5.6) satisfies
(5.7a) I=(A+ HC): + O(£,€,u)?

while the error of the observer (5.5) expressed in Z coordinates satisfies (5.4). Hence

one expects (5.5) to perform better as an observer for (2.1) over a larger operating
range.

As with the state feedback (4.10), the second degree terms of the observer (5.5)
are a correction to the standard linear observer for the quadratic nonlinearities of
the original system. In implementations one would replace the state £ in the state
feedback control law (4.9) with the estimate ¢ from (5.9).

One can continue this process and look for a third degree change of coordinates
which transforms the system into approximate observer form where the error terms
are O(€,u)*. One obtains in this fashion third order corrections to the state feed-
back (4.10) and observer (5.5). Viewed in this light, we see that the approximate
normal form approach allows us to start with a standard linear design based on the
linear approximation (2.2) and build in a succession of higher degree corrections to
overcome the nonlineararities of (4.1). Throughout we can keep the same feedback
gain K and observer gain H, and these can be chosen by standard linear design
techniques applied to the linear approximation (2.2).

6. Copri
we have a syst

(6.12)
(6.1b)
(6.1c)

where the c-¢
pormal form.

(6.2a)

from functio:

We seek

where N an

(6.2b)

(6.2¢)

M is inver!
on coprime
5,7,10,11,

To des

ization. It

(6.3a)
(6.3b)
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We o
system (!
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(6.52)

(6.5b)
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6. Coprime Factorizations. This work is jJoint with Yi Zhu [19]. Suppose

we have a svstem in controller normal form

(6.1a) .= Axc+ Bu’*‘B(ac(Ic)“}_ﬁc(Ic)“)
(6.1b) y= Cxc +ve(ze)
(6-1c) r(0) =0

where the c-subscripts indicate coordinates and functions associated to controller

normal form. We view (6.1) as defining an input/output map
(6.2) G u()— y()

from functions u(t) to y(t) for t > 0.

We seek a right factorization of G
G = l\r o] ‘\I—l
where N and M are input/output maps

(6.2b) M v(-) — u(’)

(6.2¢) N :o(-) — y(),

M is invertible and o denotes composition. There is a large and growing literature
on coprime factorization of both linear and nonlinear systems. A sampling is 2 —
5,7,10,11,13,17,18,20 — 26]. In particular our approach follows (3, 4].

To describe the input/output maps A and N we shall use a state space real-
ization. In particular we define M to be the input/output map of

(6.32) .= (A+ BF)+Bv
{6.3b) ao€) + (14 Bel&)u = Fec v
(6.3¢) £(0) =0

where (6.3b) defines u as a function of £ and v.
We consider the composition N = Go M, this is realized by the 2n dimensional
system (6.1, 3) described in £, z. coordinates. Let e = z. — & then
(6.4) €= Ae—&—B(—F{C—vﬁ—ac(xc)
F (14 Belze))(1 + Bl €N T (Fle +v = ac(€e)))
If e(t) = O then é(t) = 0. Since €(0) = 0 we conclude that e(t) = 0 then e(t)y=01s
unaffected by the input v(t).

A controllable realization of N 1s

(6.5a) (.= (A+ BF)(+Bv
(65})) Yy = C(c+ 7c(<c)
(6.5¢) ((0) =0

e ————EEE
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Hence we conclude that G = N o M~ where N and M are realized by (6.5) an¢
(6.3). Notice that M is invertible since (1 + B.) is invertible by assumption.
Notice also that if (A, B) is a controllable
(6.3) and (6.5) are stable systems. Hence we h
nonlinear systems. We are being deliberatel

a stable nonlinear system. It is clear that

deﬁnition._

pair then we can choose F so tha:
ave factored G over the ring of stable
y vague about the precise definition of

(5.3, 5) are “stable” under any reasonable

Of course, we are interested In coprime factorizations ove

linear systems. Again we should not try to make this concept precise but following
Hammer 7] and others we shall say that G =NoM~!isa coprime factorization
if there exists P, the input/output map of a stable system,

(6.6a) B (“) — w

r the ring of stable non-

such that the composition

(6.6b) Po (?V/I) Lo (;‘) — w

1s the identity, w = .

The input /output map of (1‘5) can be realized by an n dimensional system

(6.7a) £ =(A+ BF), + Bo

(6.7b) ac(fe) + (1 + Be(&))u = FE, + v
(6.7¢) y=C& +7:(&)

(6.7d) £(0)=0

A left inverse of (6.7) 1s

(6.88,) Ze = Az + Bu + B(ac(zc) + ,Bc(zc)u)
(6.8b) w=a(z.)+ (14 Be(z))u — Fz,
(6.8¢) z2(0)=0

Ife=¢ — 2z, then

€ =de+ Blad(&) ~ aclz) + (B(€,) - Be(ze))u)

If e(t) = 0 the é(t) = 0 and since €(0) = 0 it follows that e(t) =0forall t > 0. If
e(t) = £c(t) — z.(t) = 0 then w(t) = v(t) so (6.8) inverts (6.7).

However we do not know that (6.8) is stable. To insure the stability of (6.8),
we must add to (6.8a) an extra term. This term must stabilize (6.8) and also must

be zero when €. = z, so that (6.8) remains a left inverse of (6.7). How do we find
such a term?

Noti
system (
Perhaps
asking v
This is
exists a
(6.9)
satisfyir

(6.10a)
(6.10b)
(6.10c)

Sup
(6.11)
to obta

(6.12a)
(6.12b)

(6.12¢)
We
(6.13a)
to obte
(6.12a¢
where
(6.13b’
and &
(6.13¢c,

N¢
the (6.
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Notice that the dynamics (6.8a) is the same as the dynamics of the onginal
system (6.1a) and notice that the other output y of (6.7) does not appear in (6.8).
Perhaps we can inject y into (6.8a) to stabilize it? This is more or less cquivalent to
asking whether output injection can be used to stabilize the original system (6.1).

This is always possible for systems in observer form, hence we assume that there
exists a change of coordinates

(69) I, = Tg + O(Io)

satisfying (2.4b) transforming (6.1) into observer form

(6.10a) io = ATo + Bu+ ag(Cxo) + Bo(Czo)u
(6.10b) y = Czo + 10(C1o)
(6.10c¢) zp(0) =0

Suppose we consider a similar change of coordinates for (6.8)

(611) Ze = 20+O(:0)

to obtain

(612&) zg = Az + Bu + Oo(czo) + ﬂo(CZo)u

(612b) w = (Xo(Zo + d)(Z())) + (1 =+ _35(20 + o(:o)))u
— F(z0 + é(20))

(6.12¢) =(0) = 0.

We add to (6.12a) the term

(6.13a) ao(7) — @o(Cz0) + (Bo(Y) — 30(Czo))u + H(Cz — )
to obtain
(6.12aa) g =(A+ HC)zo + Bu + ao(T) + Bo(¥)u — Hy

where 7 is a function of y of (6.7)c) defined by
(6.13b) y =7+ 7(¥) = Cé + 1(C)
and £, is the state of (6.7) in observer coordinates

(6.13c) £c = &o + (o)

| Notice that (6.13a) is zero whenever §o = 2o, hence the input/output map P of
the (6.12aa, b, c) is stable.
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In summary, we have shown that if a nonlinear system admits both controller
and observer form than its input/output map G can be factored into the com-
position N o M =1 of input/output maps of stable systems N and M. Moreover
this composition 1s coprime in the sense that the input/output map (':\'\) has a left
inverse P which is realized by a stable system.

We have not presented this as a theorem because we are reluctant az this point
in time to give formal definitions of coprimeness and stability for nonlmear systems.
However the above development is very analogous to the linear theory {3, 4]. See
also Hammer (7]

Unfortunately the analogy is not so straightforward for left coprime factoriza-
tions. The theory of left coprime factorizations for nonlinear systems has some

substantial differences with the linear theory.
We start with a system 1n observer form (6.10) realizing an input/output map

G. We define another input output map

(6.14) M: (’;) — w,

by
(6-152) fo = (A+ HC)é — HY + ao(¥) + Bo(¥)
where ¥ 1s an invertible function of the input y defined by
(6.15b) y =7 +(Y)
and the output 1s
(6.15¢) w=-Ct+7
(6.15d) £(0) =10
Consider the serial connection of ((~3.10) and (6.15), this is not & realization of

the M o G but it is a realization of N = Mo (CI;) (This is the frst important

difference with the linear theory). If we define & = zo — o then N is realized by

(6.16a) (o = (A+ HC)o + Bu
(6.16¢) o(0) =0

because in o, Zo coordinates for (6.10, 15) only the & coordinates are observable
from the output w. We consider N, M as a left factorization of G. although 1t 18

really a left factorization of (é) in the sense that

(6.17) ﬁo<é>:&
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sller ‘ Notice that we cannot compose this on the left with A/ ~! since M 1s not in- i
> : i
om- ‘ * vertible as a mapping from (;) to w. A
ver Perhaps the best way of viewing the situation is E
left !
I 0 I I T
5.18 — = ~ i
0159 (0 37) = (6)=(¥)
‘ms. :
See or
I I 0\~ I
. 6.18b =
0130 (6)=( )"+ ()
>Ime
The matrix notation is somewhat misleading because M depends on both u and y.
nap In any case, if (C, A) is an observable pair then both (6.15) and (6.16) can be
made stable by proper choice of H. In particular, the nonlinearities in (6.15a) are
the memoryless functions of the mputs u and y hence (6.15) is BIBO stable.
Next we address the coprimeness of the above factorization.
We consider the input /output map
~ o~ u
(6.196.) [—-J\'Y,]\-f] : ( ) — w
y
where again the matrix notation is somewhat misleading since both u and y are
mputs to M, ie.,
r s x a7 (U
{6.19b) w = —_f\’(u)«}—]\/[< )
Y
This input/output map can be realized by an n dimensional system
(6.20a) §0=(A+HC)& + Bu +a(¥) + Bo(Y)u — Hy
n of . ) ) )
ant where ¥ is an invertible function of the input y defined by
bv ..
: 16.20b) Y =7+ 10(7)
and the output w is given by
{6.20¢) w=-Cl+7y
e We wish to find a input/output map P realized b a stable system so that P is
abl ) 2 1np I I y
s 4 night inverse of [-N, M,
‘6‘213) P:yw—i (U)
y
‘G.Elb) [—j\v"', W} 067U — = p.
l
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We start by constructing an inverse for (6.20),

(6.22a) 2o = Azg — Hv + Bu + ao(¥) + Bo(Y)u
(6.22b) y=Cz+v

(6.22c) ¥y =7+ 7(y)

(6.22d) w =7

(6.22¢) 20(0) = 0

We leave unspecified for the moment the output u which also appears in the dy-
namics (6.22a). Notice that if e = £ — zo 1s the error between the states of {6.20)
and (6.22) then é = 0 whenever e = 0. Since ¢(0) = 0 we conclude that e(t) = 0 for
all t > 0 and so by (6.20c) and (6.22b) we have w(t) = v(t). In other words (6.22
15 a night nverse of (6.20).

What about the stability of (6.22)7 We would like to choose the output u in
such a way that (6.22a) is stable in some sense. If we ignore the -Hv term of
(6.22a) this looks like the original system is observer form. This is not exactly true
because ¥ 1s defined by (6.22b) with v present. Suppose the original system can be

transformed into controller form (6.1) by a change of coordinates (6.9). If we apply
a similar change of coordinates (6.11) to (6.22) we obtain

(6.23a) ze = Az + Bu + B(a(z.) + Bz )u) — Ho
3¢

)(ao(Czo +v) = ap(Czp)
+ (Bo(Czo + v) — Bo(Cz0))u)
Suppose we choose an F such that (A + BF') is stable and define u by
(6.22d4) ae(z) + Belze)u = Fz.
When the input v =0, (6.23a) becomes
(6.23b) o= (A + BF)z.

Unfortunately we cannot conclude that (6.23a) is BIBO stable since the input
v is multiplied by a function of the state.

We conclude by noting that a “nonlinear Bezout identity” holds for the above.
In other words beside P being a left inverse (6.6b) for (x) and P a right inverse
(6.21b) for [—A{',]\/[], it is also true that

~ Iy
and
(6.24b) ﬁOP:vv——» <u>r—~»w:0
y

In
6
T
B
of
sy

re
CcC

C(C

o

o o o



In abuse of hotallon we Summarize these equations by

(022 (5" ) (()7) = ?)

The verification of (6.24) 1s straightforward.

From the work of Doyle [3] Francis [4] and others the, the existence of a nonlinear
Bezout identity suggests that it might be possible to develop a nonlinear version
of Youla’s  parameterization of all stable and stabilizing controller of a linear
system. This generalization would apply to those nonlinear systems which admit
both controller and observer form. This class is very thin, but perhaps such a
result could be extended approximately to those systems that approximately admit

controller and observer form. Work in these areas 1s continuing.

7. Concluding Remarks. We have briefly described an approach to nonlinear
compensator design based on nonlinear normal forms and approximately normal
forms. This approach is beng pursued by a group of researchers at U.C. Davis
with support from AFOSR. The principal advantage of the normal forms approach
is that to a large extent 1t reduces problems in nonlinear design to problems in
linear design. We are developing software tools which utilize this approach as a
compliment to existing linear design software so that these linear design packages

can be used for nonlinear systems that admit at least approximate normal forms.
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