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Abstract

In this paper, a set of extended quadratic controller normal
forms of linearly controllable nonlinear systems is given. Then we
proved that any linearly controllable nonlinear system is
linearizable to second degree by a dynamic feedback.

§1. Introduction

It is well known that there are four normal forms for linear
systems, i.e, controllable, observable, controller and observer
form. The nonlinear generalizations of these four linear normal
forms were given and discussed in Krener (13}, Hunt-Su [5],
Jakubczyk-Respondek [8], Brocket [1] and Sommer [17] etc.
Unfortunately, most controllable systems do not admit a controller
normal form and even when one does, the ransformation of a
system into controller normal form involves solving a system of
first order linear partial differential equations which can be
numerically quite difficult. For these reasons, the approximate
versions of nonlinear controller and observer normal forms were
introduced in Krener [12}, Krener-Karahan-Hubbard-Frezza [14],
and Karahan [11] etc. It was proved that for certain kind of
nonlinear controllable systems, we can find a nonlinear change of
coordinates and nonlinear feedback that transforms the system into
the linear approximation of the plant dynamics which is accurate to
second or higher degree. The computation of such a change of
coordinates and feedback is reduced to solving a set of linear
cquations. However, these linear equations are not always
solvable and most of the nonlinear systems do not admit such a
linear approximation.

In this paper, a set of extended quadratic controller normal
forms of linearly controllable systems with single input is given
(Theorem 2). We can consider these normal forms as the
extension of the Brunovsky form to the nonlinear systems. Then
we prove that given a nonlinear system, there exists a dynamic
feedback so that the extended system has a linear approximation
which is accurate to second or higher degree (Theorem 3).

In this paper, we only consider the single-input systems. The
generalization to multi-input systems will be given in another
paper. We only give the sketch of the proofs here and the detail
proof can be found in Kang-Krener [10]

§2. Extended quadratic controller form and dynamic
feedback linearization

From Brunovsky [2] and Kailath [9], we know that any
controllable linear system can be transformed into a controller
form by a linear change of coordinates . If, in addition, we also
allow linear change of coordinates in the input space and linear
state feedback, any controllable linear system can be transformed
into a Brunovsky form. This result is summarized in the following
theorem. The change of coordinates and feedback used in this
theorem is:

{§=Tx

v=ax +Pu @D

where T is a constant nxn nonsingular matrix, « is a row vector
and P is a nonzero real number,

Theorem 1: Consider a single input, time-invariant linear
system:
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E=FE + Gu (2.2)
If it is controllable, then by a suitable change of coordinates and
feedback (2.1), this linear system can be transformed into the
following system of Brunovsky form:

010...0 0
Cloo1lllo :
X=1....... X+| :ju. 23

000...1 0 @3

000...0 1

In the following, we are going to give a nonlinear
generalization of Brunovsky form from the quadratic
approximation point of view. We will study the following
nonlinear systems:

&= £ +gE)u (2.4)
where f(&) and g(&) are nonlinear vector fields such that
| 0
f(0) = 2.5)
0

Throughout this paper, we shall use the following notation:

1]
010...0 0
00t1...0 .

A=l .. ..... B= . (2.6a)
000...1 .
000...0dnxn 0

1 - nx1
[ #2e) ] ERGEE
£75€) £

fAE=] . gy = (2.6b)

| ) | el
f

F = — 0 = 0 . .

x© G =g(0) (2.6¢)

The upper index of fl2)(€) and g{!)(&) means that t{izl(é) and ggn(i)

are homogeneous polynomials of second and first degree in &,
This kind of upper index will also be applied to some other vector

fields and functions (e.g. af2)(x) or B)(x)).

Definition 1: If (F, G) is controllable, we call (2.4) a linearly
controllable system. In this paper, we always assume that a
nonlinear system is linearly controllable.

As mentioned in §1, most linearly controllable nonlinear
systems do not admit a controller normal form, therefore they can
not be transformed into the Brunovsky form (2.3). Theorem 1
implies that there exists a linear change of coordinates and linear




feedback (2.1) which transforms a nonlinear system (2.4) into a
system:

x = Ax + Bu + f12)(x) + gl(x)u + O(x,u)3 @7

where (A, B) has Brunovsky form (2.6a). So, Brunovsky form is
a normal form for the lincar part of linearly controllable nonlinear
system (2.4). The question is what is the normal form of the
qQuadratic terms in this system. We will answer this question in the
next theorem. To solve this problem, let us consider the following
nonlinear systems, the linear part of which is in Brunovsky form:

§= AL+ B+ i3E) + g1IE)0 + O, )3
Since the linear part of (2.8) is already in Brunovsky form, we
want to leave it invariant under a change of coordinates and

feedback. Therefore, we consider the change of coordinates and
feedback of the following form:

{§=x+¢“kn

v=u+all(x)+plx)u

(2.8)

2.9)

Here ¢{2)(x) is a n-dimensional vector field whose entries are
homogeneous polynomials of second degree in x, al?l(x) is a

homogeneous polynomial of second degree and Bll)(x) is a
polynomial of first degree. The transformation given by (2.9) has
two virtues. The first is that they leave invariant the linear part of

(2.8). The second is that the nonlinear coordinates § and x agree to
the first degree.

Now, we can answer the question what is the normal form of
the quadratic terms in (2.8) under the change of coordinates and
feedback (2.9).

Theorem 2: By a change of coordinates and feedback 2.9),
system (2.8) can be transformed into one and only one of the
following systems:

x = Ax + Bo+ f21(x) + O(x,0)}

(2.10a)
where
F E?](X)
3 ;[22](’()
f2)(x) = (2.10b)
b
fa (X)
- —
[ S
- aiiX; l £i<n-2
7 =4 23 (2.10¢)
\ 0 i=n-1o0rn

Definition 2: A system such as (2.10) is said to be in extended
quadratic controller form.

Since most nonlinear systems (2.4) do not admit a controller
form, they can not be completely linearized by a change of
coordinates and a feedback. we wish to use (2.9) to transform
(2.4) into a linear systemn plus an error of second or higher degree:

x=Fx+Gu+O(x, 0)3. @.11)
A system with this property is said to be quadratically lincarizable
b%' (2.9). From the result of Theorem 2, we know that a system
(2.8) is quadratically linearizable by (2.9) if and only if the

corresponding extended quadratic controller form satisfies:

£12)x) = 0, (2.12)

Therefore, most nonlinear systems are not quadratically
linearizable. In the following, we are going to introduce a method
of linearizing a nonlinear system to the second degree by a
dynamic feedback. The concept of dynamic feedback was
introduced and studied in Singh [16} and Charlet-Lévine-Marino
[4).

Definition 3: A dynamic feedback is a system:

o =a(§,0) + b,0)r
us= C(g,m) + d(ng)”

w(t) € RY

A1) € R (2.13)

Where q is called the dimension of the dynamic feedback. In
general, the q-dimensional vector fields a(¢,w) and b(¢,w) are
nonlinear. c(§,w) and d(¢,w) are scalar functions and d(0,0) = 0.

Consider the system (2.4) with a dynamic feedback (2.13).
The extended system is:

& [1®) +g®reE.w)] [sEdEw
= + v
a(§,0) b(§,w)
=f1(§w) + g E.0)v (2.14)

Let Fy be the Jacobian matrix of fj(§,w) at (0,0), let Gy be
£1€0,0).

Definition 4: If we can find a dynamic feedback such that the
extended system (2.14) is linearly controllable and it can be
transformed into:

z2=Fyz+Gyv+ O(z,9)3 (2.15)
by a change of coordinates (in the extended state space):
[F’] = z+ yl2l(z), (2.16)
®

then the system (2.4) is called quadratically linearizable by a
dynamic feedback.

Theorem 3: Any lincarly controllable system (2.8) is
quadratically linearizable by a dynamic feedback.

Corollary 1: Any linearly controllable system (2.4) is
quadratically linearizable by a dynamic feedback.

In Corollary 2, we will show that finding a suitable dynamic
feedback and a change of coordinates in the extended space is
equivalent to solving a set of linear equations. Suppose the Taylor

series of the vector fields f(E) and g(§) in the system (2.4) are:

£€) = F§ + fi21) + 0(§)3
8(8) = G + glll&) + 0¢8)?

Corollary 2: Suppose that the dimension of the state space of the
system (2.4) is n. To quadratically linearize this system by a
dynamic feedback, we can use the following n-1 dimensional
dynamic feedback:

2.17)

®=Aw + By

2.18
v = 0] + 11(E,0) + 72E 0) @19




where (A, B) is in Brunovsky form (2.6a) of dimension n-1. The
change of coordinates (2.16) in the extended state space is:

H H rnkz,ml,...,mn-z)J
+
o] Lo [0

The homogeneous polynomials Y{1J(€,w), ¥2)(&,w) and the vector
fields ¢{2)(z,01,....0p.2) are chosen such that the extended
system is linearly controllable and:

2.19)

(2}
[ F2+G(@ {1 z,0)), 0 (z,01,....09.2) ] + a—a%n—Am

=Gz + (0@ + gl + ¥ zw)  (2.20)
Furthermore, by (2.18) and (2.19) the system (2.4) will be
transformed into

z [Fz+0(m,+yﬂl(z,m))J [0
+
@

Aw
Remark 1: In Charlet - Lévine - Marino [4], it was proved that if
a single input systern is not exactly linearizable, then this system is
not linearizable by a dynamic feedback. The result of Corollary 1
means that in the problem of finding the quadratic linearization, the
opposite result is true, i.c, any single input linearly controllable
system is quadratically linearizable by a dynamic feedback.

Jv +0(z,0,93 (2.21)
B

The theorems 2, 3 and the corollaries in this section will be
proved in §5.

§3. Quadratic equivalence

In this section, we will define the family of all the systems
such as (2.8) of certain dimension to be a linear space. An
equivalent relation on this linear space will be introduced. Then,
several theorems about this equivalent relation and the associated
classification will be given. All these results will be used in the
proof of the theorems in §2.

Definition 5: Consider two systems:

E=AL+Bu+f](2¢E) + eilEu+0¢w? 3.1

x=Ax+Br+ HlA) + &N+ Ox,® (3. 1b)
System (3.1a) is called to be quadratically equivalent to system
(3.1b) if and only if there exists a change of coordinates and
feedback (2.9) such that the system (3.1a) is transformed into

x= Ax + Bu+ f0x) +g0)(x)0 + O(x, 3 3.2)
i.e, system (3.1a) is transformed into a system which agree with
(3.1b) up to an error of third degree.

As we know that the family of lincar change of coordinate and
feedback (2.1) is a group under the operation of composition. The
family of nonlinear change of coordinate and feedback is a
pseudogroup but not a group because the change of coordinates is
a local transformation and different transformations are well
defined on different domains around the origin. Let us consider
the quotient group of this pseudogroup by O(x.u)3. What we get
is a family of transformations which only contains linear and
quadratic part. This is also a pseudogroup which consist of all
transformations (2.9). It is denoted by G. Two systems (3.1a)
and (3.1b) are quadratically equivalent means that there is an
element of G so that it transforms (3.1a) to a system which agree
with (3.1b) up to an error of third degree. So, it is casy to show
that quadratic equivalence is an equivalent relation(see [6]). We
can define a classification on the family of all the systems of the

T T T e——
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form (2.8) by this equivalent relation. Each class of this
classification contains all systems which are quadratically
equivalent to each other. In §5, we will prove the Theorem 2 by
showing that the extended quadratic controller forms are the
representatives of all the equivalent classes.

Theorem 4: Consider two nonlinear systems

§1= ALy + Buy +, 16 ) + g (18 g + O€uy  (332)

§2= ALy + Buy + R0(E5) + g, 11Ny + 0Ey.1)° (3.3b)

They are quadratically equivalent to each other if and only if there
exist functions am(éz), ﬁ“](éz) and a vector field ¢m(§2) such
that

[ AL, 012)€2) ] + BaliEp) = £, (2E,) - ,2Ey)  (3.4a)

(B, 617152 1 + BBME) = g 1NEp) - gylliEp).  (3.4)

Sketch of the proof: The proof is similar to that given in Krener-
Karahan-Hubbard-Frezza [14]). QE.D.

Since the set of all the homogencous polynomials of
(xl,x2,...,xn) is a linear space of finite dimension, we can
consider ( ¢{2)(x), al2)(x), BlI(x)) of (2.9) as an element of a

linear space W and (f121(¢), gl1)(&)) of (2.8) as an element ofa
linear space V. In this way, we can consider the family of
transformation (2.9) and the family of nonlinear system (2.3') as
linear spaces W and V. Since the linear part of (2.8) is always in

Brunovsky form, sometimes we use (f{2], gll)) 1o represent a

system (2.8). Define a linear map ¥ from W to V by the following
Lie bracket:

Ao12E), al2E), itiey)

= (A%, 612)] + Bal2), (B, ¢{2)] + BBI1)), (3.5)

Denote
Vo = #(W) = the image of W under .
By using these notations, we can rewrite the theorem 4 as follows:

Theorem 4': A system

(3.3a) is quadratically equivalent to
system (3.3b) if and only if

(117, g)1) € (5021, g1y + v (3.6)

i, (112, g (1) and ( f512], g5[11) represent the same element in
the quotient space V/y,.

Remark 2: Theorem 4' means that there is a one-to-one
correspondence between V/vO and the family of all equivalent
classes.

Remark 3: A special case of Theorem 4' is that the system (2.8)
is quadratically equivalent to a linear system if and only if

(2], g0y ¢ v,

Therefore, the elements of V() represents all the systems of the
form (2.8) which are quadratically linearizable by (2.9).

The following theorem gives us a geometric necessary and
sufficient condition for a system to be quadratically lincarizable by
the change of coordinates and feedback (2.9).




T e
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Theorem 5: Consider a system (2.8), let

X = adA; {2 @(B+g“](§)) 0sr<n, (3.72)

DK = C™Span {X;,0<r<k }. (3.7b)

The system (2.8) is quadratically equivalent to the linear system

&= AL +Bu (3.8)

if and only if DK s first degree involutive for k=1,2,..,n-1, i.e,
for any X and Y in Dk, we have

k-1
(X.Y]=Y cXp+O@). (3.9)

Proof: This theorem is a particular case of the theorem in Krener
[12].

§4. Characteristic numbers

In §3, we defined an equivalent relation by the change of
coordinates and feedback (2.9). In this section, we will answer the
following question: How to determine whether Or not two systems
are quadratically equivalent without trying to solve the system of
equations (3.4)? We will find a set of numbers associated to the
system (2.8), called characteristic numbers, so that these numbers
are invariant under the transformation (2.9) and two systems are
quadratically equivalent if and only if they have the same
characteristic numbers.

Let C be a row vector:
C=[1,0,0,...,0). (4.1)

Definition 6: The characteristic numbers of the system (2.8) are:

a=CAFl[X |, X, , 1|§ - (4.2a)

where

2<r<n-1
<t (4.2b)

Lemma 1: The characteristic number a'r is a linear map from V 1o
R, e, alis a linear function of f24(¢) and gllI(%).

Sketch of the proof: By computation, we can prove the following
identity:

3 rk3
aT=L )1 Ar-lg(kgocf\‘ fad g "IHDE), (-DkAkB)

2 :
+CA"lad;§(g“](§)))

k

2 -1
‘L(-1¥-2Ar-23(:§OCA"‘°dL¢ (121E), (-1ykAkB]+

-1
c»-lad;g(gl”(ﬁ))).

This implies that a'f is a linear function of f2(€) and g(!(%).

Lemma 2: A system of the form (2.8) is quadratically linearizable
if and only if all the characteristic numbers are zero.

Sketch of the proof: Suppose a system of the form (2.8) is
quadratically linearizable. It can be proved that the constant part of
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the vector fields in DF is linearly generated by
( B,AB, A2B,.., AT1B ).

From Theorem 5, we know that DX is firs degree involutive for k
= 1,2,...,n-1. Therefore,

r

[Xr_l,xr_2]=2ciAi‘lB +0(®)lL. (4.3)
i=
So,
. 2<sr<n-1
= CAMII X, X p1=0 §57, < n-r (44
because
- - Isk<sr
catlak-lg =g 1<t<nr. (49
On the other hand, suppose
2<rsn-1
alf=0 1 St<n-r (4.6)
ie,
- 2<r<n-1
CAvl{ Xr1 Xp21=0 7 Stsnr. @D
So,
r
[Xr.1. X2 1= ) ciAl1B + O)! (48)

1=

This implies that the distribution DX is first degree involutive for
any 1 sk < n-1. So, the system is quadratically linearizable.
Q.ED.

Theorem 6: Two systems of the form (2.8) are quadratically
equivalent if and only if the corresponding characteristic numbers
are equal.

Sketch of the proof: Consider two systems

§1= AE +Bup+f) A +g, (1§ 1)u1 +O(E,up)3 (4.92)

§2 = AL Bup+ 610 +g) I +OEp)® (4.9b)

Leta) and aj be the characteristic numbers of (4.92) and (4.9b),
respectively.,

Suppose that (4.9a) and (4.9b) are quadratically equivalent.
From Theorem 4' we know that

(02, g, 011y ¢ (£,2) g21) + Vo, (4.10)
ie,

(f1[2], gl[l] Y =( f2[2]. 32[1] )+ (£2], gl (4.11a)
and

(12, g111) ¢ vy (4.11b)

Let af be the characteristic numbers of ( 2], gl"). Since the

characteristic numbers are linear functions of 12! and g{!) (Lemma
1), we have




e 3

ay =aj +aff (4.12)
From Lemma 2 and (4.11b), we know that

alf = 0.
So,

r_ 2<r<n

4 =3 1<tsan-r. (4.13)

On the other hand, suppose that all the corresponding
characteristic numbers are the same. Then

r o 2<r<n

a-a;=0 1 <ts<n-r. (4.14)
So

(12162, gl11 g 111y ¢ v (4.15)

Theorem 4’ and (4.15) implies that the systems (4.9a) and (4.9b)
arc quadratically equivalent.

§5. The proofs of the theorems in §2.

The skstch of the proof of Theorem 2: Consider a special
kind of £()(x):

2} (x) = forsome 1<i<n, (5.1a)

fi(x) = ; sz for some j 2 i+2. (5.1b)

By a long computation we have

. r-1 r-2
o= CA M sl iy ®) g sy ®))

2aij r=n-j+2 and t=i

={0

As we know that any f(2] (x) of the form (2.10) is a linear
combination of the vector ficlds given in (5.1). Given any system
in the extended quadratic controller form (2.10), From (5.2) and
Lemma 1, we can find the characteristic numbers:

(5.2)
others

atr = 23[ n-r+2. (53)

This implies that given a st of characteristic numbers, there exists
one and only one system in the extended quadratic controller form
which has the given characteristic numbers. Theorem 2 follows
this fact and Theorem 6.

The sketch of the proof of Theorem 3. According to
Theorem 2, it is sufficient to prove the result for the systems in the
extended quadratic controller form. Let the dynamic féedback be

] = @2
o = 03
: (5.4)
ip.]=v

v= 01 + 7(x,0)

where yi2] js a homogeneous polynomial of second degree in
(x,w). The extended system is

x x o] By2l(x,
=A1[ ]+B,;+ S +[ P(xw)];. (5.5)
) © 0 0

Here, (Ay, By) is in the form of (2.6a) of dimension 2n-1. We
define the change of coordinates as follows

= _ , (5.6a)
zy=lincar and quadratic partof zy.{ 2<k<n . (5.6b)
Znep = Op 1<p<n-1 (5.6c)
We can prove that
zg = xg + Yi(x,01,...,0.2) 2< k_S n (5.7

where yy (x,01,...,0k.2) is a homogeneous polynomial of second
degree. Then

2| =23

7 =123 + O(z,9)

(5.8a)
;1,_1 =z, + O(z,9P
and
Zy =X + Yp(X,01,....00-2)
= 01 + f2(x,0) + Yn(x,01,...0n.2).  (5.8b)
Let
2] = the quadratic part of - Vn(x,01,..0.2)  (5.9)
then
= 0] =2zn4] + Oz, (5.10)

Therefore, by the change of coordinates (5.6) and (5.9), the
system (5.5) is transformed into

z] =z3

7 = z3 + O(z,0p

Zn.1 =z, + O(z,9)}
Iy = zp41 + O(z,v)
in+1 =Zn42

S.11)

Bp1=v




It is a linearly controllable system without quadratic terms.
Theorem 3 is proved.

Remark 4: Sometimes, the dimension of the dynamic feedback
used in theorem 2 can be less than n-1. Suppose a system is in
extended quadratic controller form (2.10). Let

q=max( ji;a;#0,j2i+2,1Si<n-2}. (5.12)

To quadratically linearize the system, a q-dimensional dynamic
feedback is good enough. The proof is almost the same as above
except (5.7) is changed to

zg =X + Vk("v“)l»----mk-l-n«{-q) n-q+1<k<n. (5.13)

Remark 5: From this proof, we can find that the dynamic
feedback is chosen to be in Brunovsky form:

©=Aw + By
. (5.14)
u=0p +7x,0)

Furthermore, (5.6) and (5.7) implies that the change of
coordinates in the extended state space is:

X z {le](z,(ﬂl....,(s)n_z)J
+

= (5.15)
0

Here, @ is not changed and the quadratic part is independent on
(Dn_ 1

The sketch of the proof of Corollary 1: By Theorem I,
there exists a linear change of coordinates and feedback which
transforms (2.4) into a system such that the linear part of which is
in Brunovsky form. By Theorem 3, we can find a dynamic
feedback such that the extended system can be linearized to the
second degree by a change of coordinates. This implies that the
system:

E=f (E)+g@)u

is quadratically linearizable by a dynamic feedback. Corollary 1 is
proved.

(5.16)

The sketch of the proof of Corollary 2: it can be proved by
Remark §, equation (3.4) and some computation.

In this paper, all the results are restricted to the single input
nonlinear systems. In fact, similar results in the muld-input case
are also correct and they will be given in another paper. The idea
of finding quadratic normal forms and extending the state space

were also successfully used in the problem of finding nonlinear

observers.
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