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GAUSSIAN RECIPROCAL PROCESSES AND SELF-
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We show that under suitable conditions the covariance of a Gaussian reciprocal process satisfies a
self-adjoint linear differential equation of second order. We also give a revised definition of a linear
stochastic differential equation of second order and necessary and sufficient conditions for the
existence of solutions of such equations with Dirichlet boundary conditions. We close with a series of

examples of the theory applied to the scalar stationary Gaussian Reciprocal processes which have been
completely classified.
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L. INTRODUCTION AND STATEMENT OF RESULTS

In 1932 Bernstein [1] formalized the concept of a reciprocal process following
ideas of Schrddinger {2,3]. Reciprocal processes generalize Markov Processes
which had been given a rigorous treatment by Kolmogorov around the same time
[4]. In 1956, P. Levy [S] defined the concept of a Markov field, but perhaps he
should have used the term “reciprocal field” since a Markov field with a one
dimensiona} parameter is a reciprocal rather than a Markov process.

A stochastic process x(r) taking values in R" (or C") with time ¢ lying in a subset
of R or Z is said to be reciprocal if for any two times ¢,,t,, the process interior to
[to,t,] is independent of the process exterior to [to,t,] given x(t,) and x(t,). For a
more rigorous definition we refer the reader to [6]. References [7-22] also discuss
reciprocal process and [23-27] relate then to Quantum Mechanics following
Schrodinger original motivation.

Throughout this paper we restrict our attention to reciprocal processes satisfy-
ing the following assumptions.

Al. The process x(t) is a zero mean Gaussian reciprocal process defined in’
continuous time for te[0, 7] and taking values in R"*! (or C"*'), with
continuous sample paths almost surely.

A2. The covariance R(t,s) of x(t) is a C* function on 0<s<t<T, i.., continuous
limits of R and its first and second partials exist on the boundary of this triangle.

A3. For O<ty<t,;<T and small t; —t,, the two time covariance matrix
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R(tg,t0) R(to,ty) (L1)
R(lnto) R([l’tl) ’

of (x(to), x(¢4)) is invertible.

A4. The covariance R(t,s) has a full rank jump as t passes through s, ie. the C'
matrix

OR , , JR , _
Q(t)=—E(t ,t)+5(t 3] (1.2)

is invertible. Because R(t,s) is a covariance, Q(t) is always symmetric (Hermitian)
and nonnegative definite. We refer to this as the assumption that x(¢) has full rank
noise for reasons that will become apparent later on.

Under these assumptions we shall prove the following results many of which can
be found in {20]. Similar results for discrete time Gaussian reciprocal process can
be found in {21].

Let @ be the space of all continuous and piecewise C? functions ¢(t) from [0, T]

into R"**(C"*") which vanish at the endpoints, $(0)=¢(T)=0, with the standard
inner product

T
<¢1,¢2>=(§) P10 dt,

where superscript * denotes conjugate transpose.

TueorREM 1 Assuming AI-A4 there exists C° matrices F(t) and G(t) such that

2
- aaTI; (t,8)+ F(t)R(¢, s} + G(1) %% (t,5)=0Q(t) o(t —s). (1.3)
(This was shown in [20, 16]).
The differential operator

62

g=-2
or?

+G(t) %+ F(t) (1.4)

has no pair of conjugate points in [0,T] and Q™' & is self-adjoint and positive
definite on 2, i.e.,

Oty

T
10~ () L(¢,)(1) di= §, $3DQ ™ () L (1)(0) du. (1.5)

and this quantity is positive whenever ¢, = ¢, #0.
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We shall frequently invoke another assumption

A5, Q(1), F(r) and G(1) are C2.
If A5 holds then Q™' (1.4) is self-adjoint iff

GO+0G*=2Q (1.6a)

and
FQ—QF*=0-06*~G0=46Q—0G*+0G*—GQ) (1.6b)
Suppose M(t) is nxn invertible matrix which is C? on [0, T]. If x(t) satisfies

Al-AS then so does y(t)=M(1)x(t). It is straightforward to verify that the
covariance R, (t,s) of y satisfies

LR (t,5)=0Q,(t) 6(t —s) (1.7a)

where
1% :M(x)fz’M—‘(t)=—a—2+G 02+F (t) (1.7b)

Y ar o ?
and

CR,(t,5)= M(1)R(t, s) M*(s) (1.8a)
Q,(1)=M(2) Q(t) M*(r) (1.8b)
G () =(M@OGEO)+2M)M (1) (1.8¢)
Fy(t)=((M(0) F(t) + M ()~ G,(t) M(e)h) M~ (). (1.8d)

A particularly useful change of coordinates is to choose an nxn matrix H(t)
such that

H(O)H*(0)=Q(0) (1.9a)

H()=1G(1)H(2) (1.9b)
then by (1.6a)

Iof (O H*(1)=Q(2). (1.9¢)

y(£)=H ' (t)x(t) (1.10a)



4 : A.J. KRENER ET AL.

then
0,(n=1 (1.10b)
G,()=0 (1.10c)
F()=F}(®)=H ' ()(F() —3G() + 1 G* () H(»). (1.10d)

- THEOREM 2 Suppose R(t,s) is the covariance of a zero mean Gaussian process
which satisfies A2-A4 and also a second order differential equation of the form

(1.3). Then R(t,s) is the covariance of a reciprocal process and hence satisfies
Theorem 1.

We employ the following notation, for small dt>0

| dox(t,dt)=x(t+dl);x(t_dt) (1.11a)
dtxit dt)=x(t+dt)-—-x(t—dt) (1.11b)
. ’ 2 '
| A x(t, dt) = x(t +dt) — 2x(t) + x(t — dt) (1.11¢)

and frequently we suppress the argument dt as in d*x(¢).

TueoreM 3 [20] Suppose x(r) satisfies A1—A4 then there exists nxn matrices
F(1), G(t), O(t), V(¢), a(t) (with F(t), G(t), Q() as above) such that

‘ E(d*x(t) | d°x(6) = x, d" x(£) = vdt) = (F(t)x + G(t)v) dt* + o{d1)? (1.12a)
E(d?x(t) d2x*(t) | d°x(t) = x, d"x(t) = vdt) = 20(1) dt + o(d1)? (1.12b)

E(d'x(t) | d°x(t) = x) = V(t) x dt + o(dz)* (1.12¢)

E(d' x(t)d"x*(6) | d°x(t) = x) = 1 Q(¢) dt + (V())xx*V *(1) — a(t)) dt* + o(dr)®.  (1.12d)

We use E(X|Y) to denote conditional mean of X given Y. The symbols o(dr)

and o(df)? denotes deterministic functions of t, dt, x and v which go to zero faster

than dt and dt®. The symbols O(dt) and O(dt)* denote similar functions going to
zero like dt and dt?.

The matrix Q(t) is given by (1.2), the other matrices are given by

2 : 2
60-~(55 ¢*.0- 51 «0)o 0
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9*R OR -

Fy=| -5 (¢, 0—-G)=— (", )R Yt

() (612( ) ()613( )> (£ 1)

V(z):%(aai: (t+,t)+aa—I: (t‘,t))R“(t,t)

R . ’R  _ «
a(t):—%(atas (t ’t)+azas (¢ ,t)>+V(t)R([,t)V (1).

COROLLARY 4 [20] Suppose x(1) satisfies Theorem 3 then
E(d*x(1)|d°x(t) = x) = (F(t) + G(t) V(0)x di” + o(d)® (1.13a)
E(d>x(t)d>x*(1) | d°x(1) = x) = 2Q(t) dt + o{d1)* (1.13b)
E(d*x(t)d" x*(8) | d°x(t) = x) = G(1)Q(1) dt?

+((F(1) + G(t) V() xx* () V *(t) — G(t) o (1)) dt> + o(dr)>.
(1.13¢)

Suppose x(t) is a reciprocal process satisfying A1-A4, we consider the residual
or noise process z(t,dr) defined for dt>0 by

O(0)z(t, dty = — d*x(t) + F(£)d°x(t) dt* + G(t) d* x(1) dt. (1.19)

We shall compute the covariance R,(¢,,t,) of z(f) and the crossvariance R, .(t,s)
of z(t} and x(s) on discrete time steps t, =k dr.

THEOREM S Assuming Al-AS5 then
R, (1, t,) =20 " (t,)(I dt — K(t,) dt®) + o(dt)?
=2(I di — K*(1,) d*) 0~ (&) + o(d1)>. (1.152)
R (te, by )= — Q™ (1) (I dt — 1 G(t,) dt* — § F(t,) dt® — K(t,) dt3) + o(dt)>
— —(Idt+3G*(ty 4 ,) e — 3 F*(t,, ) d®
~K*(ti 1) d2)Q " (1 s y) +0(dr)? (1.15b)
R.(t, t) = 0(dt)* if [k 1| > 1 (1.15¢)

and

R, (4, 1) = dt— K*(1,) dr*) + o(dt)? (1.16a)
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R, (tns)=o(dr)’ ift,#s (1.16b)
where
K()=3 F(t) + {5 G() G(t) - £ G(1). (1.17)

This theorem explains why A4 is called the full rank noise assumption.

One can also consider the limit of z(t,dr)/dt® as dt—0, this is a generalized
process which we denote by &(zr). Formally (1) is defined as

Q(OE() di> = — d>x(t) + F(t) d°x(t) de® + G(t) d* x(z) dt (1.18a)

or

d’x(t)

Q080 =L(x)(t)= — a —a +F)x(1)+G(0) ——(t) (L.18b)

To give rigorous meaning to £(f) as a generalized process we must define its
; integral against elements of 2. For ¢ € 9, we wish to define

{ ¢* (1) &(0) dr.

Proceeding formally we have

T T
(I)d?*(t) é(t)dt=£ ¢*(1) Q™ () L(x)(r) de

T
= £ (L@O)*Q™ (D) x() de

but since x(f) may not vanish at =0 and T, the neglected boundary terms may
not be zero. Let %(t) be the conditional expectation of x(t) given x(0) and x(T) and

let R(t,s) be the covariance of X(¢). If the two time covariance of x(0) and x(T) is
invertible then

o RO,00 RO, T\ /x(©)
() =[R(0) R, T)] (R(T’ o R T)) (w))‘ (1.192)
and

R(,5)=[R(t,0) R(t, T)] (ﬁ(‘%g’) ﬁ(‘g?)) (:(‘g?)) (1.19b)
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If the two time covariance is not invertible then the generalized inverse must be
used in the above. In any case, the sample paths of %(¢) are C? almost surely and

L(x)(1)=0 (1.20a)
ZR(1,5)=0. (1.20b)
We define
X(1) =x(1) — X(1) (1.21a)
and
R(t,5)=R(t,5)— R(t,5), (1.21b)

then R(t,s) is the covariance of the reciprocal, in fact, Markov process X(t). It is
straightforward to verify that if x(r) satisfies A1-AS5 then x(t) does and R(t,s)
satisfies the same differential equation (1.3) as R(t,s). Finally X(t) vanishes at t=0

or T so we can rigorously define &(1) as the generalized stochastic process
satisfying

T

T
[*(O &) dt= [ (L($)()*Q " ()% (r) dr. (1.22)
0

0

There is an alternative way of defining £(t) using a standard Wiener process and a
factorization of the operator Q™' & which we discuss at the end of Section 2. This
definition leads to an infinitesimal analog of Theorem 5.

THEOREM 6  Assuming A1-AS5,

Re(t,5)=8(t—5)Q (1) & (1.23a)
Re ((t,5)=68(t—s)1. (1.23b)

In other words if we define Gaussian random variables Y, and Y, using test
functions ¢, and ¢, 2 by

Yi=] ¢X0)&(0) dt (1.24)

then

T
E(Y\Y,)=[ o300 (1) L(¢,) () dt (1.25a)
0
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o E(Y,x*(s)) = $¥(s). ’ (1.25b)

An interesting consequence of (1.25b) is that if I and J are two disjoint
subintervals of [0, T] and if the support of ¢,(-) is concentrated on I/, then for
seJ) E[Y;x*(s)]=0. In other words, the random variables spanned by &(-) and

) x(- ) on two disjoint subintervals are orthogonal. This shows that £(f) is the
conjugate process to x(t), we refer the reader to [29-31] for more information on
conjugate processes.

The process z(t,dt)/dt? converges weakly to &(t) as dt—0 in the following sense.

THEOREM 7 Assuming AI-AS5 and z(t,dt),&(t) as above. Let ¢ D and t,=kdt,
T=(N +1)dt then as dt—0,

z or(e) X aros 5 6*(0)¢

k=

weakly in the Hilbert space spanned by {x(t):0<t<T}.

In [20], the first author introduced the concept of a stochastic differential
equation of second order. We give a modified definition here.

DEFINITION A process x(t) satisfying Al is said to satisfy the linear second order
stochastic differential equation

e
[y
it
<

—d%x+ F(t)d°xdt* + G(t) d* xdt = Q1) &(2) di® (1.26)

on [0, T] if x(¢) is reciprocal and for all te(0, T),

—

— E(d>x(t) | d°x(t) = x, d" x(t) =vdt) (F(2)x + G(1)v) dt* + o(dt)? (1.27a)
E(d?x(t) d*>x*(1) | d°x(1) = x, d" x(1) = vdt)

=20(t) dt + ofdt)>. (1.27b)

Notice that in this definition we do not explicitly define £(f). The reason why
this is not necessary is given by the following theorem.

THEOREM 8 Suppose x(t) satisfies Al, A2 and the linear second order stochastic
differential équation (1.26) on [0, T] where the coefficients F(t), G(t) and Q(t) are C*
and Q(t) is invertible. Then the covariance R(t,s) of x(t) satisfies (1.3) where Q™' &
is a self-adjoint positive definite operator on [0, T] and the residual or noise process
ﬁ(t) defined by (1.18) (or more precisely (1.22)) has the covariance structure (1.23).
R /ﬂ The above definition is the second order analog of Feller’s postulates for a
GL& Markov diffusion [33] at least for the linear-Gaussian case. Feller’s postulates
could be thought of as the definition of a first order stochastic differential equation
but since the introduction of Ito’s stochastic integration, it is standard to use.the
corresponding integral equation as the definition [34].
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Since we don’t specify the noise process £(t), the above definition corresponds to
a weak solution to (1.26). For a given noise process £(t) with covariance satisfying
(1.23a), one could define x(t) to be a strong solution of (1.26) if it is weak solution
and £(¢) is the residual satisfying (1.22).

In [20], the first author used different notation for and gave a different

definition of a linear stochastic differential equation of second order. He used the
notation

d*x = F(t)xdt? + G(t) dx d + H(t) d*w. (1.28)

We have changed notations to (1.26) because Q(t)&(r) dt? is the true noise process.
If H(t) and Q(r) are related by (1.9) then the moments of O(t)&(t) dt? agree with
those of H(t)d?w to order dt? but not to higher powers of dr. The old notation
should be thought of as a mnemonic for the conditional moments (1.27) of d*x. If
one has the true noise process &(t) it is possible to integrate the Eq. (1.26) and
thereby construct x() satisfying (1.27). Given a Brownian motion w(t), it is not
possible to integrate (1.28) and construct a reciprocal process satisfying (1.27). On
the other hand the mnemonic (1.28) does contain enough information to specify
the right sides of (1.27) and hence the solutions.

The previous definition [20] essentially required that (1.12¢,d) and (1.13) hold
under the weaker conditions on d°x(t)=x, rather than (1.27) under the stronger
conditioning on. d°x(t)=x.d'x(f)=vdt. In the Gaussian case these are equivalent,
but we believe that in the non-Gaussian case, the stronger conditioning is the
appropriate one [28].

Note that Theorems 1 and 3 assert that if x(t) satisfies A1-A4 then x(t) satisfies

a linear stochastic differential equation of second order. Theorem 8 is essentially
the converse to this statement.

DEFINITION A process x(t) is a solution of the linear stochastic second order
boundary value problem

—d*x+ F(t)d°xdt* + G(£)d" x dt = Q(1) &(¢) de? (1.29a)
x(0) = x°, x(T)=x" (1.29b)

where x° x” are jointly Gaussian if x(¢) satisfies the second order stochastic
differential equation (1.29a) and the boundary conditions (1.29b)

THEOREM 9  The linear stochastic second order boundary value problem (1.29) with
C? coefficients F(t), G(t) and Q(t) has a solution satisfying AI-AS if the operator
Q™! & is self-adjoint and positive definite on 9. The solution is unique up to law.

We shall shpw that the solution can be constructed as

0o

T
x(1) ="¥(t) ( T> +{I(t,8)é(s)ds (1.30)

X
X
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where the boundary value transition matrix W(t) is an nx2n matrix function
satisfying

—%(t)+F(t)‘I‘(t)+G(t)‘2—‘f(t)=O (1.31a)
Y(0)=(10), ¥(T)=(01). (1.31b)

['(t,s) is the Green’s function of (1.29) satisfying

/ﬂ LT, s)=0(t)é(t—s) (1.32a)
I(0,5)=0, I'(T,5)=0 (1.32b)
['(t,s)=T*(s,1) (1.32¢)

and &(t) is a generalized process constructed from a Markov solution to (1.26).
The integral is well defined because for each fixed ¢, the function s—1I'(t,s) is a

test function in 9. The Green’s function I'(t,s) equals R(t,s) (1.21b) because R(t,s)
satisfies (1.3) and is zero when t=0 or T.

2. PROOFS

Proof of Theorem 1 Following [20,16] we start by showing that R(t,s) satisfies
a linear differential equation of second order. Given te[t,,t,]J<[0,T] and
sef0,t,] wt,, T], the reciprocal property implies that

R(to,t0) Rlto,ty) | " [ R(to,5)
R(t,s)=[R(t, to) R(t,t 2.1
(49 =R L) R )] [R(rl,to) R(tot)] R @
whenever the inverse exists. If the inverse does not exist, the (2.1) must hold with

the generalized inverse replacing the inverse. Let to=t—0,t,=t+0¢ for |t—s|>0>
0 then by A3 for small ¢ the inverse exists and

R(t,5)=[Kolt, 0) Ky (t,0)] [’;g;j 3] 22)

where K, K, are defined by

R(t—o,t—0) R(t—o,t+0)| -
[Ko(t,G)Kl(t,G)][R(t +a,t—0) R(t+a,t—o)]_[R(t’t IR+l (2'3?

By A2, K(t,0) are C? for ¢>0. In [16] it is shown using A4 that continuous
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limits of K; and its first and second derivatives exist as ¢—0. Clearly Ko(t,0) +
K, (t,0)=1. Therefore we can differentiate (2.2) twice with respect to ¢ and
evaluate at ¢ =0 to obtain

’R

0K,
T o

do

OR

(t,5) +2( (t,0)— %(1,0)) m (t,5)

0’K I’K
+< e C 0)+—aa—;(z,0)> R(t,5).

Hence R(t,s) satisfies a linear differential equation of second order for all t#s,

2

- %§ (t,5)+ F(t)R(t, 5) + G(t) %’; (t,5)=0. (2.4)

This and Assumption A4 are equivalent to (1.3).
Since R(t,s) is a covariance

R(z,0)=R*(s,1) (2.5a)

%I; (z,0) =aaL;* (0,7) (2.5b)
’R O*R*

F (T, O-):—avsT ('C, O') (250)

$0 we also have shown for all t#s,

2p*

— 32 L) +FS)R*(t,5)+ G(s) R

)
0

— (1.9)=0. (2.6)

We subtract (2.6) from (2.4) and take the limit as s—¢~ to obtain

PR . PR* . \[oR .,  oR* , \!
G(t)=<w (70— 352 (¢ ,t)> <E (¢ J)**as“ (¢ J))

_ (PR, PR N
~~(FE -G @)oo

2*R

2
(? -2k (t*,t))Q“(t) (2.72)

I



12 A.J. KRENER ET AL.

and

F(o)= (‘“}(; t)—G(t)%?(t*,t))R(t,t)”‘. 2.7b)

Note that F(t) and G(t) are C° by A2.

Now we show that differential operator Q! . is self-adjoint. Recall the process
%(t) defined by (1.21a). As we noted its covariance R(t,s) satisfies

0 Y0 &L R(t,5)=6(t—s) (2.82)
R(O, s)= ﬁ(T, 5)=0. (2.8b)

This implies that R(t,s) is the unique Green’s function of the boundary value
problem (1.31) ([35, Theorem 6-4.11).

But R(t,s) is a covariance hence it is self-adjoint R(z, s) R*(s,t) and nonnega-
tive definite,

f &* () R(t, s)p*(s) dtds=0.

Otmm N

This implies that the differential operator @~! & is self-adjoint and nonnegative
definite.

The existence of a Green’s function for (1.31) implies that this problem is well-
posed, in other words, zero is not an eigenvalue of Q7' &. Therefore Q7! & is
positive definite. The smallest eigenvalue of Q™! % on [t,,t,] is the infimum of

M [ ¢* (000 2@ 0 dr

overg)l all ¢pe2 satisfying ¢(to)=¢(t;)=0. Hence the smallest eigenvalue of
Q7 V' % on [ty,t,1<[0,T] is greater than or equal to the smallest eigenvalue of
Q0 ! & on [0, T]. It follows that Q~! & is positive definite on any [t,¢,1<[0, T]
hence & has no pair of conjugate points in [0, T'].

Proof of Theorem 2 Suppose x(t) is a zero mean Gaussian process satisfying
A2-A4 with covariance R(t,s) satisfying the differential equation (1.3). We define
x(t) and R(t,s) as before and note that X(f) satisfies A2-A4 and R(t,s) also satisfies
(1.3) with zero boundary conditions, (2.8). Hence R(t,s) is the Green’s function of
(1.29). Following the proof of Theorem 1 we see that Q™' & is self—adjomt
operator on [0, T] and & has no conjugate points in [0, T].

A process satisfying A2-A4 is reciprocal iff for all re[r,t,]€[0,T] and
sel0,tjur,, T]
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_ R(to.to) R(to,ty) 7' [ R(to,5)
R(t,5)=[R(t,t5) R(t,1,)] [R(t(:,i::) R(l’l,tl)} [R(tl,s)J 2.9

If the above inverse does not exist, it should be replaced by the generalized
inverse. For fixed t,, t, and s, let X(t) denote the right side of (2.9). It is
straightforward to verify that X(¢) satisfies the two point boundary value problem

~ X G+ Foxm+ 60 X =0 (2.10)
dt dt
X(tg)=R(to,s)  X(t;)=R(t,,5). (2.10b)

Since R(t,s) satisfies (1.3) it also satisfies (2.10). £ has no conjugate points in
[0, T] so the solution of (2.10) is unique and (2.9) holds. ]

Proofs of Theorem 3 and Corollary 4 We modify the proof of [20]. We define
partial difference operators

__R(t+dt,s)+ R(t—dt,s)

° R(t,s) ; (2.11a)
! R(t’s)=R(t+dt,s);R(t—dt,s) (211b)
07 R(t,5)=R(t +dt,s)— 2R(t,s) + R(t — dt, s). (2.11¢)

Suppose
E(d*x(t) | d°x(t) = x,d" x(t) =v dr) = Ko(t, dt)x+ K, (t,dt)vdt (2.12a)
where K, K, are uniquely characterized by the pair of equations
E(d*x(1)x*(t +dt)) = K (¢, dr) E(d°x(t)x*(t + dt)) + K , (¢, dt) E(d'x(t)x*(t£dt)) (2.12b)
or equivalently
07 R(t,t +dr)=K(1,dt) 30 R(t, ¢t +-dt) + K, (¢, d)d} R(1,t4-dr). (2.12¢)

We expand both sides in Taylor series at (t,t+dt)

2

?122 (t,ttdt)de® + O(de)* =(F(t)R(t, t + dt) + G(1) %—If (t, t £ dv)) dt + O(dr)*

= Ko(t,dt)(R(t,t + dt) + O(d1)?)

(7

+

o~
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7 }20/// + K, (t,dt) <— (t,ttdt) dt+0(dt)> (2.13)

By A4 these equations have a unique solution.

Ko(t,dt) = F(t) dt* + O(dt)* (2.14a)
K (¢, di) = G(t) dt + O(d1)?, (2.14b)
and (1.12a) is proven.
Let
d2%(¢ |t + dt)y = d2x(t) — E(d%x(8) | d°x(6) = x, d" x(t) = v di) (2.15a)

then by (1.12a),
E(d*x(t) d>x*(t) | d°x(t) =x,d* x(t) =v dt)

=E(d?X(t|t £ dr)d' 7*(¢|¢ 1 dr) | d°x(t) = x,d" x(t) =vdt) + o(dr)>.  (2.15b)

i

Since the variables are Gaussian, the first term on the right side is independent of
the conditioned values of d°x(t) and d'x(t), so

E(d?x(t) d?x*(t) | d°x(t) = x, d* x(t) = v dt) = E(d?x(t) d*x*()) + o{d1)?
=02 R(t,t +dt) — 207 R(t, ) + 87 R(t, t — di) + o(dr)?

0°R 0*R
(a 5 (Lt+d)+— PP (t,t— dt))dt2

—2((R(t +dt,t) — R(t, £)) + (R(t —dt, t) — R(¢, 1)) + o(dt)*
OR [ oR | _
:—L<E( )—-E(t ,t))dt

+(§T§(t,t+d1)+a (tt—dt)—— (t t)— (t ))drz+o(dt)2

=20(t) dt + o(dt)>. (2.16)

We have proved (1.12b). The other two assertions are proven in a similar fashion.

The corollary follows immediately from (1.12) using the nested property of
conditional expectations,
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E(-|d°x(t) = x) = E(E(- | d°x(t) = x,d' x(t) =vdt) | d°x(1) = x). [
Proof of Theorem 5 1f t,#s then
O(4) E(2(t,) x*(5)) = 82 R(ty, ) — F(t,) 30 R(1,, 5) di> — G(t,) 3! R(t,, ) dt.

We expand in Taylor series around ¢,,s to obtain
P ¥ k hwﬁ L s

Q()EG(E)x*s) = (Jf:ff (5,5 ‘F(u)%’f(u tG))

- 3
/ &%}f (e, s)> dt* + o(dr)*.

Ot E(z(t)x*(t)) = — 07 R(ty, 1) + F(t,) 32 Rty 1) + G(t) 0! R(ty, 1)

If tk=S

=(—R(ti+ 1, t) + R(ti, 1) + 3(F (1) + G(1)) Rt 4 1, 1))
+(—R(te- 1, t) + Rt 1) + 3 (F (1) — G(L)) Rt - 4, L))

We expand in Taylor series around (', ) and (¢, ;) to obtain
Q) E(z(t)x* (1)) = Q&) dt + K (6:) Q(1,) dt> + o(dr)>.

The self-adjoint relations (1.6) imply
K(5) Q(t1) = Q) K* ().

Hence we have proven (1.16). The other equations follow immediately from
this. [

(j/}_’? Proof of Theorem 6 Let Y,, Y, be defined by (1.23), then
T *
TE(Y,Y,)= [f(g(ﬁ" J&)*Q ™ (1) X(e) dl<].(5/”(¢z(8))*Q“'(S)f(S) dS) :l

[ (L(6)D)*Q O R(z,5) Q" (5) L($,)(s)dr ds

Il
Ot Ny

O oy

T
x|
0

QO (L, R(t, )0~ H(s)L(¢,)(s)dt ds
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x g [ 610 8(t—35)Q ™' (5) L (,)(s) dt ds

and we have proven (1.24a). Next

T
E(YIX*(S))=E£ (L(S)O)* Q™ (X(t)x*(s) de

T
=E [ (L($)0)*Q () %(1)x*(s) dt
o
because x(t) = X(1) + X(f) and E(X(£)%*(s)) =0, then (1.24b) follows. [
Proof of Theorem 7 Consider the Hilbert space # of Gaussian random

variables which is the closed span of {x,(t):i=1,...,n,te[0, T3}
For any test function ¢(t) e 2, clearly

£, 0 G
and
T
(I) P*() (e dt

are in 5. To show that the former converges to the latter in J#, it suffices to show
that for any se[0,T]

N
([ Z, 4+t LoD dt)x(s)))
k=1

—»E(_f P*(1)E(D) dr x(s)>
o

as N—oo. This follows immediately from Theorems § and 6. []

Proof of Theorem 8 By the reciprocal property for |t—s!>dt, we have

E(d*x(t)x*(s)) = E(E(d?x(t) | d°x(t), d* x(1))x*(s)).

By (1.27a) this yields

82 R(t,5) = F(1) 00 R(t, s) dt® + G(£) 8" R(t, ) dt + o(dt)?
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and we divide by dt* and let di—0 to obtain for t#s
8’R . OR
F(" s)=F(t) R(t, s) + G(1) o (,9)-

Let d*X(t|t+dt) be as in (2.15a), then d®%(t|t +dr) is orthogonal to d°x(r) and
d* x(t).

Now
d*x(t|t +dr)— 92 R(t,1) — F(r) 3° R(t, ) — G(t) 3} R(t, 1)
Py [ =~ @) (0) +o(dry?
=3 E(d25(t) d2x* (1)) + o(dr)?

=3E(d*%(t|t+dt) d®5*(t|t +dt) | d°x = x,d x = v dt) + o(dt)?

7 O/(/?’“\//mcz
\

=} E(d*x(1)d*x*(1) | d°x = x,d"x = vdt) + o(dr)?

~/

=0(t)dt +o(d1)?,

so R(t,s) is a reciprocal covariance satisfying the differential equation (1.3) and
hence A1-AS hold. The rest follows from the previous theorem.

Proof of Theorem 9 Suppose Q™! & is self-adjoint and positive definite on @
so that the Green’s function I'(t,s) and W(¢) exist. We would like to construct the
sotufion x(t) using (1.31) but to do so we need a generalized noise process

% Z\ ¢(tpwhich is independent of x° xT and whose covariance satisfies (1.23a). To

construct such a &(¢), we shall find a Markov process {(t) which also satisfies
(1.26).

Suppose {(t) satisfies the first order equation
dl(t)= A(t) {(t) dt + B(t) dw(r) (2.17a)

L0)=¢° (2.17b)

for some A(t) and B(t). Then the covariance R(t,s) of {(t) satisfies

% (t,s)=A(t)Rc(t, s) ift>s (2.18a)
Qgg (t,5)=A(t) R((1,5)+ B(t) B*(t) ®*(s,1) ift<s (2.18b)

where @(t, 5) satisfies
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2 (1) = AR (2.19%)
o(t, 1) =1. (2.19b)

Since {(¢) also satisfies (1.26), its covariance satisfies (1.3) and it follows that A(r)
and B(t) are related to F(t), G(t) and Q(t) as follows,

A+A*=F+GA (2.20a)
AQ—QA*=GQ—0 (2.20b)
BB*=0. (2.20¢)

Consider the first order differential operator M associated (2.17),

M(X)(8) =‘;—’:(t) — A(t)x(t). (2.21a)

Its adjoint operator is 4%,
dx
M¥(x) ()= — o () — A*(t) x(t). (2.21b)

The Eqgs. (2.20a, b) are equivalent to the factorization,

MQ M=0"" 2. (2.21¢)

Hence to construct a Markov process {() via (2.17) that also satisfies (1.26) we
must find A and B satisfying (2.20). It is not all apparent that such 4 and B exist
of [0, T] since (2.20a) is a Ricatti differential equation for A and (2.20b} is a side
constraint.

Actually it is not too hard to show that a solution exists, certainly there are B
satisfying (2.20¢). Suppose X(t) and Y(t) are n x n matrix solutions of

X 0 Ij|X
. |= 2.22
then 1t 1s straightforward to verify that

A=Y(OX Yo (2.22b)
1s a solution of (2.20a). In particular suppose A(ty) satisfies (2.20b) for some
to€[0, T] then it follows from (2.20a), the self-adjointness relations (1.6) and the



318

GAUSSIAN RECIPROCAL PROCESSES 19

uniqueness of solutions to ordinary differential equations that A(t) satisfies (2.20b)
for all t.

Of course A(f) defined by (2.22b) blows up when X(r) is not invertible. Consider
the solution of (2.22a) satisfying the terminal conditions

X(T)=0  Y(T)=L (2.23a)

Since the operator % (1.4) corresponding to (2.22a) has no pair of conjugate
points in [0, T] this solution must have X(¢) invertible for all te[0, T). Moreover
by perturbing the terminal condition a little bit

X(T)= —¢l Y(T):I—% G (2.23b)

we can ensure that X(¢) is invertible for all te[0, T]. Hence A() exists satisfying

(2.20) and we can construct a Gauss Markov process {(¢) satisfying (2.17) and

(1.26). We assume that £(0) and w(t) are independent of x° and xT.

From this we can construct the generalized noise process £(t) which is
independent of x° and x” by specifying

Q1) E(r) di? = —d>{(2) + F(£) d° (1) di* + G(r) d* {(t) dt. (2.24a)

| ¢*®)¢0 dt=(§) (Z(D* 0~ (0l dr (2.24b)

where £(t)={(t)—£(r) and {(¢) is the conditional mean of {(¢) given {(0) and {(T).

In fact,

b £(0)
2 =" () [cm] (2/5)

We define x(¢) by (1.31) which by (2.24b) becomes

where ‘P(1) satisfies (1.32).

07 T N

x(t)=Y(t) \:zr]+§ L(T(t,))0 ™ (s)(s)ds (2.26b)
(4]

where the subscript s in %, denote partial differentiation with respect to s rather

than ¢ as in (1.4). Since ['(t,s) is the Green’s function of a self-adjoint boundary
value problem (1.29)

ZT(t,s)=06(t—s)Q(s) (2.27)
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and so
x%1 =
x(t)="F(t) [XT:\ +{(1) (2.28a)
or
°_{(0
x(t)="¥(1) [;T—g((r))]“(‘) (2.28b)
~ Since {(z) is independent of x° and xT, the covariance R(t,s) of x(t) is easily
‘ computed,
xO xO *
R(, s)=‘P(t)E([xT] [xT] )‘P*(s)+r(t, 5) (2.292)
| where
—
I'(t,s)= %t, 5) < (2.29b)

Clearly R(t,s) satisfies (1.3). By Theorem 2 *(t)-is-reciprocal process and a desired
solution of the linear second order stochastic differential equation (1.26).
To show that the solution of (1.26) is unique up to law, suppose R(t,s) is the

| - covariance of another solution y(t) to (1.26). Since x(t) and ¥(t) are equal at t=0,T
' we have

R(t,s)=R(t,s) (2.30)

if (¢t=0 or T) and (s=0 or T). Both R and R, satisfy the well-posed differential

- equation (1.3) so (2.30) holds for te[0,T] and (s=0 or T). Moreover by (2.5),
“R*(t,s) and R}(t,s) also satisfy (1.3) hence (2.30) holds for all t,se{0, T]. O

There is an alternative way of constructing the noise process £(1) directly from a

“standard Wiener process W(t) and a factorization (2.21c) of the operator Z.

Formally (1) is the generalized process given by

E(ty=M* (B(t) ‘%) (2.31)

The precise meaning of this is obtained by integrating against a test function
¢€@’
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[ $*(£0) di= ] (H(@)0)* B dw (2.32)

where the right side is a Wiener integral. Given such integrals Y, Y, (1.24) we see
immediately that

E(Y, Yy)={ (M($:)(0)* B(t) B*(1) A (d2)(¢) dt

= o1 M*(Q ™ ()M (P,))(1) dr. (2.33)

which agrees with (1.25a).

3. EXAMPLES

The one dimensional stationary Gaussian reciprocal processes have been comple-
tely classified [8,9,12]. We discuss the stochastic differential equations that they
satisfy. A similar discussion can be found in [20] employing the prior notation and
definition of a stochastic differential equation of second order.

The classification is based on the fact that covariance R(t,s)=R(t—s) must
satisfy (1.3) which in the scalar stationary case reduces to

—R(t)+ FR(H)=05(1) (3.1)

where F and Q are constants and G=0. Hence there are three cases (i) F>0, (ii)

~ F=0and (iii) F<0. By change of x coordinates we normalize so that R(0)=1.

. (ia) Ornstein—Uhlenbeck Processes There are Markov processes x(t) defined for

te(— o0, 00) whose covariances are of the form
R(t)=exp At/B| (3.2)
where A <0. They are solutions of the first order stochastic differential equations
dx=Axdt+ Bdw (3.3a)
x(0)=x%~ N(0, 1). (3.3b)
These processes also satisfy the second order stochastic differential equation
—d*x+ Fd°x dt* = Q¢ di? (34)

where
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F=A? (3.5a)
Q=B (3.5b)
Given a solution x(t) of (3.3) we can define the generalized noise process ¢(t) by

(3.4) or more precisely (1.22) and we can use £(f) to construct other non-Markov
solutions to (3.4), as described in (ib) and (ic).

(ib) Hyperbolic Cosine Processes These are reciprocal but not Markov processes
1(t) defined for te[0, T] whose covariances are of the form

R (t)=cosh (A <§ — t)) / cosh (%) (3.6)

Since they are not Markov they do not satisfy any first order stochastic differential
equations but they do satisfy the second order stochastic boundary value problems

—d?y+ Fd®ydt? = Q& dt? (3.72)
¥0)=T)=y°~N(0,1) (3.7b)
where
F=A2>0 (3.8a)
0=2Atanh i‘;. (3.8b)

The Green’s function I'(t,s) and boundary value transition matrix ¥(t) of the
deterministic boundary value problem

2
~ 44 Fy=0u (3.92)
YO=)° W)=y (3.9b)

are given by

— Q@ sinh A(T —t) sinh As
Asinh AT
I'(z,s)= (3.10a)
— Qsinh Atsinh A(T —s) .
Asinh AT

if t<s
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W(t):[Sinh A(T—1) sinh At]‘ . (3.100)

sinh AT sinh AT

The solution y(¢) to (3.7) is given by

w)="¥(1) B Z]H I'(z,5) E(s) ds (3.11)
0

where {(s) is the residual defined by (3.4).

Alternatively, if x(¢) is a solution (3.3) and X(¢) is the conditional means of x(t)
given x(0) and x(T) then the covariance R(t,s) of X(t) =x(t) — x(t) equals T'(t,s)
(3.10a). The solution y(¢) to (3.7) is given by

(4]
W) =¥ (2) B 0] +7(0). (3.11b)

(Ic) Hyperbolic Sine Processes These are reciprocal but not Markov processes
W) defined for te[0, T] whose covariances are given by

((; S "i;/i?(t)=sinh(A<§~z>)sinh<’42—T). ' (3.12)

Since they are not Markov, they do not satisfy any first order stochastic

differential equation but they do satisfy the second order stochastic boundary
value problems (3.7a) and

¥(0)=—nT)=y°~N(0, 1) (3.7¢)
where F satisfies (3.8a) and
Q=2Acoth ATT (3.8¢)

The solutions to (3.7a,c¢) are given by

T
y(t)=‘P(t)|: y;0]+j (s, ) &(s) ds (3.13)
- (0] -

or
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y(r)=%)[ foyo]u(r). (3.13b)

where ¥, I" and ¢ are the same as those of the hyperbolic cosine process.

Note: The hyperbolic cosine processes are cyclic, ¥0)=yT), and the hyper-

bolic sine processes are anticyclic, y(6)= — y(T). They have a natural finite lifetime
[0, T] as their covariance cannot be analytically continued in a stationary fashion

to a larger interval without violating the Cauchy-Schwartz inequality,
R0)2|R,(1)]-

In fact, every solution of the second order stochastic differential equation (3.7a)
for F>0 is an Ornstein—Uhlenbeck, Cosh or Sinh process when considered on its
natural lifetime (— o0, o), [0, T] or [0, T].

Next we consider the case where F=0.

1) Slepian Processes These reciprocal but not Markov processes y(t) live on
[0, T7 and have covariances

R()=1— 2—,; (3.14)

Again they do not satisiy any first order stochastic differential equation but do
satisfy the second order stochastic boundary value problem

—d*y=Q¢&dt? (3.15a)
y(0)= —y(T)=y°~N(0,1).  (3.15b)
Suppose B*=Q and w(t) is a standard Wiener process then Bw(f) is a

nonstationary solution of the second order stochastic differential equation (3.15a)
so we can realize the generalized noise process of (3.15a) as

Q&(1)dt* = —Bd*w. (3.16)

The Green’s function I'(t,s) and boundary value transition matrix ‘P(t) of the
deterministic boundary value problem corresponding to (3.15) are given by

—=(T—1)s t=s

I(t,s)= (3.17a)
—%(T—s)t t=s

¥ ()= [% %] (3.17b)
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The solution of (3.15) is given by

0 T
y(t)=‘{‘(t)[ y y°]+ [ T(,5)E(s) ds (3.18a)
- 0

where ¢ is defined by (3.16). Alternatively the Brownian Bridge

BW(1) =B(w(t) *% w(T)) (3.19)

is a solution of (3.15a) satisfying zero boundary conditions so

0

y(t)=‘i’(t)‘: _yyo]—{-BW(t). (3.18b)

Note again that Slepian processes have natural finite lifetimes which are finite
and they satisfy anticyclic boundary conditions.

The last class of one dimensional stationary reciprocal processes occurs when
F <0.

1ii) Shiftez(Cosine Processes These are reciprocal and non-Markov processes
whose covariance are of the form

R,(1) =3‘%<S%T—) (3.192)
where
0<K (3.19b)
0<T<Jf(£ —r). (3.19¢)
K

Again these processes don’t satisfy any first order stochastic differential equation
but they do satisfy the second order stochastic boundary value problems,

—d?y+Fd°ydi?=Q¢dr’ (3.20a)
y(0)=—y(T)~N(0,1) (3.20b)

where

K*=—F ((3:21a)
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Q=2K tan Kx.

(321b)

To realize the generalized noise process &(1) of (3.20a) we must turn to a first
order stochastic differential equation (2.17) where the coefficients A(z) and B(t) are

related to F and Q by (2.20). One solution to (2.20) is
A(t)=K cot K(t+1)
B()=0'"
Suppose x(t) is the Markov process defined by
dx=A(t)xdt+ Bdw
x(0) = x°

then x(f) is also a solution of (3.20a).
The residual &(r) defined by

Q) &(t)dt* = —d®*x+ Fd°x dr?

can be used to construct the solution y(t) of (3.20),
)= ‘P(b{ qjl“(t s)E(s)ds

_ Qsin K(T—1)sin Ks
KsinKT

where

ifr>s
I'(t,s)=
_ Qsin Ktsin K(T—5s)
KsinKT

ift<s

sin K(T—t) sin Kt
Y(1)= .
(0 |: KT sin KT]

(3.22a)

(3.22b)

(3.23a)

(3.23b)

(3.24)

(3.25a)

(3.26a)

(3.26b)

We can also construct %(t), the pinned version of x(t) of (3.23) and express the

solution y(t) as

(]
y(0)=Y(@) [ Y yo] +3(2).

(3.25b)
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Again notice that the shifted cosine processes have natural finite lifetimes and are
anticyclic.

Before closing we take a closer look at the pinned processes X(t) and generalized
noise processes £(t) that were used in the above constructions. We denote these by
X4 (8), Xo(t), X_(t) and &, (1), Eo(t) and &_(¢) for the three cases F>0, F=0, F <0.

In the first case X,(¢) is a pinned version of the Ornstein Uhlenbeck process.
x(t) given by (3.3) where A4 and B satisfy (3.5). In the second case x4(t) is a pinned
Wiener process given by (3.19). In either case there are no restrictions on the
intensity of the noise (parameterized by Q) nor on the lifetime of the process
(parameterized by T). The process X(t) can be thought as the motion of a random
particle in a free force field which is constrained to start at the origin at t=0 and
return to the origin at t=T. The process X, () can be thought of as the motion of
a random particle in repulsive force field around the origin pinned to start and
return to the origin. The covariance of X,(f) and X,(z) are given by the Green
function I',(¢,s)=1(t,s) of (3.10a) and I'y(t,s)=I(t,s) of (3.17a). The generalized
noise processes &, (r) and &,(t) are constructed from X, (f) and X,(t) according to
(1.22).

The process X_(t) is a pinned version of the Gauss Markov Process x(t) given
by (3.23) where A, B satisfy (3.22). For F <0 the differential operator

d2

F=-2_
dt?

+F

has a pair of conjugate points at 0 and n/K. Hence the pinning time T of %_(¢f)
must satisfy

0<T<xn/K. (3.26a)
The noise intensity Q is also limited by (3.19¢) and (3.21b) to satisfy
0<Q<2Ktan}(n—KT). (3.26b)

Hence the greater the noise, the shorter the pinning time and the longer the
pinning time the lesser the noise.

The process X_(t) can be thought of as random particles moving in an
attracting force field around the origin constrained to start at and return to the
origin at t=0 and T. Its covariance is given by ['_(t,s)=T17(t,s) of (3.26a). The
generalized noise process £ _(t) is constructed from x_(¢) via (1.22).
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