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EXTENDED QUADRATIC CONTROLLER NORMAL FORM AND
DYNAMIC STATE FEEDBACK LINEARIZATION OF NONLINEAR
SYSTEMS*
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Abstract. In this paper, a set of extended quadratic controller normal forms of linearly controllable
nonlinear systems is given, which is the generalization of the Brunovsky form of linear systems. A set of
invariants under the quadratic changes of coordinates and feedbacks is found. It is then proved that any
linearly controllable nonlinear system is linearizable to second degree by a dynamic state feedback.
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L. Introduction. [tis well known that there are four normal forms of linear systems:
controllable, observable, controller, and observer form. The nonlinear generalizations
of these four linear normal forms were given and discussed in Krener [12], Hunt and
Su [§], Jakubczyk and Respondek [8], Brockett [1], and Sommer [16], among others.
For a system in controller normal form, the design of a stabilizing state feedback
control law 1s a straightforward task. Unfortunately, most controllable systems do not
admit a controller normal form, and even when one does, the transformation of a
system into controller normal form involves solving a system of first-order partial
differential equations (PDEs), which numerically can be quite difficult. For these
reasons, the approximate versions of nonlinear controller and observer normal forms
were introduced in Krener [11], Krener et al. [13], Phelps and Krener [14], and
Karahan [10], among others. It was proved that for certain kinds of nonlinear control-
lable systems, we can find a nonlinear change of coordinates and nonlinear state
feedback that transforms the system into the linear approximation of the plant
dynamics, which is accurate to second or higher degree. The computation of such a
change of coordinates and state feedback is reduced to solving a set of linear equations.
However, these linear equations are not always solvable, and most of the nonlinear
systems do not admit such a linear approximation.

In this paper, a set of extended quadratic controller normal forms of linearly
controllable systems with single input is given (Theorems 2 and 3). We can consider
these normal forms as the extension of the Brunovsky form to the nonlinear systems.
Then we prove that, given a nonlinear system, there exists a dynamic state feedback
so that the extended system has a linear approximation that is accurate to at least
second degree (Theorem 4). This means that any linearly controllable nonlinear system
is linearizable to second degree by a dynamic state feedback (see the corollaries).

In this paper, we only consider the single-input systems. The generalization to
multi-input systems will be given in another paper.

2. Extended quadratic controller form and dynamic state feedback linearization.
From Brunovsky [2] (see also Kailath {9]), we know that any controllable linear system
can be transformed into a controlier form by a linear change of coordinates. If, in
addition, we also allow linear change of coordinates in the input space and linear state

* Received by the editors November 19, 1990; accepted for publication (in revised form) August 2,
1991. This research was supported in part by Air Force Office of Scientific Research grant AFOSR 91-0228.

T Department of Mathematics, Institute of Theoretical Dynamics, University of California, Davis,
California 95616.

1319



1322 W. KANG AND A. J. KRENER

where

gM(x)
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(2.11b) §0(x)=| &2 (x) ’

gi(x)

0 i=1 orn,
500y = n

21 g Y apx others.

j=n—i+2

Remark 1. If both the linear and quadratic changes of coordinates and state
feedbacks are used, what is the normal form of a nonlinear control system such as
(2.4) under this larger transformation group? In fact, all the linear changes of coordin-
ates and state feedbacks that leave the Brunovsky form invariant are z = cx, v=c"'v,
where ¢ is a constant. When we apply this linear transformation to the normal form
(2.10), the resulting quadratic part is ¢ 'f?)(x). Let P denote the projective space
induced by the linear space

{fm(x); f~m(x) is in the normal form (2.10)}.

The above linear transformation does not change fm(x) in the projective space P.
Therefore, under both the linear and quadratic transformations, the family of the
normal forms of systems such as (2.4) is a projective space plus the origin FPix)=0.

Since most nonlinear systems (2.4) do not admit a controller form, they cannot
be completely linearized by a change of coordinates and a state feedback. We wish to
use (2.9) to transform (2.4) into a linear system plus an error of second or higher
degree, below:

(2.12) %= Fx+Gu+O(x,v).

A system with this property is said to be quadratically linearizable by (2.9). From the
result of Theorem 2, we know that system (2.8) is quadratically linearizable by 2.9)
if and only if the corresponding extended quadratic controller form (2.10) satisfies

(2.13) FP(x)=0.

Therefore most nonlinear systems are not quadratically linearizable by state feedback.

In the following, we introduce a method of linearizing a nonlinear system to the second

degree by a dynamic state feedback. The concept of dynamic state feedback was

introduced and studied in Singh [15] and Charlet, Lévine, and Marino (3], [4].
DerINITION 3. A dynamic state feedback is a system

d=a(§w)t+b(§w)y, w(t)eRY

p=c(§w)td(§w)y, v()eR,
where g is called the dimension of the dynamic state feedback; a(¢ o), b(§ w) are
g-dimensional vector fields; and c(¢, ), d (& w) are scalar functions. In general, they
are nonlinear.

Consider system (2.4) with a dynamic state feedback (2.14). The extended system
is as follows:

(2.14)

[é] _ [f(§)+g(§)0(§, w)] + [g(f)d(f, w)]u
) alé, ) b(¢, w)

(2.15)
=fo(§ @)+ g.(§ w)v.
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Let F, be the Jacobian matrix of f.(¢ w) at (0, 0); let G, be g.(0,0).
DeriNiTioN 4. I we can find a dynamic state feedback such that the extended
system (2.15) is linearly controllable and it can be transformed into

(2.16) :=Fz+Guo+0(zv)

by a change of coordinates (in the extended state space)

w

(2.17) [§]>—z+d/“‘(z),

then system (2.4) is called quadratically linearizable by a dynamic state feedback.

THEOREM 4. Any linearly controllable system (2.8) is quadratically linearizable by
a dynamic state feedback.

CoroLLARY 1. Any linearly controllable system (2.4) is quadratically linearizable
by a dvnamic state feedback.

In Corollary 2, below, we show that finding a suitable dynamic state feedback
and a change of coordinates in the extended space is equivalent to solving a set of
linear equations. Suppose that the Taylor series of the vector fields f(£) and g(¢£) in
system (2.4) are

(2.18) fE =Fe+ P +0(8), gle)=G+gl'l (o) +0(e)

CoROLLARY 2. Suppose that the dimension of the state space of system (2.4) is n.
To quadratically linearize this system by a dynamic state feedback, we can use the following
(n — 1)-dimensional dynamic state feedback:

(2.19) o=Aw+Bv, p=w+y"&0)+yPNE ),

where (A, B) is in Brunouvsky form (2.6a) of dimension n — 1. The change of coordinates
{2.17) in the extended state space is

)
(2.20) [ﬂ;[;%“ (z,w.,o ,w“)]

The homogeneous polynomials  y'''(& w), ¥7W(& w) and the vector fields
&Nz w,, -, w, ) are chosen such that the extended system is linearly controllable
and that

] PONES
[Fz 4 Glan + 9z 0)), 67z @1,y wna)]+ jw

Aw
(2.21)

= Gy Nz, @)+ f(2) + g (2 ) (w0, + ¥ (2, w)).

Furthermore, by (2.19) and (2.20), system (2.4) will be transformed into

z w Mz w
(2.22) [f]:[F”G( NG ))]+[g]u+0(z,w,u)3.

W Aw

Remark 2. In Charlet, Lévine, and Marino [4], it was proved that if a single-input
system is not exactly linearizable by state feedback, then this system is not linearizable
by a dynamic state feedback. The result of Corollary 1 means that in the problem of
finding the quadratic linearization, the opposite result is true; i.e., any single-input
linearly controllable system is quadratically linearizable by a dynamic state feedback.

The theorems and the corollaries in this section will be proved in § 5.
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3. Quadratic equivalence. In this section, we will define the family of all the
systems, such as (2.8), of certain dimension to be a linear space. An equivalence relation
on this linear space will be introduced. Then several theorems on this equivalence
relation and the associated classification will be given. All these results will be used
in the proofs of the theorems in § 2, given in § 5. The definition of an equivalent
relation can be found in [7].

DerFiNITION 5. Consider two systems

(3.1a) £= A&+ Bu+ P&+ gl N Ou+ O n),
(3.1b) X =Ax+ Bu+f1(x)+ gl (x)v+ O(x, v)’.

System (3.1a) is said to be quadratically state feedback equivalent to system (3.1b) if
and only if there exists a change of coordinates and state feedback (2.9) such that
system (3.1a) is transformed into

(3.2) X = Ax+ Bo+ i (x)+ gi" i (x)v + O(x, v)*;

i.e., system (3.1a) is transformed into a system that agrees with (3.1b) up to an error
of third degree.

The first kth terms in the Taylor expansion of a vector field is called a k-jet.
Therefore the linear and quadratic parts of system (2.8) is the second jet of this system.
Similarly, transformation (2.9) is the second jet of the analytic transformation

£=£(x)=x+oP(x)+ O(x),
v=a(x)+B(x)u=p+a(x)+ M (x)u+O(x, n).

The family of all the transformations of the form (3.3) is a group. The quotient of this
group over the normal subgroup of the transformations with vanishing second jets is
also a group, and there is a natural one-to-one correspondence between this quotient
group and the family of all the second jet transformations (2.9). Therefore the family
of the second jet transformations is also a group. It is denoted by G. Let T, and T,
be two elements in G, as follows:

E=&+08),
34 T > ]
(3.42) {Ml:#'*'a[f](‘fl)‘*’,g[i J(fx)#

(3.3)

and
=&+ i)
(34b) Tz: {gl _§2 ¢2[2(]§2), -
Moo=yt as (fz)"'Bz (‘fz)ﬂ-l-
Then T,< T, are the linear and quadratic parts of the composition of the following
two transformations:
. [E=6+oE) + oV,

(3.5) T, T, 2] (1] (21 [}

Ho=ptaj (§2)+ﬁ1 (gz)#+az (fz)'*‘ﬁz (fz),uv-

The inverse of T, is

&=£—9"(8),

p=p—a(g) - BM(E)p,.

That systems (3.1a) and (3.1b) are quadratically state feedback equivalent means

that there is an element in the group of second jet transformations G such that it
transforms the second jet of (3.1a) to that of (3.1b). So it is easy to show that quadratic

(3.6) T " {
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equivalence is an equivalence relation (see [6]). We can define a classification on the
family of all the systems of the form (2.8) by this equivalence relation. Each class of
this classification contains all systems that are quadratically state feedback equivalent
to each other. In § S we prove Theorem 2 by showing that the extended quadratic
controller forms are the representatives of all the equivalent classes.

THeEOREM 5. Consider two nonlinear systems

(3.7a) él = A{ + B, +f£2](§1) +g[ll](§l)lul+ O(&, #1)3,
(3.7b) éz =A&+ Bu, +f£2](§z) +g[2”(§2),u,3+ O(é&, Mz)]~

They are quadratically state feedback equivalent to each other if and only if there exist
functions aP)(&,), B1U(&,), and a vector field ¢'7(&,) such that

(3.8a) [A&, P&+ Bal (&) = f17U(&) - P &),
(3.8b) [B, oUl( &)1+ BaM(&) = g1 (&) — g5 (&)

Proof. These two systems are equivalent if and only if there exists a change of
coordinates and state feedback, as follows:

(3.9) fl:§2+d’[2](§z), /J«|:M2+a[2](§2)+ﬁ[1](§2)ﬂz

such that (3.7a) is transformed into (3.7b) by (3.9). Substituting (3.9) into (3.7a), we
have that

éz = A&+ Bu, +f£2](§2) + g[zl I(§2)Mz+ B(am(gz) + B[l](fz)ﬂvz)
(3.10) +PUE) - &) —[AL, 6PI(E)]+ i (&) pa— g8 (E)ps
“[B, ¢[2](§2)]M2+ O(fz’ ,“2)3-

The detailed proof of (3.10) can be found in Krener et al. [13]. It is clear that (3.10)
agrees with (3.7b) up to an error of third and higher degree if and only if equations
(3.8) hold. a

Since the set of all the homogeneous polynomials of (x,, x>, -+, x,) is a linear
space of finite dimension, we can consider (b x), a[z](x),B[”(x)) of (2.9) as an
clement of a linear space W and (f2!(¢), g"''(¢)) of (2.8) as an element of a linear
space V. In this way, we can consider the family of transformation (2.9} and the family
of nonlinear system (2.8) as linear spaces W and V. Since the linear part of (2.8) is
always in Brunovsky form, we sometimes use (f°], g!'!) to represent system (2.8).
Define a linear map 2 from W to V by the following Lie bracket:

(Bl W), o), B1E)) = ([ AL ¢+ Ba, [B, 01+ BB,

Denote V,=A( W) =the image of W under . By using these notations, we can rewrite
Theorem 5 as follows.

THEOREM 5'. System (3.7a) is quadratically state feedback equivalent to system
(3.7b) if and only if

(3.12) (f1, g e (), g+ v

ie, (f12 gy and (f1*, gty represent the same element in the quotient space V/ V.

Remark 3. Theorem 5’ means that there is a one-to-one correspondence between
V/ V, and the family of all equivalent classes.

Remark 4. A special case of Theorem 5' is that system (2.8) is quadratically state
feedback equivalent to a linear system if and only if (f'’}, g!'!) e V,. Therefore the
elements of V, represent all the systems of the form (2.8) that are quadratically
linearizable by (2.9).
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The following theorem gives us a geometric necessary and sufficient condition for
asystem to be quadratically linearizable by the change of coordinates and state feedback
(2.9).

THEOREM 6. Consider system (2.8) and let

(3.13a) X, =ad .0 (B+gl€)), 0=r=n,

(3.13b) D*=C%Span{X,,0=r<k}.

System (2.8) is quadratically state feedback equivalent to the linear system
(3.14) é=At+Bu

if and only if D* is first-degree involutive for k=1,2,--- n—1; ie., for any X and Y
in D*, we have that
i

(3.15) (X, Y]=3 ¢X,+0()

0
Proof. This theorem is a particular case of the theorem in Krener [11].

4. Characteristic numbers. In § 3 we defined an equivalence relation by the change
of coordinates and state feedback (2.9). In this section, we answer the question of how
to determine whether two systems are quadratically state feedback equivalent without
trying to solve the system of equations (3.8). We find a set of numbers associated to
system (2.8), called characteristic numbers, so that these numbers are invariant under
transformation (2.9). Two systems are quadratically state feedback equivalent if and
only if they have the same characteristic numbers.

Let C and H be row vectors such that

(4.1a) C=[1,0,0,---,0],
(4.1b) HF”‘G:{O I=t=n-t,
1 t=n.

DeriniTion 6. The characteristic numbers of system (2.4) are
(4.2a) a”=HF" "[ad}(2(£)), adj 5 (g(6)]l¢ o,
where
(4.2b) 2=r=n-1, 1=t=n—r

Particularly, the characteristic numbers of system (2.8) are
(4.2¢) a"= CAlfl[ad:(glw»f“](g)( B +g[”(§)), ad;\_g:fo[Z‘(g)(B + gm(f))”g:o
2¢
= CAlil[Xr—l ) Xr—z]I.g:O'

In this section, all the results hold for linearly controllable systems, although they
are proved only for the systems whose linear parts are in Brunovsky form.
LemMa 1. (i) Ler X (&) and Y(&) be vector fields: then

(4.3) CA"[X(£), Y(£)]= L(CA'Y) - Ly (CA"'X).
(ii) For any integer r =z 2, we have that

40 ad sy e (B+g11(€)) = (=1)"'A" ' B+ ad 3 (g1(€))

+adid L), (<1 4B+ ()
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Proof. (i) It holds that

Y. 8X
CA"'[X(8), Y(&)]= CA”(EEX_Q Y)
:aCA”‘YX __aCA”‘XY
9 o€

=L (CA7'Y)~ L, (CA"'X).
(i1} Consider identity (4.4). If r =2, then
(45)  adae, i (B+gM(€) = —AB+ad, (g () +[ 1), B]+O(¢)>.

Therefore identity (4.4) is true for r=2. Suppose that (4.4) is correct for r—1.
Consider that

ad;\éif"”(&)(B + g“](g))

= adAmm(g)( (=)' 2A7?B+ad (g1 (¢))

r—

+k§1 ad;‘;k73[f[2](§)’ (_l)kAk]> + O(g)z

- adAf((—n”A'ZB +ad’ (g N+ Y ad' L e, (—1)W])
k=0
(4.6) +ad;ei,((—1) 7A7IB)+ O(&)?
:(-1)“‘A"‘B+ad:;y(g“]<§>>+;i ad’ L1, (—1)*A*B]
c=0

+HLPNE)), (1) AT B+ 0(¢)?
=(~1)"'A" 'B+ady. (g' (&)

Y adid ), (<1)*ARBT+0(e)"

Therefore identity (4.4) is true for any r=2.

LEMMA 2. The characteristic number a" is a linear map from V to R; ie., a" is a
linear function of f1Y(£) and g'"\(¢).

Proof. By (4.3) and (4.4), we can prove the following identity:

r

ro_
a = L(l)"A"H(

k

T AT tad ), (~1)AB] CA"ad;f(g“’(g)))

Ly ZA"ZB<;Z CA"™'ad ' f1(¢), (-1)*A*B]+ CA"'a kél(g“](f)))

This implies that a” is a linear function of f2)(¢) and gl'(¢).
LEMMA 3. A system of the form (2.8) is quadratically linearizable by state feedback
if and only if all the characteristic numbers are zero.
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Proof. Suppose that a system of the form (2.8) is quadratically linearizable by
state feedback. From (4.4) we know that the constant part of the vector fields in D’
is linearly generated by {B, AB, A’B,- - -, A" 'B}. From Theorem 6, we know that D*

is first-degree involutive for k=1,2,- - -, n—1. Therefore
(47) [Xr—19Xr72] = Z CiA"lB+O(§)]~
i=1
So
(4.8) a"=CA" [ X,.1, X, 5]l¢=0=0, 2=r=n-1, 1=t=n-r
because
(4.9) CA'"'A*'B=0, 1=k=r 1=t=n-r

On the other hand, suppose that

(4.10) a’" =0, 2=r=n—-1, 1st=n-r;
ie.,
(4.11) CA'"'[X,_,, X,_,]=0, 2=r=n-1, 1St=n-r.
So
(412) [XrAIaXr-—Z]z Z ciAiAlB_*_O(g)l
i=1

for some constants ¢,. If D" is not first-degree involutive, and if D° is first-degree
involutive for any s <r=n—1, then there exists X,, t <r—1 such that

(4.13) [X, 1, X)# T dA™'B+0(8)"

for any real numbers d,, d,, - - -, d,. By (4.12), we know that
(4.14) t<r-2.

From the Jacobi identity of Lie bracket, we have that

(4.15) (X1, Xo]= adag i ([ X0, X)) = [ X, s, X ]

Since D" is first-degree involutive and +1=r—2, we know that

r—1
(4163) [Xt+l ] Xr—Z] = Z EEA"[B-,- O((::)ls
i=1

i

(4.16b) [X,5, X,]= T GA'B+0(&)"
P=1

This implies that

(4.17) (X1, X1= % aA”'B+0(8)".

Itis a contradiction. So the distribution D* is first-degree involutive forany 1=k = n —1.
This means that the system is quadratically linearizable by state feedback. 0
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TueoreM 7. Two systems of the form (2.8) are quadratically state feedback
equivalent if and only if the corresponding characteristics numbers are equal.
Proof. Consider two systems

{(4.18a) él = A¢ + By, +f%2](§1)+g[11](§1),u1 + O(§1’ ;le)l,
(4.18b) éz = A&+ Buo +f£2](§2) + g[zl](fz)}iz+ O(fz, I-Lz)3-

Let a'" and a¥ be the characteristic numbers of (4.18a) and (4.18b), respectively.
Suppose that (4.18a) and (4.18b) are quadratically state feedback equivalent. From
Theorem 5', we know that

(4.19) (2 g\ e (gt + Vi,
1.e.,

(4.20a) (12, gt = (7, gt + (1, g
and

(4.20b) (%, gMe v,.

Let a” be the characteristic numbers of (', g!'). Since the characteristic numbers
are linear functions of /™! and g'’ (Lemma 2), we have that

(4.21) al=ay+a"
From Lemma 3 and (4.20b), we know that a” =0. So
(4.22) ay =a¥, 2=r=n

1=t=n—r.

On the other hand, suppose that all the corresponding characteristic numbers are
the same. Then

(4.23) ay—ay =0, 2=<r=n, 1=t=n-r.
So
(4.24) (fP - gt -gihe ve.

Theorem 5’ and (4.24) imply that systems (4.18a) and (4.18b) are quadratically state
feedback equivalent.

5. The proofs of the theorems in § 2. .
Proof of Theorem 2. Consider the following special kind of f*!(x):

(5.1a) Fl(x)= j’,-(.x) forsome 1 =i =n;

here

(5.1b) fix)=a;x; forsomej=i+2.
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Then
(5.2a) adi (A" 'B)=0 forr#n—j+1,;
N
0
(5.2b) ad; (A" 7B) = —2a,x;
- O =
Therefore
(5.3)
( (-)'AT'B rsn—j+1,
0
0
(=D)"TATM B+ (—1);2aijxj +0(x)? r=n—j+2,
0o
ad;‘;',fm“)([}):
_ N _
(-1y'AT'B+ 20;%554 02 +0(x)? n—j+2<r=2(n—j+1),
L o0
\ (=1)"""A"T B+ O(x)? r=2n—j+1).
In (5.3}, * denotes a linear polynomial of (x;, x,,,,* - -, x,). So
(5.4a) [ad’i. joie(B), ad 'l jioe (B)1 =0, r#En—j+2;
- o
0
(5.4b) [ad il jo1e)(B), adigi jive(B)] = | 2a] r=n-—j+2.
L 0 ]
Therefore
(5 5) alr — CA'*l[ad;;:_f'[zl(g)(B)’ ad:\;i—f.[z](g)(B)]

A{Za,-j r=n—j+2and =i
0 others.

As we know, any F1l(x) of the form (2.10) is a linear combination of the vector fields
given in (5.1). Given any system in the extended quadratic controller form (2.10), from
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(5.5) and Lemma 2, we can find the characteristic numbers
(56) a{rzzalnfr+2'
This implies that, given a set of characteristic numbers, there exists one and only one
system in the extended quadratic controller form that has the given characteristic
numbers. Theorem 2 follows this fact and Theorem 7.

Proof of Theorem 3. We prove this theorem with the following two steps:

(i) Anytwo systems given by (2.11) are not quadratically state feedback equivalent
to each other.

(ii) Any system is quadratically state feedback equivalent to a system of the form
of (2.11).

To prove (i), let us consider the following two systems of the form (2.11):

(5.7) (0, g1"(x)) and (0, g"(x)).
They are quadratically state feedback equivalent to each other if and only if
(5.8) (0,8"(x) =" (x))

is quadratically linearizable by state feedback (Theorem 5'). However, (5.8) is also a
system of the form (2.1). So proving that the result in part (i) is equivalent to proving
that any system (2.11) is not quadratically linearizable by state feedback if g''/(x) is
not zero. Assume that

(5.1) gM(x)#0

and that g~[,(:](x) is the first entry of g''}(x) such that gi''(x)#0; i.e.,

Fl(x)=0 ifr<i,,
(5.10) g 0

§l(x) #o0.
Assume that
(5.11a) EX) =y piaXa 2 ¥ A i3 Xy a A,
where
(5.11b) a,_,+-7#0 and 2=r=1t,.

Then we have that
Xr~2 =a ;\22(B+g~[ll)

to_r+2

(5.12a) =(=1)"7ATB+(~-1) 7| g0

>
|
I

ad’(B+§")

t,2—r+1

(5.12b)

(-D"'ATBH (-1 £LM(x)
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So
(513) CA[” "[erlaerz]:an~r+2¢0;

rr

i.e., the characteristic number a® " is not zero. Therefore (0, §'''(x)) is not quadratically
linearizable by state feedback. Part (i) is proved.

Now we can prove part (ii). Since any system is quadratically state feedback
equivalent to system (2.10), we must prove that any system (2.10) is quadratically state
feedback equivalent to system (2.11). Since any system (2.11) is quadratically state
feedback equivalent to exactly one system of the form (2.10) (Theorem 2), and different
systems given by (2.11) are quadratically state feedback equivalent to different systems
of the form (2.10) (part (i) and Theorem 2), also since the set of systems (2.10) and
the set of systems (2.11) are linear space of the same dimension ((n —1)(n—2))/2, we
know that any system (2.10) is quadratically state feedback equivalent to system (2.11).
Part (ii) is proved.

Proof of Theorem 4. According to Theorem 2, it is sufficient to prove the result
for the systems in the extended quadratic controller form. Let the dynamic state
feedback be

W= Wy,
W) = wy,
(5.14)
w, =0,

v=ew,+ ym(x, w),

where y!?! is a homogeneous polynomial of second degree in (x, w). The extended
system is

, £12] 2
(5.15) l:x] :AI[X:I+316+[ﬂ O(x)]+[8y[ }(()x,w)]a

Here (A,, B,) is in the form of (2.6a) of dimension 2n—1. We define the change of
coordinates as follows:

(5.16a} 2= Xy,
(5.16b) z, = linear and quadratic part of 2, _,, 2=k=n,
(5.16¢) Zoip =W, 1=p=n-1.

We claim that

(5.17) Ze=x P (x, 0,0, wey), 2=k=n,

where ¢y (x, w,, - - -, W, ») is a homogeneous polynomial of second degree. For k =2,
we have that

(5.18) z; = linear and quadratic part of 7, =x,+ Y a,x;.
j=3

So (5.17) is true. Assume that (5.17) is true for k — 1; then

o= Xt (e, o 3)
(5.19) =x.t+ X ak—ljx,g'“//k——l()% Wy, 0p3)
jEk+1

=x.+ ¢ (x, @, -, @ )+ O(x, w0y, -, wk72)3-
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The last equality is true because
(5.20) Y=x H PO, G =e+y(x ),

and &,, - ,wx_y; are vrelated only to @, -, @k Therefore z, =
X+ (X, @y, 0, wk_y). So (5.17) is true for any 2=k =n. By (5.16) and (5.17), we
have that

Z, = 2y,
, iy=2,+0(z,0),
(5.21a)
Z-n 17 Zn + O(Z’ 6)33

and

in :xn +lj/n(x7 Wy, ", wn72)
(5.21b) ol .

:wl+y (x’w)+‘/jn(xawla."awn72)'

Let
(5.22) y'* = the quadratic part of —da(x, @, Waa);
then
(5.23) i =w=zpt+ 0z, 0)

Therefore, by the change of coordinates (5.16) and (5.22), system (5.15) is transformed
into
=125,

Z‘Z =23 + O(Zs 6)39

(5.24) iy =z,+0(z0),
. Zn:er+l+O(Z’ 6)37

Zn+17— Zn+2s

Z‘Zn*l = 0.

It is linearly controllable system without quadratic terms. Theorem 4 is proved.

Remark 5. Sometimes the dimension of the dynamic state feedback used in
Theorem 2 can be less than n— 1. Suppose that a system is in extended quadratic
controller form (2.10). Let

(5.25) g=max{j—i;a;#0,j=i+2,1=i=n-2}

To quadratically linearize the system, a g-dimensional dynamic state feedback is
sufficient. The proof is almost the same as above, except that (5.17) is changed to

(5.26) =Xt (X, @, @k inig)s n—q+l1=k=n

Remark 6. From this proof, we find that the dynamic state feedback is chosen to
be in Brunovsky form, as follows:

(5.27) @ = Aw + Bu, w=w,+ vy (x, w).
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Furthermore, (5.16) and (5.17) imply that the change of coordinates in the extended
state space is

(5.28) |:’C:| :[z]+|:¢fll(z’ w"o' ’ "wnaz)];
w w

i.e., w is not changed, and the quadratic part is independent of w, ..
Proof of Corollary 1. By Theorem 1, there exists a linear change of coordinates
and state feedback

(5.29) & =T¢ wi = a(&)+ Bu,

where a(£,) is a linear function and B #0 is a constant, such that system (2.4) is
transformed into

: —1 i 1 a(gl))
= IAT &)+ Tg(T 6N —py——
E=TAT &)+ Tg( f)(BM P

=A&+ BM1+f[21(§l)+g[l](fl)Ml+O(§l, Ml)z,

where (A, B) is in Brunovsky form. By Theorem 4, we can find a dynamic state feedback
such that the extended system can be linearized to the second degree by a change of
coordinates. This extended system is

(5.30)

. -1 -1 1 a(§l))

=TT 1 Tg(T 194 NP 22 R P

E =TT &)+ Tg( §)(BP~ s
(5.31) o =al(f,w)+b(&, w)y,

m=c(é), w)+d(&,, ).

It is linearly controllable. Under the old coordinates &, this system is

) 1 Tt
fif(§)+g(§){E(C(Tlf,(z))‘i’d(Tlg,w)u)—g—(B—f—)},
5.32
( ) o=a(T '&w)+b(T "¢ w.
If we define
(5.33) uzé(c(T‘e;,wwd(r‘g,wm»ﬁg/f"")

as the output of the dynamic state feedback, then (5.32) becomes

E=f(&)+g(E)nm,
(5.34) a):a(T"g,w)er(T"g,w)v,

u:éu(r‘g o)+ (T w)u)—ﬂé——f—’.

System (5.34) is quadratically linearizable under a change of coordinates because
system (5.32) is quadratically linearizable. This implies that the system

(5.35) E=fO)+g(H)u

is quadratically linearizable by a dynamic state feedback. Corollary 1 is proved.
Proof of Corollary 2. By Remark 6, we know that the dynamic state feedback in
(5.31) can be chosen in Brunovsky form, as follows:

(5.36) o=Aw+Bv, p =w+y?(¢, 0).
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The dimension of A and B is n— 1. In this case, the dynamic state feedback in (5.34)
is

1 T
(5.37) & = Aw + Bu, u:—wl—¥+ym(T ' w).

B

We make the change of coordinates for w and v and denote (1/8)w by w and (1/8)v
by v; then the dynamic state feedback (5.37) will be changed to a dynamic state
feedback that is in the same form as (2.19). Therefore we proved that any system (2.4)
is quadratically linearizable by the dynamic state feedback (2.19). By using Taylor’s
series expansion (2.18), the extended system is

£=FE+Glo+ Y w)+ (£ w)
(5.38) N + M) (@, + Y& w)) + O(4, w)’,
w = Aw + Bu.

This system is linearizable by a change of coordinates. From Remark 6, we know that
the change of coordinates can be chosen in the form of (5.28); i.e.,

(5.39) [5]:[2]+[¢[2’(z,w1,~~,wnz)]‘
w w 0

Substituting this into the equations in the Theorem 5, we have that

[<F2+G(w,+ y[”(z, w))) <¢[2](Z, Wy, wnZ))]

Aw 0
(5.40a)
_ <G7[2J(Z, @) +/z2)+ g (2)w, + gl(2) 4, w))
= 0 ,
LI .
(540b) [(0)’(4) (“awl) s Wy _))]:O
B 0 .
Since (99" Nz, w,, - - - s Wn2))/dw, =0, (5.40b) is always true. Equation (5.40a) is
equivalent to
(21 (2] i1
J
L(Fz+Gwl+Gy“')+&Aw Fol+ GZL— 4121
az Jw 0z
0 0
(5.41) 7
a [Gym(z, w)+f12(z) +g" N (z)(w, + Y1z, w))]
= 0 .

It is equivalent to

ad)[Z](Z, wls B

Jw

[Fz+ Gl +¥'(z,0)), 62z, @y, - - -, w, )]+ s Onz) 4

(5.42)
=Gy, @)+ /P2) + g z) (0, + 412, w)).

Corollary 2 is proved.
Remark 7. From (5.37) we know that ")z, @) can be chosen as —a(T'¢)/B.
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6. An example of Theorem 4. Consider that

(6.1) él:§2+§§a £=6, &=p

This is a system in extended quadratic controller form, so it is a typical three-
dimensional system that is not quadratically linearizable by state feedback. We construct
the following dynamic state feedback:

(6.2) &i=1¢s, éSZU, M:§4+Y[2](§l,§3,§3,§4»§5),

where  yU(¢g,, £,6,8, &) is  a  quadratic homogeneous polynomial in
(&1, &, &5, &4, &), which will be determined later. The extended system is

b=646,
&L=6,
(6.3) =&+ YPNEL 6, 6, &, &),
&=§&,
éi = U,
By Hunt and Su’s method of linearization, let us take
o =&,
Zz:f2+§§:21,
(6.4) 2y = &3+ 26,4, = linear and quadratic part of z,,

zy= &+ ¥y +2£+ 26,65 = linear and quadratic part of 7,
z5=&5.

If we take y!*'=-2£7-2¢,¢, ) then

(6.5) Z3=&,.

Therefore we have that

(6.6) Zy=x,+ O(x, v)’,
24 = Xs,
Zs=u.

Therefore system (6.1) is quadratically linearizable by the dynamic state feedback (6.2).
This is an example of Theorem 4. In fact, the idea used in the proof of Theorem 4 is
similar to the argument in this example.

In this paper, all the rssults are restricted to the single-input nonlinear systems.
In fact, similar results in the multi-input case are also correct, and they will be given
in another paper. The idea of finding quadratic normal forms and extending the state
space was also successfully used in the problem of finding nonlinear observers.
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