NONLINEAR CONTROL
SYSTEMS DESIGN 1992

Selected Papers from the 2nd IFAC Symposium, Bordeaux, France,
24 - 26 June 1992

Edited by
M. FLIESS

Laboratoire des Signaux et Systémes, CNRS - ESE
Gif-sur-Yvette, France

Published for the
INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL
by
PERGAMON PRESS

OXFORD + NEW YORK « SEOUL « TOKYO




L W

WG 5 o 5. T

P 2. ot

Copyright © IFAC Nonlinear Control Systcms
Design, Bordeaux, France, 1992

OPTIMAL MODEL MATCHING CONTROLLERS FOR
LINEAR AND NONLINEAR SYSTEMS

A.J. Krener
Department of Mathematics, University of California, Davis, CA 95616, USA

ABSTRACT: Optimal model matching controllers for linear and nonlinear systems are
constructed by generalizing Francis' work on linear regulators and Isidori and Byrnes’ work on
nonlinear regulators. These are combined with optimal control techniques to obtain solutions.
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1. Introduction

There are several possible ways of defining the
model matching problem, we shall adopt the
following. One is given two systems, called the
plant and the model. The output of the plant
and the model lie in the same Euclidean space
but the input and state dimensions need not.
The goal is to design a feedforward and feedback
control law so that the output of the plant
asymptotically tracks the output of the model.
The control law has feedforward from the model
input and state to the plant input and feedback
from the plant state to the plant input. If either
the state of the model or the state of the plant is
not directly measurable then observers are needed
to estimate these.

Our approach to linear model matching is based
on Francis’ approach to the linear servo problem
[F] and our construction of a linear optimal
control problem in the transverse variables [K].
The nonlinear generalisation is based on Isidori
and Byrnes' nonlinear regulator [I—B], Buang and
Rugh's [H—R] term by term solution of the
Francis—Byrnes—Isidori (FBI) equations and
Al'brecht’s [A] term by term solution of the
Hamilton—Jacobi—Bellman (HJIB) equations.

For other approaches to the linear model
matching problem we refer the reader to Moore
and Silverman [M—S], Morse [M] and Malabre
[Ma] and their references. The nonlinear model
matching problem has been treated by Moog,
Perdon and Conti {M~P—C], Huijberts and

Nijmeijer [H—N], Grizsle and DiBenedetto [G—D]
and their references.

2. Linear Model Matchin

We consider a linear plant described by

(2.1a) x = Fx + Gu

(2.1b) y=Hx+Ju

where x € R, u € R™ and y€ RP. To simplify
discussion, we shall assume that the plant is
square, m = p. We also assume that (F, G) is

controllable, (H, F) is observable, [ CJ; ] is of

full column rank and [H J] is of full row rank.
These assumptions can be weakened.
We also have a model

(2.2a) x = Ax_+ Bu
m m m

(2.2b) = me + Dum

Ym

with dimensions no,m, and P, =P

The goal is to find a feedforward/feedback law of

the form

(2.3a) u=Kx+Lx_ + Mu
m m

such that the plant is asymptotically stable



around x  =0,u = 0 and such that the
m m

mismatch error

(2.3b) e=y—-y_

goes to zero as t <+ w. If we assume that B =0
and D = 0 then this reduces to the linear
regulator problem of Francis [F]. If we assume
that C=0 and D = 0 then this is a linear
version of the gain scheduling problem of Guo
and Rugh [G—R]. For these reasons, we don’t

require the model to be controllable or observable.

On the other hand it is reasonable to require that
the model is stable or at worst neutrally stable.
Moreover, if B # 0 then it is reasonable to
require that the model is bounded input, bounded
output stable.

In certain contexts it may happen that state of
the model is occasionally reinitialized. The goal
then is to achieve model matching on a
significantly faster time scale than the times
between reinitialization of the model.

Following Francis, we say the model matching
problem for (2.1) and (2.2) is solvable if there
exists a linear mapping from the state and input
of the model to the state and input of the plant

oo Q-EYL
such that
o [IEY-CIES

If we delete the second block column then (2.4b)
is called the Francis’ equations.

The intuitive content of (2.4) is that the linear
submanifold x = 'I‘xm of combined state spaces

is invariant under the closed loop dynamics with
u= Lxm + Mum for all um(t). Also, on this

linear submanifold the mismatch error e(t) is
sero.  Although there is no mention of stability, if
(2.4) is solvable then we shall show that it is easy
to choose K so that linear submanifold

X = 'I‘xm is asymptotically stable under the

feedforward and feedback

(2.5) u = K(x — Txm) + Lxm + Mum.

A frequency s € { is a gero frequency if

210

(2.62) rank [ L G] <n+p.

T

If s is a sero frequency then there exists a

(¢, Pe €2 (P guch that P#0 and

(2.6b) < [Tz $]=0a

The triple (s, (, 1) is called an output zero
triple.

The output zero structure need not be semisimple,
there may exist sequences of triples (s, Ci’ ¢1)
for i=1, «--+,d such that 1,b1, <o, ‘gbd are

linearly independent and

Cl 1/)1 F—sl G 0 0

0

(2.6¢) :42 ’:1}2 [ H J :I = 'Cl :
¢4 ¥ Camr ©

The relevance of these concepts for the model
matching problem is as follows. Suppose (2.5b)
holds and (s, (, ¥) is an output triple of the
plant. We subtract the identity

sI 0] [T o T 0] [s1 0
MR
from (2.5b) to obtain
F-sIG][T o
-
To][A—s B
=[o I}l C D]

and we multiply (2.7) by [( %] to obtain

(2.7)

A—l B
o 0]=[CT11’][ ]

C D

so (s, {, ¥) is an output sero triple of the model
where § = (T . Hence if (2.4b) is solvable then
corresponding to each output triple (s, (, ¥) of
the plant, there is an output triple (s, &, ¥) of
the model. In a similar way we see from (2.6c)
and (2.7) that corresponding to each sequence




(s, Ci’ "/’i), i=1, <<+, d of generalized output
triples of the plant is a sequence (s, fi’ 1ﬁi),

i=1, -+-,d, of generalized output sero triples
of the model where fi = CiT. Moreover, for

corresponding output triples both { and ¢ are
determined by 4,

(2.8a) ¢ = YH(sI — F)“1

€ = YC(sl — A)

and for corresponding generalized output zero
triples both Ci and fi are determined by ‘l/)i

2d § pé -

(2.8b)

(292) G=(E—G -7

(2.9b) (T=($C—(_ T) (s1— Ay

Hence, if there are n linearly independent triples
then T is uniquely determined by (2.8) and
(2.9).

These necessary conditions are not sufficient. To
obtain necessary and sufficient conditions we must
examine the infinite output zeros of the plant and
model. Consider a pair of vectors

[¢(1/s) X1/s)] which are polynomial in 1/s
such that as s+ @

(2.92) W1/s) - ¥ #0
and
F—sl G
(2.9b) [{(1/5) ¥1/8)]
H J

= o(1/s)" .

A triple (s, ((1/s), ¥(1/8)) satisfying (2.9) is
an infinite output sero triple of degree d
of the plant. Once again from (2.7) we sce that
for each infinite output zero triple (s, ((1/s),
YW(1/s)) of degree d of the plant, there must be
an finite output sero triple (s, {(1/s)T, ¥(1/s))
of degree d of the model. Each infinite output

sero triple satisfics

(2.10a) ((1/s) = Y(1/s)H(sI — F) "
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2
¢(.)H(l+§+F—2-+---)

N =

(2.10b) £(1/s) = Y(1/8)C(sI — A) L

A A2

1
;-i-—'2-+"')
8

We)H(I +

so ((1/s) and £(1/s) are O(1/s) as s - o.

We have proven one direction of the following
theorem. Because of space limitations, the other
half of the proof is omitted.

Theorem 2.1. The linear model matching
equations (2.5) are solvable iff the following three
conditions hold: (i) for every output gero triple
(s, ¢, ¥) of the plant there is an output zero
triple (s, £, ¥) of the model, (ii) for every
sequence of generalized output zero triples

(s, Ci’ ¢1) i=1, ---,d, of the plant, thereis a

sequence of generalized output zero triples
(s, fi, ¢1) of the model, (iii) for every infinite

output gero triple (s, ((1/s), Y¥(1/s)) of degree
d of the plant there is an infinite output gero
triple (s, é(1/s), ¥(1/s)) of degree d of the

model.

If we have a solution of the model matching
equation (2.5), then we can define new
coordinates on the combined system consisting of
the plant and the model

(2.11a) £ =x— Txm

(2.11b) v=u—Lx — Mu
m

(2.11¢) e=y—y_ -

In these coordinates the combined system is

(2.12a) z = Fz + Gv

(2.12b) x_ = Ax_ + Bu
m m m

(2.12¢) e=Hz + Jv.

To find a feedback control, v = Kz, that will
drive £ and e to gero we set up a standard
linear quadratic control problem of minimizing



1]

* * *
(2.13) £ Qz + 2¢ Sv + v Rv dt

8=

o=

subject to (2.12). The optimal cost
(2.14a)

and optimal feedback
(2.14b) v=Kz

are found be solving the familiar Riccati equation.
The resulting feedforward/feedback is

(2.15) v =Kz = K(x — Ty) .

3. Nonlinear Model Matching

Suppose we are given a nonlinear plant
(3.1a) x = f(x, u)
(3.1b) ¥y = h{x, u)

and nonlinear model

(3.2a) im = a.(xm, um)

(3.2b)

ym = C(xm, llm) -

‘Following Isidori and Byrnes [I—B], we seek a

submanifold

(3.38) x= 0(xm)
and feedforward/feedback
(3.3b) u= /L(xm, um)

such that under the closed loop dynamics the
submanifold (3.3a) is invariant and the mismatch
error

(3.4 ¢ = h(x, w) <, )

is gero on this submanifold. In other words @
and 4 must satisfy a generalisation of the
Francis—Byrnes—Isidori (FBI) equations, given by

(3.52) f(0x, ), px_, u )
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= -g)_g_(xm) a(xm, um)
(3.5b) h(o(xm), p.(xm, um)) = C(xm, um) .

We expand the system and model in a Taylor
series

(36a)  x=Fx+ Gu+f3(x u) 4 -
{(3.6b) y = Hx + Ju + h[zl(x, u) 4 e+
(3.7a) x_ = Ax_ + Bu
m m m
+a[2](x yu_ )+ .-
m' m
(3.7b) V= me + Dum

+ c[2](xm, um) 4 e

where the superscript [2] denotes a homogeneous
polynomial of degree two.

We also expand the invariant manifold and
feedback/feedforward in a series

(3.8a) 0(]() = Txm + dzl(xm) 4 e

(3.8b) x) = Lx_ + Mu_

+ ”Izl(xmi um) + -

and plug the expansions into (3.5). Collecting
terms of like degree yields at linear level (2.4b)
and at the quadratic level .

(3.92) F0[2](xm) + Gp,[zl(xm, u_)

2]

= Ta[zl(xm, um)

— f[zl(Txm, Lxm + Mum).




(3.9b) B0 )+ 3P, u )

= c[2] (xm, um)

——h[Z](Tx yLx_ 4+ Mu ).
m' T m m

Assuming T, L and M satisfy (2.4b), we break
up (3.9) into terms quadratic in x s bilinear in
x_ and u__ and quadraticin u .

m m m

In obvious abuse of notation the term quadratic
in x yield the equation

2 5] [

2
(3.10) e, ) ]

Pl x )

These are the familiar FBI equations of degree 2,
{K] and are solvable if there is no resonance
between an output zero of the plant and a pair of
poles of the model [H—R, K]. If (3.10) is solvable
then we can turn our attention to the other parts
of (3.9), namely

(3.11) [?] ulz](xm, u )

o621
[ Ok (xm)] Bu
m m
0

[Ta[zl(xm, um)] [
+ ——

[2
c ](xm, um)

HEEES

[Talz](um, um)] [
c[2](u ,um)

m

e, um)]
h[2] (xm, um)

(3.12)

f[2](um' um)]
h[2](um, um) .
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If (3.5) is solvable up to degree two, then we
consider the effect of the change of coordinates
and feedback

(3.13a) s=x—Tx_— Px )

(3.13b) x_=x_

(3.13c) v=u—Lx_—Mu_
B

(3.13d) S

on the combined system (3.6a) (3.7a) and output
(3.4). The result is (3.7a) and

(3.14a) z = Fz + Gv

+ ?[2](2, X U, v) 4 ---
(3.14b) e = Hy + Gv

+ Klz](z, X s, v)+ ---
where
(3.15a) ?Izl(z, x ., v)

= f[2](z + Txm, v+ Lxm + Mum)

— f[2](Txm, Lxm + Mum)

(3.15b) I[2](z, S S v)

=2
=h (z+Txm,v+Lxm+Mum)

—n(Tx Lx 4+ Mu ).
m m m

Notice that

(3.16a) ?{2](0, X au o, 0)=0

(3.16b) %0, x ,u_0)=0



We wish to find a feedback

(3.17) u=Ks + K[2](l, X um)

which drives the combined system (3.14) to the
submanifold, £ = 0. To do so0 we set up as
before a standard linear quadratic optimal control
problem of minimizing (2.14) subject to (3.14).
We are considering the infinite time problem, and
in order to obtain a stationary solution we assume
that the model input is constant in time. We
expand the optimal cost

(3.18) 7z, x um)
*

=—;-z Px+1|'[3](z,xm,um)+ ee

The stationary Hamilton—Jacobi—Bellman
equations are

on(z, X um) ?(x 'y X um,v)
(3.18a) e, Xm) [a(xm, “m)
+ Iz, v)=0
(3.18b) g_:r (=, X um) g—:— (2, X s, v)

+g%(z,v)=0

where ?(z, X B v) is the right side of

(3.14a) and I(x, v) is the lagrangian of (2.13).
Following [A] and [K], we solve these term by
term. The lowest terms in (3.18a) are quadratic
and those in (3.18b) are linear, and are the
familiar equations of a linear quadratic regulator
as discussed in the previous section. We plug this
solution into (3.18) and collect cubic terms from
(3.18a) and quadratic terms from (3.18b). The

first yields an equation for 1[3](1, x um)

which can be solved provided a certain
Donresonance condition is satisfied. The condition
is that no sum of two or three cigenvalues of F +
GK be zero and no sum of two cigenvalues of F
+ GK and one cigenvalue of A equal zero,
where v = Kz is the optimal linear feedback.
This will be satisfied if F + GK is strictly stable
and A is stable.
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