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1 Introduction

Since the early 1970’s a considerable effort has been devoted to development
of a state-space theory of nonlinear systems which parallels and generalizes the
state space theory of linear systems that had been developed during the 1960’s.
Using Lie theoretic tools, many of the synthetic results of linear systems theory
were successfully generalized to nonlinear systems including concepts such as
controllability, observability, minimality and decoupling. We refer the reader
to the monograph of Isidori [I] for a description of these developments. But
the Lie theoretic effort was not completely successful in at least two important
areas, the design of asymptotically stabilizing state feedback control laws and
the design of observers and/or filters for nonlinear systems.

In the late 70’s and early 80’s there was a revival of interest in Lyapunov tech-
niques for nonlinear stabilization. Such techniques have a long tradition in both
the Western and Soviet literatures on nonlinear control. When combined with
Lie techniques, they proved to be quite fruitful and substantial progress was



made on nonlinear stabilizability [Ba]. In 1983, Brockett gave his well-known
three necessary conditions for stabilizability [Br]. In the next section, we review
these and other results in this area.

In contrast to nonlinear stabilizability, the question of nonlinear detectability has
received much less attention. Loosely speaking, a nonlinear system is detectable
if one can construct an observer which asymptotically estimates the state of the
system. In the late 1970’s and earlier 1980’s considerable effort was devoted
to the closely related question of nonlinear filtering. Unfortunately, this did
not lead to methods for the construction of computationally feasible nonlinear
filters. See [H-W)] for more on nonlinear filtering. In Section 3, we propose several
alternative definitions of nonlinear detectability and give necessary conditions
dual to Brockett’s for one of these.

2 Nonlinear Stabilizability.

We consider the nonlinear system

z= f(z,u) (1)
around a critical value of x and u which we conveniently take to be 0,0,
0= £(0,0) (2)

The system is said to be (locally) asymptotically stabilizable around z = 0 if
there exists a state feedback

u = k(z) (3)
with

0 = k(0) (4)
such that the closed loop system

z= f(z, k(z)) (5)
is (locally) asymptotically stable to z = 0.

This definition can be refined in several ways. Suppose f(z,u) is C" where
r=0,1,---,00, or w then one can ask that k(x) also be

(i) C"or C%,s <1 or

(if) C° and piecewise C" or



(ili) piecewise C" or
(iv) C" except at z = 0 where it is C°,
(v) ete.

One can require that k(z) be such that closed loop system (5) have unique
solutions and that there exists a Lyapunov function for the closed loop system

(5).

In [Br], three necessary conditions are given for the local asymptotic stabiliz-
ability of (1,2). They are

(S1) If a C' system (1,2) can be locally asymptotically stabilized by a C*! control
law (3,4) then the linear approximation to (1,2) at z = 0,u = 0

o= g—i(o, 0)z + %(0, 0)u (6)

has no uncontrollable, unstable modes.

(S2) If a C° system (1,2) can be locally asymptotically stabilized by a C° control
law (3,4) then for every initial condition z° sufficiently close to 0, there exists
an open loop control law u(t) such that the trajectory of (1,2) originating at z°
asymptotically converges to z = 0.

(S3) If a C° system (1,2) can be locally asymptotically stabilized by a C° control
law (3,4) with unique solutions to the closed loop dynamics (5) then the map

f:R*x R™ — R"

carries neighborhoods of (0, 0) onto neighborhoods of 0.

Clearly (S;) is necessary for C'! system stabilized by C* feedback, what is sur-
prising is that some C! systems which fail to satisfy (S1) can be stabilized by
C° feedbacks. The following example is by to M. Kawski [Kal].

Example 2.1
T= f1($1,$2)
5E2= u

Suppose there exists a function V(z;,z,) such that

(1)V(z) > 0and = 0if fr =0

oV
(ii)gfg =—f



then let

so that

In particular, if

then set

and

4
k(l’) = §$}/3 — Ty — X1 — .'Zg

See [Ba, pp. 28-30] for more details.

Clearly condition (S;) is necessary as the open loop control u(t) is readily ob-
tained from the feedback u = k(t) by setting

u(t) = k(z(t)). (7)

Sussmann [Su] has shown that for C* systems, (S;) is almost sufficient in that
it implies there exists a piecewise C* feedback (3,4) such that for every z°

sufficiently close to 0 there exists an open loop control u(t) driving z° to 0 and
such that u(t) satisfies (7).

This is almost sufficient because there may exist another open loop control
u(t) satisfying (7) which fails to drive z° to 0. In other words, solutions to

the piecewise analytic closed loop system (5) may fail to be unique and some
solutions may fail to go to 0 .

Brockett’s third condition (S3) is based on a result of Krasnosel’skii and Zabreiko
[K-Z]. They proved that if the C° vector field

z= f(z) (8)
0= f(0) (9)

is locally asymptotically stable and admits unique solutions in some neighbor-
hood of z = 0 then the degree of f at 0 is (—1)" where n is the dimension



of z . They proved this by constructing a homotopy between f and —z in
R" — {0}. Hence, if the closed loop system (5) is locally asymptotically stable
with unique solutions then the map z —— f(z, k(z)) is locally onto and so is
(z,u) — f(z,u) .

Unfortunately, the Krasnosel’skii - Zabreiko necessary condition is relatively
weak and hence so is the Brockett condition. If n is even, then the vector fields
f(z) = x and f(x) = —x have the same degree but not the same stability.
However, at present the Brockett conditions are perhaps the most useful rough
and ready test that we have for checking stabilizability. Coron [C] has presented
some interesting extensions of (Ss).

One weakness of these necessary conditions is that they speak to feedback laws
which are at least C°. Many nonlinear systems can only be stabilized by feed-
back laws which are discontinuous somewhere. While such laws may not lend
themselves to topological analysis, they are readily implementable by digital
computers. Consider the following example from [Sul.

Example 2.2
T1= U
d)zz U2
Ta= (z1Us — Touy)/2.

This is C¥ satisfying (S;) and (Ss) but not (S3). We can try to find open loop
controls which drive any z° at ¢t = 0 to the origin at ¢t = 1 while minimizing

1
/ uf + uddt.
0

Using the maximal principle, it is not hard to see that the optimal trajectories
are generated by sinusoidal controls of the form

u(t) = r cos(wt + @)
ug(t) = rsin(wt + ¢).

When projected onto the z, — x5 plane the optimal trajectories are arcs of circles
beginning at (z9, z9) and ending at (0,0). The area enclosed by the arc and the
straight line from (z9,z3) to (0,0) is equal to the magnitude of z§ and the
orientation of the circular arc is determined by the sign of zJ. This determines
(r,w, ¢) as a function of (29, 9, z9) where |w| < 2mr and 0 < ¢ < 2. If 29 # 0 or
9 # 0 then |w| < 27 and (r,w, ¢) is unique. If 29 = 29 = 0 then |w| = 27 and ¢



is arbitrary within 0 < ¢ < 27. Hence optimal controls are unique except along
the 23 axis. They yield a feedback u = k(z) which asymptotically stabilizes the
system. This feedback is C° except on the z3 axis. By (S3) we know there is no
C? asymptotically stabilizing feedback.

This example sﬁggests the need for further research on necessary conditions for
asymptotically stabilizing feedbacks that are only piecewise C° in some nice
fashion.

We briefly review the methods for constructing stabilizing feedback laws. We
have already seen an example of perhaps the most useful approach, namely,
set up an optimal control problem where the desired feedback is the optimal
solution. In general, we choose a lagrangian ¢£(z,u) > 0 and consider the problem
of minimizing

/0  f(z,w)ds (10)

subject to the dynamics (1). We are led to the Hamilton-Jacobi-Bellman partial

differential equation for the optimal cost V(z) and optimal feedback v = k(z)
given that z(t) = z, '

(Z_Z(z)f(x, k(z)) + €(z, k(z)) =0 (11)
O X (@ k@) + 5z, b)) =0 (12)

A typical choice of lagrangian £(z, ) is a quadratic form
1 ! /
Uz, u) = 5(1: Qz + v Ru)

when @ is nonnegative definite matrix and R is positive definite matrix.

If the linearization (6) of a C* (1) is stabilizable and ¥y = Qz is a detectable
output for (6) then the HJB equations (11,12) can be solved term by term
following Al’brecht [Al] and Lukes [L].

Other stabilization methods start with a positive definite function V (z) that is
a candidate Lyapunov function for the closed loop system. Jurdjevic and Quinn
[J-Q] assume the existence of a positive definite V(x) which demonstrates that
the undriven system (u = 0) is at least neutrally stable, i.e.

9y = 2 @)f(0 <0 (13)



and attempt to find u = k(z) such that

d oV
—V = Z(2)f(z,k(z)) <0. (14)

If (14) is a strict inequality for all z # 0 then asymptotic stability is guaranteed,
if not then a more detailed analysis using La Salle’s invariance principle might
guarantee asymptotic stability.

Artstein [A], Tsinias [Ts1],[Ts2] and Sontag [So] assume the existence of a control

Lyapunov function V (z) , namely a positive-definite functions such that for every
x,

4 < 15

5, () flzu) <0 (15)
They construct selections u = k(z) so that (14) is satisfied.
Hermes [H1],[H2] and Kawski [Kal], [Ka2], [Ka3], [Ka4] have used homoge-
neous approximations to construct stabilizing feedbacks. Byrnes-Isidori [B-I,
Dayawansa [DM1], [DM2], [DM3], [DM4] and others have used the Center Man-
ifold Theorem [Ca] while Abed-Fu [AF1], [AF2] have employed bifurcation the-
ory. More recently Kokotovic and co-workers [Ko] have employed backstepping
techniques based on earlier work of Tsinias and Byrnes-Isidori. Dayawansa-
Martin-Knowles [DM1], [DM2], [DM3], [DM4], [DMK] have exhaustively stud-
ied the stabilizability of low dimensional systems. For a fuller discussion of these
and other approaches we recommend [Ba] and [CTAT).

uinf

Before closing this section, we briefly discuss the H* approach to nonlinear sta-
bilization. See [B-B], [I-A], [vdS2| and their references for more on H* control.
We assume that the basic model (1) is affine in the control and we add a driving
noise w(t)

i= f(z)+ g(z)u+blx)w (16)
We assume that it is critical that the control and certain functions of the state
z = h(z)u h{0) =0 (17)

be kept as small as possible. More precisely, we wish to choose a feedback (3)
so as to minimize the L? gain between w and z . This is too hard in general so
instead we choose a gain level v and seek to find a feedback so that the closed
loop system has gain at most . We shall not go into detail because of space
limitations, but refer the reader to [vdS2], [I-A], [B-B], [Kr2]. The solution of
this problem involves finding nonnegative solutions V' (z) to inequalities such as

ov 10V (1 ov' 1
— —— | bV — g¢ —hh' <0. 18
8:Ef+28:c (72 gg) 3$+2 - (18)



This is a Hamilton Jacobi Issaccs inequality generalizing the HJB equation
(11,12) and under suitable observability hypothesis its solution is a Lyapunov
function for the closed loop system when the driving noise is zero.

3 Nonlinear Detectability

For simplicity we restrict our attention to systems with observations but without
controls,

i= f(z) (19)

y = h(x). (20)
Suppose €1, is a region of = space where solutions to (19) are unique and where
the system is positively invariant, i.e., if £(0) € Q then z(t) € 2 for all £ > 0.
We would like to construct a method for estimating the current state z(t) from
the past observations, {y(s),0 < s < t}. Ideally we would like the method to be
another dynamical system driven by the observations y(t) whose output is the
estimate 7 (t) of z(t), i.e.

= g(zy) e

7= k(). (22)
Such a system is called an observer and it should have certain properties. At
the very least it should be well defined, in other words, there should exist a
region 2, of z space such that the combined system (19, 20, 21, 22) has unique
solutions and is positively invariant on €, x €2,. In addition, the error

e(t) = z(t)— T (t) (23)

should go to zero as t — co. We might also require that when the error is zero,
it remains zero. This is equivalent to

e=0 (24)

when e = 0. In some cases this last condition is too much to expect.

When a suitable observer exists, we say the nonlinear system (19,20) is de-
tectable.

There are many possible refinements of the concepts of an observer and of de-
tectability. If the original system is C™ we might ask that the observer also be



C". A local observer is one such that error e(t) goes to zero whenever the initial
error e(0) is sufficiently small.

Detectable linear systems admit observers whose state dimension is no greater
than the state of the system but this may be too much to expect for many
nonlinear systems. We distinguish three important subcases of observers. The
first is a reduced order observer where the dimension of x equals the sum of the
dimensions z and y and the map z,y —— k(z,y) is 1-1 and onto from 2, x h(£2;)
to . The second is a full order observer where the dimension of z equals the
dimension of z and the estimate does not depend directly on v, T= k(z) where
k is a diffemorphism from Q, to ;. After a change of z coordinates, we have
2= z. The third is an expanded order observer where the dimension of z is less
that the dimension of z (2 might be infinite dimensional) and again the map

k does not depend on y, = k(z) where k is a submersion of {2, onto £2,. For
reduced or full order observers it is reasonable to require (24) but for expanded
order observers this is generally not possible.

The above discussion does not fully capture exactly what one would want in
an observer. Any asymptotically stable nonlinear system (19,20) is detectable
under our current definition even if there is no information in the output, say
y = 0. For linear systems, this is usually not a problem as detectability implies
the existence of an observer with exponentially stable error dynamics, i.e., there
exists @ > 0 and M > 0 such that

le(t)] < Me™ |e(0)]. (25)

But for asymptotically stable nonlinear system the observer error convergence
may be so slow as to be useless. Consider the following:

Example 3.1 Let z € R?,

—38ignT —Iy
fHz) = ) = ,
0 —ZX9
Azy) C™ function,0 < A(z;) <1
1 Iy 2 l2€|
Azy) =
0 Ty < |€|

f(@) = M) f(2) + (1 = M) ().



h(z) = 0.
This system is globally asymptotically stable to z = 0 . The full order observer

b= £(2)

A

T= 2z
is well-defined, satisfies (24) and the error goes to zero. But the error may not
change for long periods of time. Suppose the initial values of z(0) and z(0)
are both to the far left or far right of the z, axis. Then the error is constant
for min {|z1(0)], |21(0)|} — 2¢ units of time. This is hardly satisfactory. So we
consider imposing stricter requirements for convergence of the observer error.

Following Vidyasagar [V] one might require the existence of function V(z, 2)
such that there exists class K functions a; satisfying

ay (le]) < V(z,2) < az (Je]) (26)

V(2,2) < —as(le]). (27)
Recall a function « is of class K if it is C?, strictly monotone increasing and

a(0) = 0. Actually Vidyasagar only considers full order observers but his defi-
nition readily generalizes.

In collaboration with M. Zeitz, we have proposed a similar condition [Kr-Ze],

namely that there exist a positive definite function V(e) such that V (z,2) is
negative definitive.

Both of these definitions require that nonzero errors are continuously decreasing
as measured by V. Both imply é= 0 when e = 0. There are several possible
variations of these definitions which have more or less the same properties. But
do they capture what we want in a nonlinear observer? Consider the following:

Example 3.2 Let z € R! and

I= —z°

y=20

where oo = 1,3 or 1/3. Define the observer



fa=1
V (z,2) = —€%.
fa=3
. 82 9 —64
V(z,2) = —§($2+22+(m+z) ) < -
fa=1/3
) 010/9
Vv (:c,z) = __2__(1.2/9 + 22/9 + (Il/Q + 21/9)2) < —()122/9612/9.

For each o = 1, 3, 1/3, the observer error converges in the sense of both Vidyasagar
and Krener-Zeitz. Of course this is no surprise as the three systems differ by
nondifferentiable changes of coordinates.

It should be noted that neither the definition of Vidyasagar or Krener-Zeitz is

coordinate independent. Consider a full order observer where I= 2. Suppose we
consider a change of state coordinates

T = ¢(z) (28)

for (19,20) and we make the corresponding change of state coordinates on the
observer

z = ¢(2) (29)

with the corresponding estimate
A

T=7%. (30)

Except for linear systems and linear changes of coordinates, the error does not
transform in the same fashion

e=T—7=¢(x)— ¢(2) # ¢(e) = ¢(z — 2). (31)

For this reason both the Vidyasagar and Krener-Zeitz error convergence condi-
tions are coordinate dependent.

We turn now to a discussion of necessary conditions for detectability analogous
to those of Brockett. In [Kr-Ze] the following three conditions are presented.

(D) If a C! system (19,20) admits a C' observer with locally asymptotically
stable error dynamics, then the linear approximation of (19,20) around any
critical point z° in Q, f(2°) =0

af
o= (o) (32)



y= 5" (33)

must have no unobservable, unstable modes.

(Dy) If a C° system (19,20) admits a C° observer with (locally) asymptotically
stable error dynamics and if two (sufficiently close) initial conditions z*(0) and

22(0) generate the same output trajectory y'(t) = y?(t) then the two state
trajectories converge,

(1) — 2%(t)] — 0 (34)

(D3) If a C° system (19,20) admits a C° full order observer with (locally) asymp-
totically stable error dynamics in the sense of Krener-Zeitz then the mapping

2 { f(x)} (35)

is (locally) 1-1.

It is fairly obvious that (D;) is necessary for C' systems and observers, the
following shows that it is not necessary for C° system and observers.

Example 3.3 Let 2 € R}

Condition (D;) is reminiscent of a definition of nonlinear (local) observability,
namely, that if two (sufficiently close) initial conditions give rise to the same
output then they are identical.

Condition Dj is proven as follows. Suppose (19,20) admits a full order observer

AN A
z=f (z,y) (36)
satisfying (24), This implies that

A

f(z, h(z)) = f(z).



Suppose there exist z! # z? such that

then N .
f@') = f(z*) =f (2%, h(z?)) =f (°, h(a")).
Suppose = z! and Z= 2?2 then
e=z' —22#0
while R
e= f(z')— f (2%, h(z")) = 0.

Therefore there cannot exist a positive definite V() such that V (z, :JAS) is nega-
tive definite.

Most methods for constructing nonlinear observers are based on the linear
paradigm. Suppose the system (19, 20) has an asymptotically stable critical
point, z°, where the output is ¢° = h (z°). Without loss of generality we can
assume z° = 0 and y° = 0. The linear approximation is

_9f

= %(O)x (37)
Oh

= %(0)33 (38)

A linear observer for this system will be a local observer for the nonlinear system.
Associated with the linear observer is a quadratic Lyapunov function for the
linear error convergence. One can try to extend this Lyapunov function and the

linear observer to obtain a nonlinear observer. For variations on this theme, see
[Th]v [K_E'T]a [TS?’]? [TS4]7 [B-P]

The observability of the (19, 20) is equivalent to the state being recoverable
from the output and its time derivatives. This suggests the use of a high gain

observer which approximates a differentiator to estimate the state [E-K-N-NJ,
[G-H-O].

One way to find a linear observer is to add noises to the model (37,38) and
solve the resulting Kalman filtering problem. One can also add noises to the
nonlinear model (19,20) and try to solve the resulting nonlinear filtering problem
[H-W]. Generally speaking this is computationally intractable as it requires



solving in real time the Zakai partial differential equation, a parabolic PDE
driven by the observations. Most nonlinear filtering problems are inherently
infinite dimensional.

Other approaches include considering the effect of changes of state and output
coordinates and output injection on the nonlinear model (19,20). If the system
can be transformed into a linear system in this fashion, then an observer or filter
can be constructed for the latter and transformed back to obtain an observer
for the nonlinear system (19,20). See [B-Z], [K-1], [K-R], [Ph], [X-G1], [X-G2],
[(X-G3], [L-T].

Recently, a variation on an older approach to nonlinear estimation called maxi-
mum likelihood estimation by Mortensori [M] and minimum energy filtering by
Hijab [Hi] has been utilized in the nonlinear H* problems [B-B], [vdS2]. In
[Kr2], we describe how the linear H* filters of Khargonekar and Nagpal [K-N]
can be generalized to a nonlinear setting. We briefly describe the approach and
refer the reader to [Kr2] for more details and proofs.

The basic approach is to view the estimation problem as a game against nature
similar to the H* control problem [B-B]. To this end we add unknown driving
noise, observation noise and initial conditions to the model (16,17).

z= f(z)+w (39)
y = h(z)+v (40)
z(0) = ° (41)

We seek to estimate the state z(t), or more generally some function k(z(t)), from
the past observation in such a way as to minimize the L? norm of the mapping
from the unknown z° w(-), v(-) to the estimation error. Even in the linear case,
this is a difficult problem so instead, we choose an attenuation level v and seek
an estimator that achieves this level.

This can be viewed as a game against nature where the payoff is
11
2 Jo 2

Ka(s)— b ()] — ) o) ds - 5[ @

A
We seek to minimize this choosing k, a functional of the past observations.
Nature seeks to maximize this by choosing z°, w and v consistent with the ob-

servations. If there exists a choice of I/; (s), a functional of the past observations
such that (42) is negative for all ¢+ > 0 and all z° w(s), v(s) consistent with y(s)
then we have achieved the noise attenuation level . In [Kr2] the following are
proven in a slightly more general setting.



A
Theorem 1 A k (t) achieves the noise attenuation level v iff there exists Q(z, 1),
a functional of the past observations, such that

(i) Q(z,t) is nonpositive definite and Q(z°,0) = —3 120

(i1) Along all trajectories x(t) generated by z° w(t),v(t) consistent with y(t)
2 2 2
— |w|® = |v|" dt. (43)

A
zZ— Z

1 2 1
Qe(t), ] %0 > 3 /t =

Theorem 2 Suppose I/; (t) and Q(z,t) satisfy Theorem 1 and suppose Q is C*
then Q satisfies

0Q  0Q 1

+ b Al 10Q ,0Q 1
ot Ox 2~2

2
k —55';99—3—;‘?'5@—}1(17)! 2> 0. (44)

On the other hand if IAg (t) and Q(z,t) are functionals of the past observations,

A
Q is C', nonpositive definite, @(z°,0) = —3 |2°® and satisfies (44) then k (t)
achieves the attenuation level ~.

Theorem 3 Suppose Q(x,t) is a C', nonpositive definite solution of

Q(z°,0) = % \xor

7

9Q 9@, 1 1
20z 8z T 2

5t T ozl T a2y

ly —h(z)]* =0

where IQ (t) = k(é\: (t)) and z (t) is the assumed unique maz of Q(z,t). Then

A A
l/; (t) and Q (z,t) are functionals of the past observations and k (t) achieves
the attenuation level . Furthermore the differential game with payoff (42) has

a saddle point solution with value Q(I/; (t),t). The function Q(Q‘ (t),t) — Q(z,t)
is an observation dependent Lyapunov function for the undriven system, w(t) =
0,v(t) = 0.

These results can be readily combined with the H* state feedbacks described
in Section 2 to obtain nonlinear H*™ measurement controllers [Kr2]. As with
nonlinear filters, nonlinear H™ observers are infinite dimensional because the
observer state is Q(z,1).
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