DIDO’S PROBLEM WITH A FIXED CENTER OF MASS
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Abstract. Given an area and coordinates of the center of mass we compute the minimal length
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1. INTRODUCTION.

Let us begin with the plot of the legend as it is
narrated in ”The Aeneid” by the Roman poet P.
Virgilius Maro:

Mercatigue solum, facti de nomine Byrsam Tau-
rino quantum possent circumdare tergo...

"They bought a space of ground, which (Byrsa
called, from the bull’s hide) they first enclosed...”
translated by J. Dryden ( The works of Virgil
(1961), p.144,).

The Phoenician princess Dido fled from her
brother, the tyrant Pygmalion. Dido and her com-
panions chose a good place on the north coast of
Africa (at present the shore of the Gulf of Tunis)
and wanted to found a settlement there. Among
the natives there was not much enthusiasm for
this idea. However, Dido managed to persuade
their chieftain Hiarabas to give her as much land
as she could enclose with the hide of a bull. Only
later did the simple hearted Hiarabas understand
how cunning and artful Dido was: she then cut
the bull’s hide into thin strips, tied them together
to form an extremely long thong, and surrounded
with it a large extent of territory and founded the
city of Carthage there. In commemoration of this
event the citadel of Carthage was called Byrsa.
According to the legend, all these events occurred

in 825 (or 814) B.C.!

The situation described in the legend can be
stated as the following optimization problem:

' the description of the legend is taken from (1]

-find the optimal form of a lot of land of the max-
imum area S for a given perimeter L.

Clearly, its solution is circle. Several other pos-
sibilities of stating optimization Dido’s problems
are described in Alekseev et al. (1987)

In this paper we will solve Dido’s problem with a
fixed center of mass. This problem is formulated
as follows:

-find the minimal length curve through the origin
which envelopes the given area with a fixed center
of mass.

Let us look at this problem in slightly more gen-
eral way. Consider the following control system

z = bl(.’L‘)Ul + bz(.’lf)UQ, (1)

where z € R"; by(x),ba(z) are smooth vector
fields on R™ and u;,us are controls. We denote
by Lie(by,ba) Lie algebra generated by the vec-
tor fields by and by, i.e., Lie(b1,bs) is the smallest
algebra which contains &; and bs. Let L be any
Lie algebra. Then we use the following notations:

L1 = L, Lk = Spa.n{@y-lﬁu:k[LVaLu]}

(k=1,2,..), and (L)* = L/Ly41,

where [L,, L,] = span{[¢,n]; n € L,, &€ Lu}
and [£, 77] denotes the Lie bracket of vector fields ¢
and 7 ( for a definition, see e.g. Sternberg (1983)).

It is clear that (L)* is a nilpotent algebra of order
k.

We can replace the system (1) by its nilpotent
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approximation of order &, i.e.,
E = 31(E)uy + Ba(Z)uz, (2)

where 2 € R (7 > n);  [1(2), f2(2) are such
polynomial vector fields that

rankg{Lie(31,52)} =n VI € R"
and there is a homomorphism
@ Lie(B1, B2) — (Lie(by, by))F,

rankz{Lie(81, F2)} denotes the
rank of Lie(/31, F2) at the point Z, i.e., the maxi-
mal number of linearly independent vectors from
Lie(B3, B2) evaluated at z.

of Lie algebras;

According to the results obtained in Krener (1975)
there is a smooth mapping under which the so-
lutions for (2) become the approximation to or-
der O(t**1) for the solutions of (1) governed by
the same controls. Thus if we are able to solve
an optimal control problem or motion planning
problem for (2) then for small periods of time we
have a suboptimal solution or suboptimal motion
planning for (1), respectively. This idea inspired
some recent 1nvestigations on optimal control and
motion planning Brockett (1981), Brockett and
L.Dai (1992). Jurdjevic (1990). Several interest-
ing results were obtained in the frame work of Sub-
Riemannian geometry Brockett (1981). In Brock-
ett (1981) the optimal control problem

T
%/ (u} + ud)dr — inf, z(0) = z(T)=0 (3)
0

was completely solved for the system (2), with
the nilpotent Lie algebra of order k=2. The cor-
responding problem for the system (2) with the
nilpotent Lie algebra of order £ = 3 was not thor-
oughly studied. 1t was only shown in Brockett and
L.Dai (1992) that the extremals can be described
in terms of elliptic functions when the system gen-
erates a nilpotent Lie algebra of order k = 3.

On the other hand, if ¥ = 2, then one can treat
the optimization problem (2),(3) as a classical
isoparametric problem (see, e.g. Alekseev et al
(1987)): find the minimal length curve which en-
velopes a region having a given area. This prob-
lem was solved, e.g. by princess Dido, many years
ago. Therefore the results obtained in Brockett
(1981) are not very surprising.

It turns out that for the system (2) with the nilpo-
tent Lie algebra of order & = 3 the problem (2),(3)
15 Dido’s problem with a fixed center of mass. In
this paper we will describe all the extremals of
this problem.

2. PROBLEM STATEMENT.

Consider the system

r = u,
= det(z,u)z, (4)
z = det(z,u),

where z,y € R? 2 € R and
det(z,u) = z1us — zouy.

We are interested in solving the following optimal
control problem:

T
J(u) = / (u(7)? + (ua(r))?)dr — inf (5)

(2(0) = 2(T) =0,y(T) =, «(T) = Z),

where Y € R?, Z € R are given. In other words,
one needs to design a control which minimizes
the value J(u) and steers the system (4) from
the origin into the point with coordinates z(T) =
0, y(T) =Y, 2(T) = Z. 1t is easy to see that if
Y(T)=2Z-Y and Z(T) = 2 Z, then the optimal
curve v = {z(1);0 < t < T, %x(t) = u(t)} has
the minimal length among all the closed curves
through the origin each of which envelopes a re-
gion having the area Z and the center of mass at
the point Y.

On the other hand, let

1 0
0 1
b1 = —ILox1 bz = .”l?% (6)
—x% r1xo
—ZI2 (3]

Then Lie(by, b2) is a nilpotent Lie algebra of order
3; and

rank.(Lie(by,b2)) =5 Ve R?* yec Rz eR.

3. EXTREMALS.

To derive the equations describing the extremals
of the problem (4),(5) we use Pontryagin maxi-
mum principle. Tt is possible also to obtain the
same equations in the framework of classical the-
ory of variations ( see Brockett and L.Dai (1992))

Following the procedure stated in Pontryagin et
al. (1962) we take the hamiltonian

H(i')p: U) =<p, bl >u+ < Y2 b2 > uz — %luP;



where I denotes (x,y, z); by, by are defined in (6).
The extremals are governed by the equations:

0H(Z,p,u)
ou '
OH(Z,p,u)
Op ’
OH(z,p,u)
e

23
l
—_
-3
~

b=

Instead of p = —ﬂ%”’ﬂ it 1s more convenient
to exploit the equations for w; =< p,b; > =
1, 2. Differentiation of w; (i = 1,2) along the
solutions of (7) yields

d
—W)] = —wigls,
L 12U2
d
—Wy = WialUy,
o 12U1

where wyo denotes < p,[by,bs] > . Calculating
the derivative of wys =< p,[b1,b2] > along the
solutions of (7) we obtain

d
—Wi2 = W112U1 + Wa12Us,
dt 12 112U 212U2
where
d
—wi13 = 0,
pm 112
il =0
dthlz )

since Lie(b;, by) is a nilpotent algebra of order 3,
and hence

[b1,[b2,6]] = 0, [ba, [b1,2]] = 0.

Thus we can rewrite the equations (7) in the fol-
lowing form

T= U, wi=pour, wy = Pousg,
y = det(z,u)x,
= det(z, u),
'li)l = —WiaUsg,
ng = Wialy, (8)
Wiy = Wi1aUy + WaraUg,
wyz = 0,
’lbglg = 0.

where pg 1s some real number.

Notice that (8) provides necessary conditions for
the curve

yr=A{z(t); te(0,T], 2(0)=«(T) =0}

to be the minimal length curve passing through
the origin and enveloping a region having a given
area and fixed center of mass. Thus if y7 is a

projection of an extremal onto the plane R2, then
the curve

9yr +q={gz(t) +¢; t €0, 7]}

obtained from yr by means of the transformation

_ .. [ cosp ~—sing q1
grta=r (sin<p cos @ >x+<q2>
v ER r>0,r€R,q€R2

is also a projection onto RZ of an extremal, satis-
fying (8). But gyr + ¢ passes already through the
point ¢ and its center of mass is shifted along the
vector ¢ € R?.

Let 2(t) € C and Z(t) = z1(¢) + iza(t), where
i? = —1. Then two dimensional complex space C?
acts on C as follows

(9,9): & — §& +4q,
where § = e""(cos ¢ + isin )
R, ¢€R)and §=q +1gs.

(r >0, re

Thus the set of all the projections onto R2 of the
extremals defined by (8) is invariant under this
action of C? on C.

Theorem 1 The projections onto R2 of the ex-
tremals defined by (8) are obtained from the so-
lutions of the equations

tw
3

~—sinw (9)

T = e

w =

by means of the action of C? on ' described
above.

Proof: First of all consider the case py = 0. Then
w; =0 and ws =0.

Therefore we have either w13 = 0 or u = 0. Thus
w2t + warauz = 0,

and hence the corresponding extremals are points
and straight lines. That proves the assertion of
Theorem 1 in the abnormal case, py = 0.

Suppose py # 0, then we take py = 1 and accord-
ing to the maximum principle Pontryagin et al.
(1962).

(u1(1))? + (u2())? = const
for extremals. Therefore we have

ui(z) = neos(w(t) + ¢),

us(z) = nsin(w(t) + ¢)



forsomene& R,n >0,y € R.

Tt follows from (8), that
& = —€sin(w(t) +¢),

where £ > 0, ¢, € € R. Thus for py = 1 the
equations (8) imply that the projections of the
extremals onto RZ are given by the solutions of
the system

P o= elnlﬂ|-§-i(o.1+¢)y

o = —€sin(w+ ), (10)
with different 1,£, ¢ € R (€ > 0). It is easy to see
that all the curves corresponding to the solutions
of (10) are obtained from the solutions for (9) by

means of the action of C? on C. Indeed, taking
the new time scale

T:\/Et

and introducing the notation

w=w++gp,
we obtain
Po= L mhltiv-e)
(11)
w = —sinw.

After multiplying the equation for # in (11) by
VEe mI=it¥ =) we obtain (9).

The system (9) arises in various branches of math-
ematics Brockett and L.Dai (1992), Bloch and
Crouch (1993), Griffiths (1983), Jurdjevic (1990).
Its solutions are represented in terms of elliptic
integrals and very well studied.

The solutions of (9) are sketched in Fig.1.

With the help of the theory of elliptic functions
(see, c.g.. Lawden (1989)) we can calculate the
closed curves in RZ which are the projections of
the minimizers, i.e., the solutions for the problem
(4),(5). The length minimizers are shown in Fig.2.
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Fig. 2. Length minimizers for different values of C' =

(Y2)?/(]Z]*), where Y and Z are defined in (5).




