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Abstract

A general theory of nonlinear observers is developed.
It is broad enough to include all existing approaches
both deterministic and stochastic. We show that all
observers reduce to the solution in a viscosity sense
of a partial differential equality of Hamilton-Jacobi-
Bellman type. Based on this, we have developed a
hybrid algorithm for a nonlinear state observer that
utilizes two levels of computation. On the higher level
we solve the HIB equality by approximating it by a dis-
crete time and space nonlinear program. At the lower
level we level, we initiate local observers that resemble
extended Kalman filters at the local minima of the HIB
solution. These are computed on a much faster time
scale than the solution of the HIB equality. One also
computes a measure of how well each local observer
explains the observations. The current estimate is the
local observer that best explains the observations to
date.

We will present numerical results of the hybrid method
with the inclusion of a forgetting factor to speed up
the convergence. The algorithm has been tested for
the low-dimensional systems. The performance of the
hybrid estimator is contrasted with that of an extended
Kalman filter. We have found that given a badly cho-
sen initial condition of a nonlinear system, an extended
Kalman filter can get trapped in a region far from the
true value while the hybrid approach achieves an accu-
rate estimate.

1 A General Framework for Obéefvers

For simplicity we restrict our attention to systems with
observations but without controls,

i = f2) n)
y = hiz) (2)
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An observer is a causal mapping

{f&)l"_’i(t), 0<s<t

from the initial state estimate £° and the past obser-
vations, y(8),0 < s < t, to the current state estimate,
£ (t) satisfying the following conditions.

(a) The estimate £(t) as a function of t is continuous
from the left and limits from the right exist.

(b) There exists a function A3(r,t) of class K-L such that

|z(t) — £()] < B(1z(s) — E(s)l,t —s)

(Recall a function B(r,t) is of class K-L if for fixed t,
it is of class K, i.e, continuous, strictly increasing and
B(0,t) =0, and for fixed r it goes to 0 as t goes to 00.)

Using arguments similar to those of (3], one can show
that condition (b) is equivalent to the two conditions

(c,d)-

(c) There exists a class Ko funtion §(e) such that
\z(t) - £(t)] < € whenever |z(s) — Z(s)] < 5(¢) and
0<s<t (Recalla function §(€) is of class K ifitis
of class K and goes to 00 S € goes to 0.)

(d) For any 7, € > 0 there exists T(r; €) such that |z(t) -
#(t)| < € whenever \z(s) — &) <T andt—s>T.

Either (b) or (¢) implies (e).
(d) If z(s) = #(s) then z(t) = &(t) for all s <t

The above defined observer is global in z,% and is
uniform in z,%,5,t. One could consider local and/or
nonuniform observers but we shall not do so.

Theorem If there exists an observer for (1, 2) then
there exists a function Q(z,t) with the following prop-
erties

(i) Q(z,t) depends causally on 9 and y(s),0 £s <t
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(i) 0 < Q(z,t) < jlz — ()%,

(iit) Q(z.¢t) = 0 iff z = Z(¢),

(iv) Along any trajectory z(t) consistent with the ob-
servations y(¢t) = h(z(t)), Q(z(t),t) is monotone de-

creasing to 0,

(v) Q(z,t) is a viscosity subsolution of the partial dif-
ferential equation

Qu+Quf +5Q:QL — gy~ A2 =0, (3)

(vi) Q(z,t) is a viscosity supersolution of (3) where
Q(z,t) < glz - &(t)|

w(T
v(T)

Proof. Given the observer, define Q(z,t) as follows
. 1t 2 1. 2
Q(z,t) = inf 5/ dr + 3 [Z2(s) — 2(8)]
(4)

where the infimum is over all 0 < s < ¢ and all triples
w(T), v(r), z(7) satisfying

1) = flz(7)) +w(r) (5)
y(r) = h(z(r)) +v(r) (6)
2(t) = =z (7

where y(7) is the output from (1, 2) and £(s) is the
estimate from the observer.

(i) Clearly Q(z,t) depends causally on #(t) which is a
causal function of 2° and y(s),0< s < t.

(ii) By definition Q(z,t) is nonnegative. By setting
s =t in (4) we obtain the other inequality.

(iii) By setting s = ¢t in (4), we obtain Q(Z(t),t) =
0. If Q(z,t) = 0 then there exists a sequence
sk, 2k(7), wi(7), ve(r) such that (5, 6, 7) hold and
such that

1 t

: ),
goes to 0 as K — oo. By passing to a subsequence
Wwe can assume S, converges to some sg, 0 < 59 < ¢.
For each k, extend wi(7) to be 0 for 0 < 7 < s and
extend zx(7) by (5). Since wi(r) converges to 0 in
L>[0,], z(7) converges uniformly to the solution z(7)
of (5,6) with w = 0 and y(r) = h(z(r)) for 7 € (s, 1].
It follows that the infimum of |x(7)~&(7)| for 7 € (so, ]
must be zero and so (b) implies that x = z(t) = £(¢).

wi(r)|?

vk (T)

dr + %m(sk)-zk(sk)l"’ (8)

(iv) If t; < to then we wish to show Qz(t1). t1) <
Q((t2). t2). Let z(r), w(r), v(r) be any admissi-
ble trajectory for defining Q(z(t1),t1) by (4). Ex-
tend to a admissible trajectory for defining Q(x(t;),t)
by setting 2(r) = x(7). w(r}) = 0, v(r) = 0 for

T € [t1,t2]. The value of the bracketed expression?‘
in (4) has not been changed by the extension hence
Q(z(t1),t1) < Q(x(t2),tz). It follows from property'
(b) and (ii) that Q(z(t),t) goes to 0.

(v) To show that Q(z,t) is a viscosity subsolution of
the partial differential equation (3), we must show thag
if ®(z,t) is any smooth test function such that Q-9
has a relative maximum at z,t then

1 1
B+ af +58:0; — Sy - A2 <0 (9)

at z,t. Suppose Q — @ has a relative maximum at z, ¢

but (9) fails. Then there exists an € > 0 such that
1 1

q)t+QIf+§(b;¢; - Ely—hlz >e>0 (10)

at all z, s sufficiently close to z,t. For any w(r) define

z(7) as the backward solution of (5, 6) and define v(r)

by (6). Choose ¢ sufficiently small so that (10) holds
on [t — 6,¢]. Then

Q(z,t) — @(z,t) > Q(2(t —6),t — ) — B(z(t — 6), t  6)

(11)
or
Q(I’ t) - Q(Z(t - 6)7t - 6)
> O(z,t)— (2t —98),t-6)
= t O + 0. (f +w) dr (12)
t-6
From the definition, (4), of Q,
1/t w(r 2 7'
Qz,t) < Qz(t - 8),t —6) + 3 /t—6 o(r) dr (13)

Putting these together we obtain

l/t w(T) 2d7.2/t &, + &, (f +w) dr (14)
2 Jis v(T) t—§
or
¢ 1 1
0> [ & +&(f+w)~ 5w’ -z y-hl® dr
-6 2 2

(15)
We let w = @, to obtain

t
1
02/ <I>t+(1>zf+%<I>I<I>’x——2-|y—h]2 dr >e§ >0
t—§&

(16)
which is a contradiction.

(vi) To show that Q(z.t) is a viscosity supersolution of
the partial differential equation (3) wherever Q(z,t) <
%|z — Z(t)], we must show that if ®(z.t) is any smooth
test function such that Q — & has a relative minimum
at z,t then

1 1 2
@+ Do+ 300 -y - A 20 (17)
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s, By assumption

Q(z,t) — B(z,t) < Q(z,8) — B(z,5)  (18)

N

pall s sufficiently close to z, t. If (17) is not satisfied
-wen there exists an € > 0 such that

1 1
b+ @ f + 52200 - Sy - hP<—e<0  (19)

ot all =, s sufficiently close to z,t. For any w(r) choose
. «ufficiently small so that (18, 19) hold on [t — §,].
Then

1 t
aet-Qete=8t-9) =3 [ ol +ly - dr

t—§

t 1 1
s/ O+ @y(f +w) — = w2 ly—hldr
t—6 2 2

t
1
< / By + Bolf +w) + 28,8, — S|y — h2dr
-6 2 2
< —e€b
(20)
3ince Q(z,t) is defined by (4) and Q(z,t) < %]m—a‘:(t)l,

we can choose s < t, w(t), v(r), z(r) satisfying (5,6,7)
such that

2

t
awe 2 g [ 90 e L la(e) — o)~ 5
t 2
Rzt = Q(z(t—é),t—6)+%/ 5 ':)’((:)) d7-§
t—
(21)

which leads to the contradiction —eb > —%. QED

2 Hybrid Estimation

Bi.sed on this, we have developed a hybrid algorithm
for & nonlinear state observer that utilizes two levels
of computation. On the higher level we approximately
rompute a function Q(z,t) similar to the above. At
rhe lower level, we initiate local observers that resemble
»xtended Kalman filters at the local minima of Q(z,t).
These are computed on a much faster time scale. We
50 compute how well they explain the observations.

We take as the estimate, the one that best explains the
nhservations to date.

Since the computation of the Q function is expensive, it
5 done on a relatively coarse spatial and temporal grid.
Hence the minimum of Q converges slowly to the true
“tate and is never very accurate due to the coarseness of
the grid. The local observers are computationally inex-
E"'“SW‘? especially since the filter gains are derived from
‘.J rather than solutions of Riccati equations. Moreover
Vhen initialized close to the true value, they converge
uckly and accurately. However if they are initialized

far from the true value, they don’t always converge to
it. The coarse information in Q allows us to initialize
the local observers properly.

Mortensen [4] and Hijab [1] introduced the concept of
minimum energy estimation. Given an initial state es-
timate £°, an observation history {y(s) : 0 < s < t}
and an endpoint z one seeks the minimum “energy”
triple 20, w(s), v(s) satisfying

t(s) = f(z(s)) +w(s) (22)
y(s) = h(z(s)) +v(s) (23)
z(0) = 2° (24)
o) = = (25)

The “energy” of the triple z°, w(s), v(s) is defined as

1 ¢ —aft—s w(s)
: /0 —elt=3) o

Increasing the forgetting factor a decreases the impor-
tance of the initial state estimate and earlier observa-
tions and increases the importance of the later obser-
vations. The value Q(z,t) is a measure of the liklihood
that z(t) = z given the initial state estimate and the
observations to date. The smaller Q(z,t) is, the more
likly z(t) = z. Let Q(z,t) denote the infimum of (26)
over all triples satisfying (22-25), then the minimum
energy estimate is

#(t) = argminQ(z, t). (27)

By arguments similar to the above, it is not hard to
see that Q is a solution in the viscosity sense of the
Hamilton Jacobi Bellman (HJB) PDE

2 -

t
ds + S— 8" - (26)

0Q+Q: +Qef +3QuQ — Sl —hF=0.  (28)

Following Kushner and Dupuis [2], we compute @ not
by approximately solving the HJB PDE but rather by
solving an approximating nonlinear program. Let r, k
be relatively coarse spatial and temporal steps. Choose
a subdomain of R® where the state is known to be and
consider the rectangular lattice of points in the subdo-
main with spacing r. Following the dynamic program
approach (in forward time), we define the approximate
Q(z,t) at lattice points = and time steps ¢t by

Qz,t+k) =inf{(1 - ak)Q(z,1) (29)
t-2 flzt+k)+flzt)’k
e T 2 2
2
. ty(t) _ h(zt) ;r h(z,t) g}
Qo) =5la-2 (30)

where the infimum is over z in one of the following
a) the whole lattice in the subdomain
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b) the 2n nearest neighbors {2’} of z in this subdomain
c) the r ball around z in the [; norm.

Since @ is only defined on the spatial lattice with step-
size 7, in case (c), one makes the following approxima-
tions for |z —zf, < 7.,

n

> IMlQ(sign(x)2, 1)
1

flz.t) = Y INlf(sign(h)z't)
1

n

> IAilh(sign(X:)z', t)

1

z = En:,\,-zi
1

1= Y A
1

where {z* : 4 = 1,...,n} are the n nearest neighbors in
the nonegative orthant based at x.

Q(z:1)

h(z,t)

I}

Notice that the computation of @ must be done in
real time because of the presence of y(t) and complex-
ity of the computation is inversly proportional to the
spatial step r to the power of the state dimension n.
Hence there is a tradeoff between accuracy (small r)
and computational ease (large r). Of course similar
difficulties arise in all nonlinear estimation algorithms,
for example, nonlinear filtering requires solving the Za-
kai stochastic PDE in real time.

The extended Kalman Filtering is an alternative ap-
proach which can be very accurate when it converges.
However it may fail to converge if the problem is highly
nonlinear. If we assume that the w, v in (22,23) are
independent standard white Gaussian noises and the
initial state estimate is an independent Gaussian ran-
dom vector with mean £° and covariance P then the
extended Kalman Filter (EKF) takes the form

= f(&,t)+PR(%t)(y - h(z,t) (31)

P = f.(&t)P+ Pfo(&,t) +1
—PhL(%,t)he(&,t)P (32)
#0) = ° (33)
POy = P° (34)

An example of a highly nonlinear problem where an
EKF may fail to converge is

& = z(l-z% (35)
y = z°+ex (36)
If ¢ = 0 the states x, —z are indistinguishable but for

nonzero ¢ the system is observable. The dynamics has
stable equilibria at * = +1 and an unstable equilibrium

at £ = 0. If ¢ > 0, the system is initialized near
and the EKF is initialized near 1, the EKF will fail to?
converge to the true value. ‘

Suppose Q(z,t) is a smooth solution to HJB PDE
(28), Z(t) is a relative minimum of Q(z,t) and g(t) ="
Q(Z(t),t) then

aQ
35 Etht) (37)}}}

0 = Qu(#(t),1)&(t) + Que(E(t),t).  (38) »

If we partially differentiate (28) with respect to x a.nd \A
evaluate at Z(t), ¢t we obtain

0 = Qt:(j(t)it) + Q:z(j(t)7t)f
+hz(£(8), t)(y — h(2(t), ¢). (39)

From the last two equations we obtain
& = f(&1)+Qz (& )h(3,1)(y - h(z,t)) (40)
and evaluating (28) at £(t), t yields

0 =

o~~~
8>
—

. 1 N
¢ = —ag+sly-h@El (41)

These are the equations of a local observer based on Q.
Notice the similarity of (40) to (31) of an EKF.

The hybid approach is as follows.

1) Compute Q(z,t) by a nonlinear programming ap-
proximation (29) on a coarse spatial and temporal grid,
2) At each relative minimum of Q(x,t), initialize a local
observer Z£(t), q(t)

3) Let the various local observers £(t), g(t) evolve ac-
cording to (40, 41) on a fast time scale,

4) Eliminate redundant local observers when they come
close together,

5) Choose as the current estimate, the £(t) of the local
observer with smallest g{t).

While this algorithm can result in a large number of
local observers, the computational burden associated
with each one is quite small, less than an EKF. Each
local observer invioves integrating n + 1 diffferential
equations instead of (n? + 3n)/2 for an EKF. The to-
tal computational burden associated with computing
Q(z,t) on a coarse spatial and temporal grid and com-
puting many local observers on a fine temporal scale is
considerably lighter than computing Q(z,t) on a fine
spatial and temporal grid. Moreover the accuracy of
the solution of the HIB PDE (28) is limited by the
fineness of the spatial grid while machine precision is
the limit on the spatial accuracy of a local observer.

We apply the hybrid method to the one-dimensional
example (35,36) with where ¢ = 0.5. The forgetting
factor is & = 0.05. The spatial domain is [-3, 3], the
spatial step is r = 0.4 and the temporal step is k = 1.
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rhe time step of the local observers and the extended
-,'\'Adm;m Glter is 0.1. The initial state is —0.0009 and
:,,;, EKF and hybrid filter (HF) are initiated at +1.
'!ﬁ,w EKF gets trapped near +1 while the HF converges
, che true state. The estimation errors are shown in

TR
‘estimation esror
s
0
0.8 — HF oL
) p—
-1
1.8
~o 5 10 15
tme
Figure 1:

The second test case is a two dimensional nonlinear
system described by

—4z, — 22 + 5(:1:% + xg):cl - (xf + x%)za:l

151 =
f2 = x1 -4z +5(22 + 2d)zg — (22 + 22) 2z,
y = .

This is a system with a stable origin and two limit
cycles. The limit cycle of radius 1 is unstable and the
dmit cycle of radius 2 is stable. Again the forgetting
factor is @ = 0.05. The spatial domain is [-3, 3] x
-3, 3], the spatial step is r = 0.4 and the temporal step
s k = 1. The time step of the local observers and the
2xtended Kalman filter is again 0.1. The initial state
s 2§ = 3 = 1.4, so the state is attracted to the stable
dmit cycle of radius 2. The EKF and hybrid filter (HF)
wre both initiated at £ = £} = 0.5. The EKF gets
“rapped near the origin while the HF converges to the
‘rue state. The estimation errors are shown in fig. 2.

estimalion error

o 06 1 15 2 25 3 35 4

i — HFest.
2 <. EKF o8l
3
0

It
0.5 1 18 2 25 3 s 4

ki 08 1 15 2 25 k] 35 4

Figure 2:
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