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Summary. We describe the theory of reciprocal diffusions in flat space. A recip-
rocal process is a Markov random field on a one dimensional parameter space.
Every Markov process is reciprocal but not vice versa. We descibe the first
and second order mean differential characteristics of reciprocal diffusions. This
includes a new definition of stochastic acceleration. We show that reciprocal dif-
fusions satisfy stochastic differential equations of second order. Associated to a
reciprocal diffusion is a sequence of conservation laws, the first two of which
are the familiar continuity and Euler equations. There are two cases where these
laws can be closed after the first two. They are the mutually exclusive subclasses
of Markov and quantum diffusions. The latter corresponds to solutions of the
Schiddinger equation and may be part of a stochastic description of quantum
mechanics.
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1 Introduction

In 1931, E. Schidinger [18] described some similarities between the partial
differential equation of quantum mechanics that bears his name, and a partial
differential equation associated to a Markov process that is pinned at both end-
points. The following year, S. Bernstein [1] formalized some of Sdmger’s

ideas by introducing the concept of a reciprocal process. In current terminology,
a reciprocal process is a Markov random field on a one dimensional parameter
space. Apparently P. Levy was unaware of Bernstein’s work when he defined the
Markov property for random fields [15], otherwise he might have called them
reciprocal fields.
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Let £(t) be an vector valued stochastic process depending on the one dimen-
sional parameter € [to, t;]. We refer tot as time although it could be a spatial
parameter. Such a procesgeégiprocalif conditioned on its value§(ty), £(t2) at
the end points of any subinterval [to] C [to, t;], the process on the interior of
the subinterval is conditionally independent of the process on the exterior of the
subinterval.

Reciprocal processes have also been called quasi-Markov [3] or Bernstein
[22] processes. They are closely related to conditionally Markov processes. The
goal of Schédinger to develop a stochastic theory of quantum mechanics was the
inspiration for stochastic mechanics, as developed by Nelson [16] and others. For
the most part this effort has focused on Markov processes. The Markov processes
form a proper subclass of the reciprocal processes. We believe, for reasons that
are discussed in [14] and in Sect. 7 of this paper, that a satisfactory stochastic
theory of quantum mechanics cannot be based on Markov processes. If such a
theory is possible within the framework of reciprocal processes, it will involve
a different and completely disjoint subclass of the reciprocal processes. We have
termed this subclass the quantum processes. For similar reasons Zambrini has
developed the theory of Euclidean quantum mechanics [23]. We refer the reader
to the above citations and [9] for further results on reciprocal processes.

In [12] it is shown that continuous Gaussian reciprocal process can be real-
ized as the solution of a linear stochastic differential equation of second order
satisfying boundary conditions. In this paper we extend these results to nonGaus-
sian processes and nonlinear stochastic differential equations of second order. For
simplicity, we restrict our attention to processes evolving in flat space. The scale
of the noise imposes a Riemannian or subRiemannian metric on the space. In flat
space the noise is invariant under translations and rotations. This paper is based
on early work in [11]. A path integral description of similar results can be found
in [13].

It follows immediately from the definitions that every Markov process is
reciprocal and every reciprocal process is conditionally Markov in the following
sense. Lef(t) be a reciprocal process ofg,[t; ] and lets € [to, t:]. Let £(t|x, s) be
the conditioned subprocess that satisfiesy = x with the conditional probability
measure. Theg(t|x, s) is Markov on the subintervaltd, s] and is also Markov
on [s,t] It need not be Markov ontg, t;].

The law of a Markov procesqt) is determined by its initial distribution and
its two time (forward) Markov transition distribution. We shall assume throughout
that densities exist. Let(Xo, to; ..-; Xk, tk) denote the joint density @f(tj) = x;, | =
0,....,k and letp(x,s;y,t) be the probability density of(t) = y given that
£(s) =x fortg < s <t < t. The Markov property implies that fap < t; <
<. <k <t,

p(Xo, to; .3 Xk, tk) = p(Xo, to)P(Xo, to; X1, t1)...P(Xk—1, tk—1; Xk, tk)- (1.1)

The Markov property is invariant under time reversal. The law of a Markov
process is also determined by its final dengip%, t;) and its backward Markov
transition densityp(x, s;y,t). This is the probability density of(s) = x given
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that{(t) =y for tg < s <t < t;. Unless stated otherwise, a Markov transition
density is assumed to be a forward Markov transition density.

A function p(x, s;t,y) is a Markov transition density if for fixed,t it is
Borel measurable it and a probability density ig and, in addition, it satisfies
the familiar Chapman-Kolmogorov equation

p(X,Sit,Y) = / p(X.,S: €. 7)p(E, 71y, )dE (12)

fortg<s<7<t<t.

Two Markov processes are in the safoeward Markov classf they have
the same forward Markov transition density. The Markov class of a process is
not invariant under time reversal, two Markov processes with the same forward
transition density need not have the same backward transition density.

The law of a reciprocal proces&(t) is determined by its joint density
at the end timesp(Xp, 0;%,t;) and its three time reciprocal transition den-
sity q(x,s;y,t;z,u). This is the conditional density of(t) = y given that
&(s) = x, &) = z wheretyg < s <t < u < t;. The reciprocal property
implies that fortg <t; <t, < ... <t < ts

p(Xe, te; . X, t) = (X, tas X2, B2 X, te) . Q(Xi—2, te—2; Xie—1, tk—1; Xk, t)
X p(Xa, t1; X, ). (1.3)

Notice how the density is propagated inward through the nested sequence of
subintervals

[t ] 2 [t2,t] 2 .. 2 [tk—2, t]
obtained by moving one endpoint, in this case the left one, inward at each step.
This respects the reciprocal property. There are other ways of propagating the

density inward, while respecting the reciprocal property. For example, we could
move the right endpoint inward

p(X1, te; o Xk, t) = p(Xa, T X, Te) X (1.4)
O (X1, t1; Xe—1, tk—1; Xk, t)...0 (X1, t1; %o, t2; X3, t3),

or alternately move the left and right endpoints inward

pXe, tas i X, ) = p(Xa, ) X, t) X (1.5)
q(Xe, s Xe—1, te— 13 X, t)A(Xe, t1s X2, o X1, k1)

For g to be a reciprocal transition density, all must yield the same value. Re-
ciprocal densities can also be propagated outward but we shall not do so in this
paper.

Jamison [9] has shown that for a functigfx, s;y,t; z, u) to be a reciprocal
transition density, it must be a density ynand satisfy fortg <t; <t, <t3 <
ty <t
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q(xla tlx X2, t21 Xa, t4)q(X27 t25 X3a t3x X4, t4)
= (X1, t1; X3, t3; Xg, ta)q (X1, t1; X2, t2; X3, t3). (1.6)

This ensures that (1.3), (1.4), (1.5) and other inward propagations of the density
yield the same joint densities. Notice that (1.6) is the four time transition density
of the process, the joint density 6ft2) = x2, £(t3) = X3 given{(ty) = X1, &£(ts) =
x4 computed in two different ways using Bayes'’ rule and the reciprocal property.
We denote the four time transition density §xq, t1; Xz, t2; X3, t3; Xa, ta).

Suppose thap(x, s;y,t) andp(x,s;y,t) are the forward and backward two
time transition densities of a Markov process. Its three time transition density is
given by Bayes’ rule,

p(x, sy, )p(y,t;z,u) _ p(x, 1y, t)p(Y, t; z,u)

p(x,s:z,u) P(X,s: 2, ) (1.7)

q(x,s;y,t;z,u) =
This is a reciprocal transition density since Markov processes are reciprocal.
Similar expressions exist for other multi-time transition densities, e.g., the four
time transition density is

P(X1, t1; X2, 22)P(X2, t2; X3, t3)P(X3, t3; X4, 1)

@8
P(X1, t1; Xa, ta) (18)

q(xa, tr; X, t2; X3, 13 X4, ta) =

and so (1.6) holds trivially.

Two reciprocal processes (in particular, Markov processes) are said to be in
the sameaeciprocal classf they have the same reciprocal transition density. This
concept is invariant under time reversal.

Jamison [9] has shown that all reciprocal transition densities arise from
Markov transition densities. I§j(x, s;y,t;z,u) is a reciprocal transition density
then, by the conditionally Markov property of reciprocal processes,

p(XaS;yvt) :q(XaS;yvt;vatf) (19)

is a Markov transition density for each, t; and alls <t < t;. If we start with
a reciprocal transition density, define a Markov transition density by (1.9) and
another reciprocal transition density by (1.7) then the two reciprocal transition
densities agree orgf t;). If we start with a Markov transition density, define a
reciprocal transition density by (1.7) and another Markov transition density by
(2.9) then the two Markov transition densities are not necessarily equal but they
are in the same reciprocal class.

Any reciprocal process with transition densitycan be constructed in the fol-
lowing fashion. Supposg(t) is a Markov process in the reciprocal clasgjafuch
that its endpoint density(xo, to; X , tr ) is positive for allXy, x;. Partition£(t) into
subprocesseqt|xo, to; X, ) by conditioning the endpoint&to) = Xo, &(tr) = X;.
Under the conditional measure, the subprocesses are Markov processes in the re-
ciprocal class of]. Choose an arbitrary endpoint densiifxo, to; X¢ , ) and form
the mixture of the subprocesses with this weight. The result is the general recip-
rocal process in the class qf
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By a Markov diffusion we mean the strong solutigtt) of an Ito stochastic
differential equation

d*¢' = b€, tydt+ o] (¢, t)d*w (1.10)
(o) = &o (1.11)

wherew(t) is a standard Wiener procesy,is a random vector independent of
w(t) andd* denotes that this is a forward Ito equation. We distinguish between
Stratonovich and Ito integrals by the use afi(s) and d*w(s) respectively.
The procesg(t) is adapted to the increasing filtratidh generated by, and
{w(s) : 0 < s <t}. The forward and backward difference operators are defined
as

dEel(t, dt) = £ [€(t + dt) — £(t)] wheredt > 0 (1.12)

In a slight abuse of notation, we use the same notation for their differential limits
asdt | 0 as in (1.10). Throughout this paper we adopt the summation convention
on repeated indices.

The scale of the noise induces a Riemannian (or subRiemannian) metric on
¢ space. Letd! =oja}. If it exists, the inverse; defines the metric. The space
is flat if al = 7. We only consider diffusions in flat space, i.€.Jives in n
dimensional standard Euclidean spaié, ando] = 4.

The diffusion issmoothif b(¢,t) is three times continuously differentiable
with partials that are globally bounded. The latter assumption is imposed to
simplify the exposition, it can be relaxed. Because of the assumptiobsaoil
o, the associated Markov transition dengifx, s; y,t) is smooth for alls < t.

This is easy to see a&X, s; Y, t) satisfies the forward partial differential equation

0 (x,s;y,t) + g (p(x,s;y, )b (y, 1)) — Lo (x,s;y,t1)=0. (1.13)
atp ) !yv ay| p 9 vy7 ya Zaylaylp ) vyv - Y. .
and the backward equation
7/ R w,. i 1 9 o ey =
83 (Xa S,y,t) + 8Xi (X,S,y,t)b (th) + 2 aXiaXi (X7S1yat) - 0 (114)
Partial derivatives will be denoted as follows
; bl
1 —_
bo = ot’
; bl
I —_
LIPNE
bi_ _ o2b!
kT oxi oxk

The above definitions can be extended to reciprocal processes using the con-
ditionally Markov property. For example, a reciprocal procé@$ is a smooth
reciprocal diffusion in flat spacé there is a smooth Markov diffusion in flat
space in its reciprocal class. We shall only consider smooth Markov and recipro-
cal diffusions in flat space and for brevity we occasionally refer to such processes
as Markov and reciprocal diffusions.
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2 Differential characteristics

Recall that a solution of the first order stochastic differential equation (1.10)
satisfies the diffusion (also known as Feller) postulates

E(d*¢'|£(t) =x) = b (x,t)dt +O(dt?), (2.1)
E(d*e d*d|e(t) =x) = aldt+0(dt?), (2.2)
E(|d*¢[% [£(t) =x) = O(dt?) if k > 2. (2.3)

These postulates assert that the process is forward differentiable in a conditional
mean sense. We cail the forward velocityanda! (= 6) the forward diffusion
coefficient They are thdforward Markov characteristic®f the process and are
a complete set of invariants of the forward Markov class as they completely
determine the forward Markov transition densfifx,s;y,t) by the forward or
backward PDE.

The conditional moments of the backward difference have similar expansions

E(d=¢'|¢(t) =x) = bl (x,t)dt + O(dt?), (2.4)
E(d—¢ d=gd|et) =x) = aldt+0(dt?), (2.5)
E(d=¢k |6(t) =x) = O(dt?) if k> 2. (2.6)

It is well-known [16] that thebackward velocitﬁ and thebackward diffusion
coefficiental satisfy

—~ i dlnp
I — |
b = Db — i (2.7)

al = al (2.8)

assuming that Ip is differentiable. The paiH andal are called thebackward
Markov characteristicand completely determine the backward Markov class.
Recall that Nelson [16] defines the current veloaifx,t) and osmotic ve-
locity u(x,t) of a Markov diffusion proces§(t) as
o= (b +b')/2, (2.9)
u = (b —b)/2 (2.10)

Define the centered evaluation and the centered first and second differences as

dO(t, dt) = [£(t +dt) +£(t — dt)] /2, (2.12)

die(t, dt) = [£(t +dt) — £(t —dt)] /2, (2.12)

d2¢(t,dt) = £(t +dt) — 2¢(t) + £(t — dt), (2.13)
then

E(d%'|¢(t) =x) = x +0O(dt), (2.14)

E(d¢'|¢(t) =x) = o' (x, t)dt + O(dt?), (2.15)

E(d2¢'|¢(t) =x) = 2u (x,t)dt + O(dt?). (2.16)
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Note u has the dimension of a velocity, but it appears in the leading term
of the conditional mean of the second difference where one would expect a
guantity with the dimension of an acceleration. Nelson [16] defines the stochastic
acceleration of the process, which he denotes'pyas follows

d*bi(£(1), 1) +d b (€(1), 1)

E( 5

£(t) = x) = al (x, t)dt + O(dt?). (2.17)
Note thata'/ is the diffusion coefficient and' is Nelson’s stochastic accelera-
tion. But none of these quantitigs’, b', v', u', a', are reciprocal invariants, that
is, invariants of the reciprocal class of the process.

By changing the conditioning in a way suggested by the reciprocal prop-
erty, one obtains a more natural definition of stochastic acceleration in terms of
guantities which are reciprocal invariants. A smooth reciprocal diffusion is twice
mean differentiable in the following sense. lditbe a small positive scalar and
let x, dx ben vectors.

Theorem 2.1 Let&(t) be a smooth reciprocal diffusion in flat space and let b be
any forward Markov velocity in the reciprocal classf) then

E(d?¢'|d% =x,d'¢ =dx) = f'(x, t)dt® +g/(x, t)dx dt

+dt? O(dt, dx), (2.18)

E(d%¢' d2¢|d% =x,d¢ = dx) = 25" dt+dt? O(dt,dx), (2.19)

E(d2¢' d2¢) d%ek|dO% = x,d% =dx) = dt? O(dt, dx), (2.20)

4(6” 6k| + 6ik§j| + 6i| 6Jk)dt2
+dt? O(dt, dx), (2.21)

E(d%' d2% d%¢" d?¢'|d% =x,d%¢ = dx)

E(|d%¢[¥ |d% = x,d'¢ =dx) = dt? O(dt, dx)

if k > 4, (2.22)

where f andy are reciprocal invariants given by
fi = by +bibl +b); /2, (2.23)
g = b —bl. (2.24)

The first formula (2.18) asserts that in traveling betwgen dx andx + dx
over the interval { — dt,t + dt], the process experiences a mean acceleration
f(x,t)+g(x, t)dx/dt. The second (2.19) asserts that the process also experiences a
very large random acceleration whose variand®(i$/dt). In contrast to Nelson,
we define thestochastic acceleratioio be f (x,t) + g(x,t)dx/dt wherex =
(&(t+dt)+£(t—dt)/2 is the centered position ade /dt = (£(t+dt)—£(t—dt)/(2dt)
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is the centered velocity for smatit > 0. It is a consequence of the flat space
assumption that in (2.19) the coefficientdifis 267 and there is nalt? term.
Because the conditioning is equivalent{o+dt) = x+dx, f andg are deter-
mined byq(x —dx,t —dt;y, t; x +dx, t +dt) and hence are reciprocal invariants,
they depend only on the reciprocal class of the process. Using other methods,
Clark [4] has shown that, g defined by (2.23,2.24) and the scale of the noise
a{(of( are a complete set of reciprocal invariants. They completely determine the
class of a reciprocal diffusion. Since we are restricting our attention to recipro-
cal diffusions in flat spacd, and g completely determine the reciprocal class.
In particular this implies that two forward velocities are in the same reciprocal
class iff they define the sanfeand g via (2.23,2.24).
In terms of the backward velocity, (2.7), the reciprocal invariants are given

by
fi

bly+ bl — 1 /2, (2.25)

bl — bl (2.26)

9

It follows immediately from (2.7) that (2.24) and (2.26) are equivalent. The equiv-
alence of (2.23) and (2.25) follows from the Fokker-Planck equation satisfied by

P

0 0 : 1 9?
= + j _
0 tp(X,t) o (p(x, )b’ (x,1)) o Ox

which implies

X, 1) (2.27)

2 . 2 _ 5
= j ]
0 8t8xi |np(X,t) +b (X’t)axj axi In p(th) + b,|(X>t) 8XJ In ,O(X,t)
' 0 9 1 &
J - —_
06D = g PO i ot MPSD = 5 i oo MPD)
(2.28)

A smooth reciprocal diffusion is also once mean differentiable in both the
forward and the backward senses if the logarithm of its density is differentiable,
i.e., if there existd, a, b, a satisfying (2.1-2.6). Moreover these quantities satisfy
(2.7,2.8). When studying the first order behaviour of a reciprocal diffusion, it
more natural to employ the centered first difference and the centered conditioning
as it is more compatible with that of Theorem 2.1.

Theorem 2.2 Let&(t) be a smooth reciprocal diffusion in flat space whose density
satisfiesp(x,t) > O for all t € (to,t;), x € R". There exist vector fields(k, t)

and b(x, t) satisfying (2.1-2.8) withla=al = ¢1. Forall t € (to,t), x € R",

the current velocity(x,t) (2.9) and a symmetric matrix field(R, t) satisfy

E(d'¢'|d%¢ = x)

o' (x, t)dt + O(dt?), (2.29)

E(d¢" d¢d|d% =x) ;5”' dt + P (x, t)dt? + O(dt®), (2.30)
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E(d¢' d¢ d'¢"|d% =x)

;(vi (0, 1)K + 0 (x, )6 + oK (x, 1)1 )dt?
+O(dt?), (2.31)

E(dlgi dlfj dlé-k dlé-l |d0§ — X) i(élj 6kl +6ik6j| +6” 5Jk)dt2

+O(dt®), (2.32)

E(jd*¢[* |d° = x)

o@t®) ifk > 4. (2.33)
Furthermore

E(d%¢'|d% = x)

(F' (x, 1) + g/ (x, 1)) (x, t))dt?

+O(dt3), (2.34)
E(d%¢' d2¢|d% =x) = 26" dt +O(dt®), (2.35)
E(d2¢' d2¢ d%ek|d% =x) = O(dt), (2.36)

E(d2§i d2£] d2£k d2£| |d0§ — X) 4(6” 6k| +6ik6j| +6” 6Jk)dt2

+O(dt3), (2.37)

E(|d%[* |d% =x) = O@dt®) ifk > 4. (2.38)
Note the difference in the conditioning in (2.29) and (2.15). Because of (2.29),
the vector fieldv is also called theentered velocityThe matrix fieldP is called
the momentum flux coefficiertf the process. Neithes nor P is a reciprocal
invariant.
Zambrini [22] and Cruziero-Zambrini [5] have considered another definition
of stochastic acceleration. §ft) is a diffusion andj(x, t) a smooth function then
define

Do(x,t) = E(d7¢(£(1), 1)[&(t) =x) (2.39)
D.o(x,t) = E(d™o(£(1), )IE(t) = X) (2.40)

Their stochastic acceleration is
1
2(DD +D.D.)¢ (2.41)

The Zambrini-Cruziero acceleration appears in an equation which characterizes
the extremals of a stochastic variational problem. Thieullen [20] has shown that
the Zambrini-Cruziero stochastic acceleration eqtdiatsgv for Gauss-Markov
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and 1 dimensional Markov diffusions. This holds for all Markov diffusions as
we now show. The Zambrini- Cruziero stochastic acceleration is not a reciprocal
invariant because of the presencevof

From equations (2.1), (2.4) and the forward and backward Ito rules we have

D¢l = bi(f,t) (2.42)
D.£ = bi(¢, )¢ (2.43)
DDE' = bly(€, )+ b} (6, b (€,1)+ iy (€. 1) (2.44)
D.D.E = D€ +B (€ OD (D~ By (@249

From (2.7) and (2.28) it follows that
D.D.¢' = Hdéﬁ)+bh@90bN§J)+bﬂ&,UézInpOQU

+bfij (x,t) — ;bjjj (&t) (2.46)

SO

;(DD +D.DL)E = blg(e, 1)+ bl (£, DI (€. 1)

1 9 1
+2bvi(x’t)8xi Inp(x,t) + Zb’” (x,1)

f1& 1) +g/ (€ (D) (2.47)

Both of the above theorems are proven by local short time asymptotic expan-
sions of Markov and reciprocal transition densities originally presented in [11].
The details are a bit tedious and will consume the rest of this section. The sub-
stance of the proof of Theorem 2.1 can be seen in the following rough asymptotic
analysis.

Supposep(x, s; Y, t) is the Markov transition density of solutions of the Ito
equation (1.10) in flat space. For smpll— x| andt —s >0

P, Sy, t) ~ (2n(t —s))~"/?
x (1— Db} (x,s)(t —)/2)
ly —x = b(x,s)(t — 5)[2
2t — s)
From (1.7) it follows that the induced reciprocal transition function is approxi-
mately

X expE ). (2.48)

q(x —dx,t —dt;y,t;x +dx,t +dt)
~ (mdt) ™2 (1 + (b (x — dx, t — dt) — bl (y, 1)) dt/2)
ly — X +dx — b(x — dx,t —dt)dt?> |x +dx —y — b(y,t)dt|?
X exp <_ 2dt a 2dt
L ldx—b(x —dxt — dt)dt|2>

it (2.49)
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We expand and obtain
|2

q ~ (mdt)""2exp(- ) (2.50)

ly —x
dt
x (L= (y' = x)(blodt + b} (y) —x +dx)) — bl (dx' — bl dt) + b, dt/2)
where the left side is evaluatedxat dx, t —dt; y, t; x+dx, t+dt and the right side
atx,t. Assuming the neglected terms ai& O(dt, dx), one obtains (2.18-2.22).
We shall use related Gaussian transition densities as the leading term in
our asymptotic expansions. Suppose we consider the linearization of the Ito
differential equation (1.10) around somes R",

d*e' = (b (x,t) + bl (x, t)(& — xI))dt +d*w'. (2.51)

The Markov transition densitgy(y, S; z, t) of solutions of this equation is Gaus-
sian with meanuy (v, s;t) and covariancé&y (s; t),
i =Y+ (BBl X)) (- 9)
+ (blo +bjb! + (blg +blbY) (¢ —x))) (t —5)°/2
+O(t — s)°, (2.52)

R = 81t —9)+ (b +b)) (t — 92/2+¢1 (t - 9’
+O(t — s)%, (2.53)
where the evaluations df and its partials are at, s. The form ofcl is imma-

terial to what follows.
The corresponding reciprocal transition density

(Y, s; €, 72,1) = Py, s; & T)px(é, 7 2, 1)

pX(yv S; th)
is also Gaussian with mean (y,s; 7;z,t) and covariancé, (s; 7;t),
i i ) i iy (=TT —9)
po= v - (Bl ) @ -yt L
(pperp) 09
+t —7)(7 —s)O(t —s,Z —y), (2.54)
R = (t _(tT_(TS)_ ) it — ) —90(—5). (2.55)

where the evaluations df and its partials are at and any time in $,t]. The
curve(7) is the straight line (the geodesic in flat space)

Py Ty TS (2.56)
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Notice that the second order expansions of the mean and covariamgeaod
a bit simpler than those qdy, another indication of the utility of the reciprocal
point of view.

In particular, the mean and covariance p{x — dx,t — dt;y,t + odt;x +
dx,t +dt) are

pp = X' +odx

! o7 ((blo+ Db ) dt? + (b — b, ) o c)
+(1 — o?)dt? O(dt, dx), (2.57)
RIi = 17 7 5 dt + (1 - ¢2)0(dt®) (2.58)
2 ’ '

where the evaluations df and its partials are at,t and anyo € [—1,1]. This
proves Theorem 2.1 for Gaussian reciprocal processes, a result found in [12].

Lemma 2.3 Let p(y, s; z,t) and p(y, S; z,t) denote the Markov transition densi-
ties of solutions of the Ito differential equation (1.10) and its linearization (2.51)
around x. There existssufficiently small so that if y and z are withirof x then

ply,s;z,t) = pu(y,s;z,t)[1 (2.59)

P @ -y
+b7jk 6
<[ —x)F =X+ ¢ =)@ =X + (@ =)@ —xY)]
+O(t — S)* + (t — S)O(y — X,z — X)? + Oy — X,z — x)*]

where the evaluations of b and its partials are at x and any s, t].

Proof. The proof is based as a stochastic variation of the parametrix method of
E. E. Levi [7] and Varadhan’s estimate [21]. For anys < 7 <t , define

m(y,s;7,2,1) =/p(y,s;fm)px(f,f;z,t)dé- (2.60)
Clearly
(y,s;s;z,t) = p(y,s; z,t), (2.61)
w(y,s;t;z,t) = p(y,s; z,t), (2.62)
so

t
Py.sz) =52+ [ Tesnzndn (269
s T
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Now
0 0 0
o= / S EIRETZ O FRY S 6N (€ Tz 0dE (2.64)

wherep satisfies the forward equation

1 62
20¢O¢!

0
¢!

andpy satisfies the backward equation

SRS EN T By SEDDEN) 2y sien=0 @6

(€20 e T 0 7) Bl ) x9)
1 9?%py _ B
2 e ETZD =0 (2.66)
Integration by parts yields
B P .
or = [ P.sien € iz 0F € i) o
o1 |
= [pusienpdemizn gl € iz 0 € rin de (267
where ‘ _ . _ ’ .
B'(€, %) =b'(€, ) = b'(x,7) = bj(x, )¢ —x) (2.68)
and , :
a'arldpx (€. 7iz,1) = Zt :f +O(t — 7). (2.69)

Since b is smooth@?® with bounded partials)

G0 = Bl DE —X)E X9 +O(E X (270)

Next we employ Varadhan’s estimate

) _ 1 l€ -y o0
PO-SIET) = o 2 P ( (g TOT =9 (271)
which holds uniformly on compact subsetsyofs, £, 7 space [21]. In particular
p(yv S; 57 7—) = pX(yv S; 5; T)O(T - S)O' (272)
So plugging (2.69,2.70,2.72) into (2.67) and utilizing (2.54,2.55), we obtain
0 dln i
a: = px(y,s;z,t)/qx(%s;fm;z,t)O(T—S)° (%ipx (€ 7z,0)6'(€, %) d§
= pX(ya Sz, t) |:O(t - S)O + (t i- S)O(y —X,Z— X)z ) (273)
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and from (2.63)
P(Y.S;2,t) = px(y,S;2,1) [1 +O(t — 8) + Oy — X,z — X)] . 2.74)
We return to (2.67) and plug in (2.69,2.70,2.74) to obtain

g: = px(y;s; z,t)/qx(y,s; £,7,2,t) [1+0(r —s) +O(y — X,z — X)°]
x [Zt' :fi +O(t — T)O} Bbjjk (x, 7)(E — X)X — XKy + O — x)ﬂ dé
= pysiz.) | by ) D el -y
Ble(2! =y () X)) =X 5
+O(t —s)+O(y —x,z — X)> + . iSO(y—x,z—x)“} (2.75)
which after integration with respect toyields (2.59). QED

Proof of Theorem 2_1From (1.7)

p(x —dx,t —dt;y, t)p(y,t;x +dx,t +dt)

p(x —dx,t — dt; x +dx,t +dt)
(2.76)

g(X —dx,t —dt;y, t;x+dx, t +dt) =

By the above lemma
q = o [1-bj(x,t) ((y) —x)dt/2— dx dt/6) — bl; (x,t)dx dt/6
+blj (. ) (7 = X)* = x)dx /3 = (v —x' )y —x)dx/3)
+O(dt?) +dt O(dx,y — x)? + O(dx, y — x)*] (2.77)

whereq and g are evaluated at — dx,t — dt;y,t;x + dx,t + dt. Now ¢y is
Gaussian with mean and and covariance given by (2.57,2.58) so

/ v —x)gdy = — ; ((blg + 001 +bly /2) dt?+ (b — 1) a o)

+dt? O(dt, dx) (2.78)
[ =x) - xady=edtrd Ot ) (279)
/ ' =X = x)(y* - x¥)qdy = dt* O(dt, dx) (2.80)

[0 =x07 x5 = x40 X hady = (68 aH sl + o ¥y
+dt? O(dt, dx) (2.81)
and the higher moments ad¢? O(dt, dx). QED
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Proof of Theorem 2.2Let £(t) be a smooth reciprocal diffusion in flat space
whose density satisfigg(x,t) > 0 for all t € (to,t;), X € R". If we impose the
condition that{(t;) = x then we obtain a Markov diffusion and we can compute
its forward Markov characteristics. Lbtbe any smooth forward velocity field in
the reciprocal class df(t), (2.23,2.24) and lgb(y, s; z, t) be the forward Markov
transition density of solutions of the Ito equation (1.10). The Markov transition
density of¢(t) conditioned oré(t;) = % is

p(y,t;z,t +dt)p(z,t +dt; %, t;)
p(yv S, Xf, tf) .

We expand the second term in the numerator

ay,t;z, t +dt; %, tr) = (2.82)

a.iztdoxt) = potizted) |1+ P i@ - )

+6°In p

o (v, t; %, tr)dt + Ot — s,z —y)?| . (2.83)

Using Lemma 2.3 we obtain

; aln
0y )+ e, 06 1)
+O(dt?), (2.84)

E(*E14t) =y, &) = %)

81 dt + O(dt?). (2.85)

E(d*¢ d*d (&) =y, (t) = %)

Note that the conditional forward velocity
- - I
00, e 1) = b0, )+ O Pt ) (2.86)

varies with conditioning but the diffusion coefficient does not. Because of the
reciprocal property, adding the additional conditig(ty) = Xo does not change
the forward velocity

b(X, t|Xo, to; X, tr) = b(X, t|x¢, tf).

Suppose the endpoint density of the unconditiof@dlis p(Xo, to; X , t;) then
the unconditioned forward velocity(x, t) is given by Bayes rule

px, 006, = [ B i, i, ), i X, i, ) i, )i
(2.87)
Next we derive the backward Markov characteristics of a reciprocal diffusion
conditioned in the past(ty) = Xo. The backward Markov transition density is

P(Xo, to; y, t — dt)p(y,t —dt; z,t)

p()(OvtO;Zat) (288)

q(XO;th yat - dta Zat) =
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We expand the first term in the numerator

q(XOat01y7t - dtl Zat) = p(yvt - dt; Zat) 1- a(g; p(x()atO’ th)(zi - yl)

~OdInp

o (%o, to; Z,t)dt +O(t — s,z — y)?| . (2.89)

Let p.(y,t — dt; z,t) denote the Gauss Markov transition density of solutions of
(2.51) withx = z. By Lemma (2.3)
p(yat - dtr Z, t) = pZ(y7t - dtv z, t) [1 +dt O(Z - y) + O(Z - y)s}

—n/2 _ ‘Z - y|2
(2 dt) exp odt

x [1+@ —y) (b'(z,1) = bz, )@ —y))
+0O(dt) + O(z - )], (2.90)

hence

E@ k0 =260 =) = b)) Ptz

+0O(dt?), (2.91)

E(d™¢ d=g|&t) = z,£(to) = %) = 6 dt + O(dt?). (2.92)

Once again we see that the conditional backward velocity

dln
OXi

depends on the conditioning but the diffusion coefficient does not. Adding an
additional condition in the future does not change the backward velocity

B (X, txo0, o) = b' (¢, 1) — 1 P (0, tos X, 1) (2.93)

b(, t|Xo, to; X , tr) = b(X, t|Xo, to).

The unconditioned backward velocit_;(x,t) satisfies

p(x, b(x,t) = //E(Xaﬂxo,to: Xt , t)0 (X0, to; X, t; X , tr ) p(Xo, to; X , tr )dXodX .
(2.94)
To compute the centered mean velocity (2.29), we start with the joint density
of £(t — dt), £(t +dt) conditioned ort(tg), £(t)

q(Xo, to; X—2z,t—dt; x+z, t+dt; X, t;) (2.95)

_ p(Xo,to; x —z,t —dt)p(X —z,t —dt;x +z, t +dt)p(x +z,t +dt; %, t)
p(Xo, to; Xt , tr) '

As before we expand the first and third terms in the numerator araundnd
obtain
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q(Xo, to; Xx—2z, t—dt; x+z, t+dt; X, tr) (2.96)

=p(x —z,t —dt;x +z,t +dt)q(Xo, to; X, t; X, tr)

dln . 0Oln
X |1+ axip(x,t;xf7tf)2'+ 8tp(x7t;xf,tf)dt
dln p _ i Odlnp . 2
- 8Xi (X07tO|X7t)ZI_ 6t (X07tOvat)dt+O(t_SaZ) .

We apply Lemma (2.3) to obtain

p(x —z,t —dt;x +z,t +dt) = py(Xx —z,t —dt;x +z,t +dt)

x [1+dt O(z) + O(z)°]

= (r dt)""2exp— [2I*
x [1+22' (b'(x,t) +b(x,t)Z)
+O(dt) + O(2)°] (2.97)
so the conditional centered velocity
_ i
v' (X, t]Xo, to; X, tf) = / sztp(x —z,t —dt;x+z,t +dt)dz (2.98)

satisfies

1 . —
v(X, t|Xo, to; Xs, tf) = 2(b' (X, t|Xo, to; Xt , tr ) + b' (X, t]Xo, to; X , tr))dt
+O(dt?). (2.99)

Now

p(x,t)v' (X, 1) =/vi (X, t[X0, to; %, tr )G (X0, to; X, T X , t ) p(Xo, to; X , tr )dxodx;
(2.100)

and (2.87,2.94) yields (2.29). Assertations (2.30-2.33) are derived in a similar
fashion.

The assertions (2.34-2.38) follow immediately from Theorem 2.1 and the
nesting of conditional expectations, e.g.
E(d2¢'|d% = x) = E(E(d?¢'|d% = x, d*¢ = dx)|d% = x). (2.101)

QED
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3 Stochastic ODE’s of second order

It is our goal to define @econd order stochastic boundary value probleithe
form

d?¢' = £1(&,)dt? + g (¢, )dx¥ dt + 7' (€, t)dt> (3.1)
€to) = % (3:2)
€(t) = X (3:3)

wheref, g are defined by (2.23,2.24) for some smooth vector figlg(x,t) is
a generalized random field, formally defined by
d?uw'(t) , i 0w ® 1
e +Dj(x,1) gt 2b7ij (x,t) (3.4)
with w(t) a standardn dimensional Wiener process amg, x are randomn
vectors.
A first attempt at a definition is the following. A reciprocal procégy with

almost surely continuous sample paths is a solution of the second order stochastic
boundary value problem (3.1-3.3) §f{t) satisfies the integral equation

tr — 1o tr — 1o

7' (X, 1) =

X (3.5)

t; . i X .
+ / I(t,9) [f'(£(s), s)ds+ g{ (£(s), S)dE () + 7' (£(S), 5)ds].

to

wherel(t, s) is the Green'’s function of the differential operaﬁng with Dirichlet
boundary conditions

=t —t)(s—to)/ (tr —t if t>s,
F(t’s)‘{—(t: —-s)/(t —Oto)/f(tf —Ot)o) if t<s’ (36

From the definition ofy(x,t) we see that (3.5) is equivalent to

t _tOXo o 3.7)

& =

+/ I'(t,s) [f'(£(s), s)ds+ g (£(s), )A€ (5)]

to

O T (o). )| ds.

t 2,
o [res)| i o9
to
But this is not a complete definition for we have not defined the various stochastic
integrals. Rather than defining them directly, we shall assume that they obey the
standard rules of calculus and then transform them into well-defined integrals.
For example, integration by parts yields

/tff(t 94w '()ds— b - ) - ), @8)
to tr — 1o tr —to
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and so (3.5) is equivalent to
ti,t=to;

Py _ U —
£ = T RN (3.9)

1 i ) .
+ /t I'(t,9) [f'(6(s), s)ds + g (£(s), 8)d¢! ()]

i 4 4 1
+ [ res [b:j(g(s),s)dw'(s)—zbfij (£(5), 9))ds
to
t t

w' (to) — t

. tr — —ty
+ w'(t) — '(tr).
CIORN )

Instead of individually defining the other stochastic integrals
JRETCCRIEE (3.10)
to
and

tf ) d j
| reop .97

& . .
| s ds= /t I(t,9)b) (£(s), 9)dwl(s),  (3.11)

we manipulate (3.9) so that it contains only well-defined integrals.
Suppos€(t) is a solution of (3.9), we define

GO = T w6 - u), @12)
Z() = €O - -v') (3.13)
Then
20) = [ 1.9 [1(6(5) 9ds ] (69,9 5) (3.14)
15 . ) .
o .9 ol 9. 9aul (9 - ;b (9.9,
¢ = = —w' ) + ' (fo), (3.15)
dZ' = d¢ — ¢'dt — dw'. (3.16)

From the definitions of , g we obtain

) tf . . R X .
2= | I'(.s)[do(€9).5) — bi((s),9) (4 — b (€(9), s)ds — dul (9)) .

1
’ (3.17)
Assumingz(t) is C* this becomes

Z(t) = tf__t

tr —1to

- / ) I(t, ) (z(s),9) [Z(s) +  — d(z(s),9)] ds,  (3.18)
to

' t—to ["
/toc(z(s),s)dstf —to/t c'(z(s),s)ds



262 A.J. Krener

where
c(z,t) = b(z + {(t) + w(t),1). (3.19)

This motivates the following definition.

Definition 3.1 A stochastic procesgt) is a strong solution of the second order
stochastic boundary value problem (3.1-3.4) for givenxk, w(t) if almost surely
the processes(t), z(t) defined by (3.12,3.13) are'Cand satisfy (3.18).

Notice that this is essentially a sample path concept, no definition of stochastic
integration is required.

Theorem 3.2 Supposes(t) is a Markov diffusion satisfying the Ito equation
(1.10). Let ¥ = &(to), X = &(t;). Then(t) is a strong solution of the second
order stochastic boundary value problem (3.1-3.4).

Proof. By definition
t
§(t)=¢ o)+ | b'(&(s),s)ds+w' (t) — w' (to). (3.20)
to

Notice this is an ordinary integral for almost every sample path dinsesmooth
and the sample paths ¢f(t) are continous a.s. Lef(t),z(t) be defined by
(3.12,3.13). Clearly(t) is C* and so isz(t) since

20=, 06— u'le-xX +u)+ [ DEeges @2

fo

If we evaluate (3.20) at =t; and plug into (3.21), we obtain

20= " t: b'(€(9).9)ds — ttf bEe).9ds  (3.22)
By differentiating (3.21) we obtain

Z)y+d —plE),t)=0 (3.23)
soz(t) satisfies (3.18). QED

Next we state and prove a useful lemma.

Lemma 3.3 A pair of smooth vector fields(b,t) and E(X,t) are in the same
reciprocal class iff

b (x,t) = b (x,t) + h;(x,1), (3.24)

where hx,t) satisfies the logarithmic backward equation

1 1
0= h)o + h}j b + 2h,jj + 2(h7j )2. (3.25)
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Remark.This is called the logarithmic backward equation because its solutions
are the logarithms of solutions of the backward equation (1.14). This formula
(3.24) is the h-transform of Doob.

Proof of LemmaSupposé(x, t) satisfies the logarithmic backward equation and
b(x,t) andb(x,t) satisfy (3.24). Clearly

g = E,ij —BJ,i
= b,ij - bJ,i - h’ij +h_’ji
=g. (3.26)
And
fi = by+bl b+
= Po™H] 2l

1 _ 1
blg + b + S by +hjo+hjj (b +1y) +hbj +hy,

) 1 1
fl+ (h,o +h;b + 2(h},—)2 + 2h’”>’,
= fl. (3.27)

But by Clark [4],f, g and the scale of the noisg ol = 61 are a complete set of
reciprocal invariants sb(x,t) andb(x,t) are in the same reciprocal class.
Now supposé(x,t) andb(x,t) are in the same reciprocal class and let

k' (x,t) = b (x,t) — b (x, t). (3.28)
Sinceg = g, k is a closed one-form oR", hence exact so there exfssuch that
hi(x, 1) = k' (x,1). (3.29)
Sincef =f,
_ I 1 = 5 1_
ho+h;b + 2(h7j) + 2h,jj =0 (3.30)
i

fori =1,...,n. Hence there exists(t) such that

- = 1-5 1= .

h,o+h’j b+ Z(h’j) + Zh’jj = . (3.31)
Defineh(x,t) = ﬁ(x,t) — a(t) then (3.24,3.25) hold. QED

Theorem 3.4 Consider the second order stochastic boundary value problem (3.1-
3.3) wherew(t) is a standard Wiener process independent of the boundary con-
ditions », X and assume the joint density qf, X; is positive everywhere. There
exists a reciprocal diffusiog(t) which satisfies (3.1-3.3) strongly.
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Proof Let p(x,s;y,t) be the Markov transition density of solutions of the Ito
equation (1.10), ley(x,s;y,t;z,u) be the corresponding reciprocal transition
density (1.7) and lepe (X, %) denote the density of the endpoints. By a result
of Jamison [9], there exist a reciprocal process with these dengitigs and it
is unique up to law. We construct a strong solution of the second order stochastic
boundary value problem (3.1-3.3) with this law by conditioningxgn

Let £(to) = Xo be a deterministic initial condition and define

h(x,t) = In / D0t 56 1) pr 0% %)% (3.32)

b' = b'+h; (3.33)
where ps o(X¢ [Xo) is the conditional density of; givenxo = Xo,

por (X0, %)
por (Xo, X )dXs
It is not hard to show thah satisfies the logarithmic backward equationiso
andb are in the same reciprocal class B

Let w(t) be a standard Wiener process under a probability med3uoa
the space ofv paths which is independent af(t), Xo, X;. Consider the Markov
diffusion £(t) that satisfies the Ito equation

d_*g_i = b, t)dt +dH (3.35)
(o) = Xo. (3.36)

The proces<(t) is a reciprocal diffusion in the class éf g with end point
distribution of Xo, f above. Hence the law of(t) is the same as that of the
desired solution of the second order stochastic boundary value problem (3.1-3.3)
conditioned onxy = Xo. Moreover, by Theorem 3.Z(t) satisfies the integral
equation

prio(% [Xo) = I (3:34)

PR il S Sl (I
€O = ' R+ % (3.37)
15 o o _
o [ 1) [ €6 9ds+ 6 €9, 908 5)
t dz_i(S) — = d_i(S) 1— —
+ /t F(t,s){ b FEIEELS T~ b(E(). )] ds

We wish to show is that this holds with, w replacingE, w.
Define a transformation fromv paths tow paths by

t
PO-T@=0' 0w~ [ hED9s (639
o
This allows us to define the measureon w paths. The measurés P are mutu-

ally absolutely continuous with Radon Nikodym derivative given by Girsanov’s
Theorem ([17], Theorem 8.22),
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dP .
ap — &XPw). (3.39)

where({ satisfies the Ito equation
+ y + = 1 y
d*¢i, =hi((t), )d™w' + 5 (&(t), v)>3dt. (3.40)

We utilize (3.35) and the fact that satisfies the logarithmic backward equation
to obtain

4l = hy(E(D, DA +ho(E(D), Dt + i (€0, e
= d*h((t), t), (3.41)
SO . .
G =h(E), 1) — h((to), to)- (3.42)

Therefore conditioned on the endpoirfsto),g_(tf), the conditional measures of
P andP are identical. By definition, the statement tlg#t), w(t) satisfy (3.37)
means that(t), {(t) defined by

Z(t) = €)@ - (t) (3.43)
Jo = /T G-y O ) (3.44)
satisfy
t

_ tO t = =
b'(¢(s), s)ds

Z(t) =
® —to Jy

t
A (£(s), s)ds — t
ts

t — 1o to

t _ . i _
- / I, )b (), ) [z‘ (5)+C — B (E(s), s)] ds.  (3.45)
o
Notice thatz(to) = z(t;) = 0 therefore the distribution of the endpoints of solutions
to (3.37) is determined not by the distibution«oft) but only by the distribution
of Xo, % . Hence the measurésandP on the space ofv paths induce the same
law on the space of paths via (3.37).

We definez(t), {(t) by

Z'(t) = &(t)—¢'(t)—w' (), (3.46)
O R C )} (3.47)
then by (3.38)
Z'(t) = Z(t)+(C(1) - ¢'(t) + (W' (1) —w' (1)) (3.48)
=7+ ff __t{; (w — wf — wp +wp) — / h; (€(). s)ds

t _ _ 15 _
7y~ " [ hi@s).sds+ TP [ hi(Es).s)ds
tr —to Jy, tFr —

to Ji
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From (3.45) we see that
tr —t t—to (¢

. t . —
zZ'(t) = b'(g(s),s)ds—tf ey

bt ), b'((s), S)ds

1 L . 5 _
- [ re9n .9 [fe+d -5E©.9)ds
to
- / ’ I(t,)h; (£(s), ) ['z"' () +C — @(g_(s),s)] ds.  (3.49)
to
Now from (3.33,3.38,3.43,3.44)
2(s)+ — D (Els)5) =2 (s) + I — b (E(s),9) (3.50)
and from (3.35)
('z"' () +& — B (E(s), s)) ds=d*d(s) — bl (£(s),s)ds — d*a (s) = 0. (3.51)
Therefore
t—tg [

tt—t [t =
b' (£(s), s)ds —
tr —to Jy, (€(=).9) tr —to J;

- / ‘ I'(t, )b (6(s),9) [ () + T — b (£(s),9)] s (3.52)

to

Z(t) = b'(£(s), s)ds

so we have shown th@_(t) satisfies
tr—1 + t—1to

g = MR L (3.53)
t . — . — —
o [ 1) [ E(e). 95+ ] (€, 9 )
tf d2 i(S) = d i(S) 1. —
+ /t r(t,s){ v FEIEENS T = P (E(9). 9| ds
as desired. QED

Notice that we have not proven the uniqueness of strong solutions to (3.1-
3.3). It is possible to show the existence and uniqueness of solutions for any
deterministic boundary valueg,X and determistic continuous function(t)
providedt; — tg is sufficiently small. But just how small is sufficient depends on
Xo, % andw(t) as we now show.

By our definition of a smooth vector field€ with bounded partials), there
exists a constarit > 0 such that

b, < L(L+ix) (354)
Ib(x.t) ~ by. O] < L~y (3.55)

ob*
o] <0 65

ob* ob*
= ] < Lx-y 357
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where || . | denotes the induced matrix norm afddenotes transpose. Since
¢(t) + w(t) is bounded fott € [to, t;], c(x,t) (3.19) also satisfies (3.54-3.57) for
some newL depending ong, X andw(t).

Define an operator o@?! functionsz(t)

_ t _ o
Tlz]'(t) = ttffftto/t CI(Z(S)’S)dS_ttftt(;/t c'(z(s),s)ds (3.58)

- / ‘ I'(t,9)c) (z(),9) [21(s) + ¢ — & (z(s), 9)] ds.
to

Notice thatT[z](t) is C*. The next theorem proves the existence and uniqueness
of deterministic solutions of (3.18) for sufficiently sma&ll— to by showing the
convergence of the Picard iterates

0, (3.59)
T[Z4](1). (3.60)

'Z(iO)(t)
z(Ik+1)(t)

Theorem 3.5 Suppose ,t) is smooth vector field satisfying (3.54-3.57) Con-
sider the integral equation (3.18). There exists- Osuch that if0 < t; —to < 7
then the solution of (3.18) exists and is unique.

Proof. This is a modification of a standard proof of existence and uniqueness of
solutions for two point boundary value problems. See Hartman [8], Chapter XII,
Theorems 0.1 and 4.1. The proof is based on the fact that, for sufficiently small
ti — to, the operatoiT is a contraction on the space 6f functions equipped
with the norm

]| =ma><{ sup [z(s)], (t —to) sup I'Z(S)I} (3.61)
to<s<tf to<s<t
Choose constantsl;, M, such that
My > sup {1+[¢(t)+w(t)]}, (3.62)
to<t<t
Mz > [(], (3.63)

SO

tr—t [ t—ty [¥
iz < / LMads+ |~ / LMyds
to t

tr — 1o tt—1o
t

|I(t, s)|L(M2 + LM;)ds

+

to

(i 0t 1

t—1o
-0 -t)
- t—1o

IA

LM+ 3t — 1)t — LMz + L)

Mz < (t; — to)Ms, (3.64)
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where 1
M3 = 2LM; + 2(tf — to)L(M2 + LMy).
Also
t
Zw@®)] < @]+ | [cO9)ds
to
1
+ / OFES)| | My + LMy)ds
1
< 2LM; + 2(tf — to)L(Mz + LM]_) = Mas. (365)
Hence
lzll < (& — to)Ms. (3.66)

Supposey(t), z(t) are C! functions whose norm (3.61) is less than some
constantN > 0. Then fortg <t < t;,

YO+ oy < FMrLMEN) (367)

and similarly forz(t). Then

-t

T - T < / €Y(9).5) — o(z(s). 9| ds (3.68)
t—

ts

[ 99 - et 91 s

X

® 4(9).9) x [Y(s) — 2(s) — (c(y(s),s) — c(z(s), 5))| ds

te
+ [ ires)
to

t
A

fo

8
9.9~ O (@99 x |29+ o(z(9),9) s

X

So
2(t —t)(t — to)

TV - TEo < T
f 0

Ly -zl (3.69)

s

+

1
T~ +Lly-zlds
f — 10

to

1
/|F(t,s)|L||Y—Z||< N +M2+L(M1+N))ds
t tr —1to

(tr — to)N2 ||y — z||

+

IN

where .
Nz = o (5+N+(tr —to)(L+Mo+ LMy +LN)). (3.70)
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Similarly
TIVI(t) — TZI®)] < ey(t), t) — (c(z(t), V)] (3.71)
1
+ T le(s)s) - cls), )l ds
f 0 Jt
Y\or ac* ac*
[ e < | ve9] | ve9
x [Y(s) — z(s) — (c(y(s), s) — c(z(s), 5))| ds
Yor oc* ac*
[ e < | oee - ee.s
X |2(s)+ ¢ — c(z(s), )| ds
< 2|y —z|
var
o [ 5 es|ery —zds
Ylor N
+ /t S G9lLly 2] (tf—t0+M2+L(M1+N)> ds
< Nslly -z (3.72)
where N
Na=2L+ ") +tf;tO(L(1+M2)+L2(M1+N)). (3.73)

Let Ngs = max{N, N3} then
ITIy] = T[z]]| < (tr — to)Na[ly — 2] . (3.74)

We apply Theorem 0.1 on page 404 of [8] and conclude thatf:fer to
sufficiently small, the Picard iterates (3.59,3.60) converge to a unique solution
in the space o functions on fp, t;] equipped with the norm (3.61). QED

4 Girsanov and Onsager-Machlup theorems

In this section we show how the reciprocal characteristics (2.23,2.24) arise nat-

urally in the context of the Girsanov and Onsager-Machlup Theorems. Suppose

we have two Ito equations
d*¢’
d+£i

b' (¢, t)dt +d*w' (4.1)
b (¢, t)dt +d* (4.2)

whereb,b are smooth vector fields and,w are standard Brownian motions
under probability measurd3, P. For a fixed initial conditior¢(to) = o and time
interval [to,t], each of these equations induces a probability measure on the
space of pathg(t), t € [to, t;] which we denote by:';;,to, IS)I(LJO. The Cameron-
Martin-Girsanov Theorem ([17], Theorem 8.22 and Corollary 8.23) gives the

Radom-Nikodym derivative of one of these measures with respect to the other.
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i
dpg,to = exp ¢ (4.3)
where( satisfies the Ito equation
d*¢ = c'd*w' - ;c c'dt
= cd*¢ — 1(6 b — bib')dt (4.4)
=0 (4.5)

andc' =b' — b'. In Stratonovich form this becomes
1 i
dgi, =c'dg' — (o'b’ —blb +c . (4.6)
In light of this we define theSirsanov one-fornof b relative tob to be
RS R e e IR PR Y
6 =cldx — (0’ —b'b' +cl)et 4.7)

Let P:g;fg, 3‘5:; be the induced measures on the space of paths beginning at
&(tg) = %o and ending a€(t;) = x. Clearlyb andb are in the same reciprocal
class iff P,’(ijg = j‘gg for all xg, to; X, tr. But this is true iff the integral of the
Girsanov form along any path beginning &to) = xo and ending at(t;) = x
depends only on the endpoints and not on the path. In other worasdb are

in the same reciprocal class ifis a closed one-form. The exterior derivative of

0 is
do = cidxd Adx

+(Clo + DD, — b, + c‘ dt A dx (4.8)

Hence we see again thiatandb are in the same reciprocal class iff

f=f (4.9)
(4.10)

g_

Q|

wheref, g are the reciprocal characteristics bf(2.23,2.24) and', g are the
corresponding reciprocal characteristicsbof

Now let ¢(t) and(t), t € [to, ;] be any smooth paths beginning xatand
ending atx;. We define a two dimensional surface bounded by these curves

¢(t, 1) = (1= 7)p(t) + To(t) (4.11)

wherer € [0, 1]. Let (tt[) be the solution of (4.6,4.5), i.e.
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t
o _ i d i
G = [ w000
(B (6(0), 05 (60, ) — b (50, D' (6(0). 1)
+C'i (4(t), 1))dt (4.12)

and Ietn{; be the corresponding integral alongt)

o '
= / ¢ ((t), H)dw (1)

to

— (B (0, DB (0, — b ((2), Ob (1) 1

+eh (u(t), )dt. (4.13)
Then
t o _ ! 0 tf i i
&= [ o [ o000 nar (4.14)

B 6(t,7), D8 (@t 7).1) — b (6(t, ), DB (6(t, 7). 1)
+c'i (4(t, 7), 1))dtdr

1 o . ' |
= /O /t Cij((b(t,T),t)((bJ(t)_,(/)J(t))d(b|(t77_)d7_

+ (6(t, 7), DA () — ¥ ) |
— (6} (6(¢, 7). OB} (6(¢, 7). ) = b'(6(t, ). D) (68, 7). 1)

* ;Cfu (@(t, 7), (@ (t) — ¢ (t))dtdr.

We integrate the second term by parts with respec¢ttmobtain

1, . ) ) . ;
== [ [ [dhennn-eennn] [0 o) die e
= Bt ), OB (60t 7). 1) — B (6, ), Db (68, 7, D)

3 6.7.0] 00 - v')] didr

1t _ _
- /O /t [(F1((t, 7),t) — £ (g(t, 7), ))alt
+(g ((t, 7). 1) — gl (o, 7), 1)d (V)] [¢' (1) — ¢ (t)] d7.  (4.15)

Now (f[) is the logarithm of the ratio of the likelihood @f(t) under the measure
P over the likelihood ofp(t) under the measui. Similarly 77{; is the logarithm
of the ratio of the likelihood oi/(t) under the measure over the likelihood of



272 A.J. Krener

¢(t) under the measure. Therefore the difference is the logarithm of the ratio
of the relative likelihood ofp(t) to ¢ (t) under the measur@ over the relative
likelihood of ¢(t) to ¢(t) under the measurB. Notice that the right side has
the dimensions of work, force times distance.blf= 0 thenf = 0,¢g = 0 so

the change in logarithmic relative likelihood is the work done in perturbing the
trajectory frome(t) to ¢(t). Other formulas of Girsanov type can be found in
[4] and [13].

Supposet(t) is a Markov diffusion satisfying the Ito equation (4.1) with
deterministic initial condition¢(tp) = X0 and letw(t) be any smooth trajectory
starting at the same point(ty) = Xo. The Onsager-Machlup formula [19] gives
an asymptotic estimate for the probability thgt) lies in a tube of radius
aroundu(t),

In P (J&t) —v(t)| <€, telto,t]) —In P (Jwt) <e te/to,t])

o .
~ =g [ 1= bR + B . et (4.16)

The right side is calledhe Onsager-Matchlup functionalhe Euler-Lagrange
equations for the trajectories which stationarize this functional are

=1, t) + gl (, 1) (4.17)

wheref , g are the familiar reciprocal characteristics, (2.23,2.24).

5 Conservation laws

The density of a Markov diffusion satisfies the Fokker-Planck equation, a second
order parabolic PDE. As was shown in [10], the regular parts of the conditional
moments of the velocity of a reciprocal diffusion satisfy a sequence of conser-
vation laws similar to those of continuum mechanics. More precisely, by the
term conditioned on the position, we mean conditionedd®¢(t, dt) = x as in
Theorem 2.2. By velocity we meadh'&(t, dt) divided bydt and by the regular
part of the moments of the velocity, we mean the part th&@($) in dt.

The zero order moment of the velocity conditioned on the position is the
probability densityp(x, t,dt). This is the density ofl%(t,dt) = x and it is not
hard to show that

p(x, t,dt) = p(x,t)(1 +O(dt)) (5.1)

so the regular part is just(x, t).

The regular part of the first moment of the velocity conditioned on the position
is the centered velocity(x,t) as defined in (2.29). The regular part of the
second moment of the velocity conditioned on the position is the momentum
flux coefficientP(x,t) as defined in (2.30).

The first conservation law is called the continuity equation and is well-known
in stochastic mechanics [16],
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— aii (p(x,t)0' (x,1)) . (5.2)

It expresses the fact that probability mass is neither created nor destroyed under
the mean flow. In other words the time rate of change of the probability of a
volume element is only due to the flux of probability through the boundary of
the element. The probability flux is(x, t)v(x,t) which can also be interpreted
as the momentum density.

The second conservation law was first derived in [10], see also [13]. It is
similar to Euler’'s equation of continuum mechanics,

0]
ot ,O(X, t) -

gt (p(x, 10" (x, 1)) = p (F' (x, 1) + g (x, D)) (x, 1)) — aij (p(x, )P (x, 1)) .
(5.3)

It expresses the fact that the time rate of change of momentum in a volume
element is due to the mean forces acting inside the volume element plus the
flux of momentum through the boundary of the volume element. The mean
forces include a forcé(x,t) that depends only on position and of(g, t)v(x, t)
that depends on position and linearly on mean velocity. The momentum flux is
(X, t)P(x,1). The kinetic energy density is one half of the trace of the momentum
flux.

We shall give a weak derivation of these two conservation laws for reciprocal
diffusions using the theorems of Sect. 2 and the assumption that the demsity
goes to zero faster tham|™* for any k as|x| goes toco. We conjecture that
they are the first two of an infinite sequence of conservation laws satisfied by
the regular part of the higher moments. Without going into detafif " (x, t)
denotes the regular part of th& moment ofd*¢(t) conditioned ord%(t) then
the conjecture is

;(ppil...i,(x7t)) - p(fiJPil...i]...i, +gLJPi1...i]...i,k)
B 1o}
Oxk

where the hat as i) denotes a deleted index. The summation is over the repeated
indicesj, k. In [10] the third conservation lawk(= 2) was verified for Gaussian
reciprocal diffusions for which it takes the form

(pP'1) (5.4)

O (P1) = p (T ]+ P P
- Oxk (o (Ui ook + 7l ok + iyl 4 M vj)) , (5.5)
where i ) _ _
o (x,t) = P (x,t) — o' (x, ) (X, 1). (5.6)

For nonGaussian processes there is an extra term in the flux of (5.5).

This conservation law expresses the balance of kinetic energy and work for
every scalar process of the forgt) = \i &' (t). In particular, if we take half of
the trace of (5.5), the terms involvingcancel by skewsymmetry and we obtain
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gt (;pP") = pflol — ﬁik (p (;Uivivk+ ;TF“ Uk+7rikvi)) (5.7)

We see that the left side is the time rate of change of the density of kinetic
energy. This equals the right side which is the rate at which work is done against
the forces acting on particles within a volume element plus the flux of kinetic
energy carried by particles entering or leaving the volume element. The flux has
contributions from both the mean and random parts of the motion. The mean and
random kinetic energy carried by the mean motion are the first and second terms
of the flux. The third term of the flux is the mixed mean-random kinetic energy
carried by the random motion. This term resembles a viscosity, but it is not.
These equations are associated to a random process. In each realization of the
process there is only a single particle so there is no viscosity or friction between
particles. This term is due to the flux of energy from the random motion of
particles between regions of different mean velocities. As a result of this random
exchange of particles, regions of slow mean velocity are energized by nearby
regions of fast mean velocity and regions of fast mean velocity are deenergized
by nearby regions of slow mean velocity. This takes the appearance of viscosity.

These conservation laws hold for reciprocal diffusions whose sample paths are
nowhere differentiable almost surely. In particular, it makes no sense to talk of a
joint density of position and velocity. Instead we consider the joint density of the
recipocal diffusion at two nearby timé¢t +dt), £(t —dt) which we recoordinatize
asdO(t, dt),d*(t, dt). The density ofd®&(t, dt), d1&(t, dt) can be factored into
the densityp(x,t,dt) of d°(t,dt) times the conditional density a£(t, dt)
given d%(t,dt). As dt goes to 0, the latter density becomes singular but the
regular parts of its conditional moments seem to obey the standard conservation
laws.

We now weakly derive the first conservation law (5.2). As test functions, we
useC* functions¢(x,t) with compact support intg, t;). A test functions and
its first and second partials should grow no faster than a polynomial gses
to oo, i.e. for some integek

|¢(x, )]

X[k 0 as |X| — oo, (5.8)
|¢,i(xvt)|

X|¢ 0 as [x| — oo, (5:9)
|¢,ii)ixk»t)| 0 as |x| - 0. (5.10)

Partition the intervaltp, t;] into subintevalst,t.+1] wheret, =to +rdt, t; =
to+(N +1)dt. For any test functior, defineg(t) = ¢(£(t), t). Because the support
of ¢ is in (to, tf), for dt sufficiently small

N
0= d'e(t) (5.11)
r=1
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and hence
N
0=E <Zd1¢(tr)>
r=1
N
0=E <ZE (d1<;$(tr)|d°§(t,))>. (5.12)
r=1
But
d%0() = (6(t +d) — ot — )

1
5 (@t +dt) — $(d°¢(1), 1) + $(d°€ (1), 1) — (t — dD)) . (5.13)
We expand in a Taylor series aroud8(t),t and obtain

dop = ¢de + ¢ odt + O(d¢, dt)® (5.14)
so by Theorem (2.2)

E (d'¢|d%) = ¢,iv' dt + ¢ odt + O(dt)>2. (5.15)
We plug this into (5.12) and ladt go to zero to obtain
tf .
0= [ [ o) (0.0 (D + box.0) ik (5.16)
. to
which we recognize as the weak form of (5.2).

To derive the second conservation law we start with the fact thadfor
sufficiently small

0= dlt rzlj;dqu(tr) (5.17)
and hence
LN
0=E (dt;dng(tr)),
0=E <d1t rz:E (d2¢(t,)|d°§(tr))> ) (5.18)
But
d?p(t) = (4(t +dt) — 2¢(t) + H(t — dt))

o(t +dt) — p(dO%(t), t) + (t — dt) — p(d°(t), 1)
—2(3(E(t), 1) — p(d(t), 1)). (5.19)

Again we expand in a Taylor series aroud® (t),t and obtain
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d% = ¢,d%+ 0 (dlﬁ‘dle' - id2§‘d251>
+2¢ j0d™¢' dt + ¢ godlt?
! ¢,k d?¢ d?¢ d¢

To4
*'fé¢ﬂm (dl{idlﬁidlfkdlé'—— fédzgidzgidzgkdzg'>
+0(d?¢)° + O(d*¢)® + dtO(d1¢)® + dt?0(d1¢). (5.20)

By Theorem (2.2)
E (d%¢|d%) = ¢ (f' +gjo') dt® + ¢ P dt?
+2¢ jov' dt? + ¢ godt?
+O(dt)3. (5.21)

We plug this into (5.18) and ladt go to zero to obtain
0= // P (qj)’i (fI + gjl ’Ul) + ¢,ij PY + 2¢’iovl + ¢700) dtdx. (522)
to
By the weak form of the first conservation law (5.16)
t; )
0= // P ((ﬁ,i()’uI + ¢,OO> dtdx (5.23)
to
hence (5.22) becomes after integration by parts
0" //tfd gy~ 0 P~ O o)) ddx  (5.24)
= 2 p GU) = oyi P ot P :

which we recognize as the weak form of (5.3).

6 Markov diffusions

Suppos&(t) is a Markov diffusion satisfying the Ito equation (1.10). Its density
p(x, 1) satisfies the familiar Fokker-Planck PDE,

1 0
2 Ox1 Ox!
From (2.7) and (2.9) the centered velocity of a Markov process is

P+ (OB (1) - D=0, (6.)

. . 19
i — hi _
v (X, 1) =b'(x,t) 2 Ox In p(x, 1) (6.2)
and substituting this into the Fokker-Planck equation yields the continuity equa-
tion (5.2). From this and the definition gf(2.24) it follows that

gji = ’UEJ- — U{i (6.3)



Reciprocal diffusions in flat space 277

Recall thatm, the regular part of the conditional variance of the velocity
(2.30), is given by

7 (x,t) = P (x,t) — o' (x, t)) (x, t). (6.4)

The second conservation law in Lagrangian form is

9 j 9 _ g i j
gV DTV v (1) = FHX D+ g (X v (X, 1)
1 0
p(x,t) OX

This equation can be solved for the last term using the Fokker-Planck equation
(6.1) and the expressions for(2.23),g (2.24) andv (6.2) to obtain

(p(x, )7 (x,1)) . (6.5)

0 j 1 0? _
oxi (p (77 = 49% Ox Inp) ) =0. (6.6)
In [13] it is shown that a stronger condition holds, namely,
102
ij =
4 9 xi Inp. (6.7)

Since they are satisfied by all Markov diffusions, equations (6.3) and (6.7)
are called theMarkov closure ruledor the sequence of conservation laws.

7 Quantum diffusions

Schiddinger’s original motivation for studying the reciprocal property was an
attempt to give a description of quantum mechanics in stochastic terms. As
developed by Enyes [6], Nelson [16] and many others, this program has come
to be calledstochastic mechanicdhe basic idea is to associate with a wave
function satisfying Sclirdinger’s equation, a related diffusion process, usually a
Markov diffusion. The density of the diffusion should equal the square modulus
of the wave function and certain other relations should hold. We refer the reader
to [16] for a more complete description of stochastic mechanics.

In this section we shall argue that if there is a stochastic description of
guantum mechanics and if this description employs reciprocal diffusions then it
does not involve the subclass of Markov diffusions. Rather it must be in terms
of a disjoint subclass which we have termgaantum diffusiong/13]

Mechanics is intrinsically second order so a definition of stochastic acceler-
ation is needed. There are several possible definitions of stochastic acceleration.
We have discussed three of them, the stochastic acceleemtibMNelsen (2.17),
the stochastic acceleration of Zambrini-Cruziero (2.41) and our stochastic accel-
eration in terms of , g as given in Theorem 2.1. For smooth processes all reduce
to the classical acceleration but for diffusions they differ as was pointed out by
Thieullen [20]. The latter two are quite similar. The Zambrini-Cruziero stochas-
tic acceleration equalfs(x, t) + g(x, t)v(x,t) and is a function of position alone
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X = &(t). Ours equald (x,t) + g(x, t)dx/dt and is function of centered position
X = (£(t+dt)+£(t—dt)/2 and centered velocigx/dt = (£(t+dt)—£(t—dt)/(2dt).
In one space dimension they are identicalasO0.

To see the difference between Nelson’s stochastic acceleration and the other
two, consider an Ornstein-Uhlenbeck velocity process defined as the stationary
solution of the scalar Ito equation

d*¢ = —edt+d*w (7.1)

where the stationary densipfx) is Gaussian, zero mean and varian¢@.1The
forward drift is b(x,t) = —x, the backward drift as computed from (2.7) is
b(x,t) = x. Nelson’s stochastic accelerationaifc, t) = —x while f (x,t) = x and
g(x,t) = 0. From Nelson’s point of view the particle appears to be moving in
attracting force field while from other points of view it is moving in a repelling
field. If the equation where not stochastic but instead were deterministic

d
=_ 7.2
6= ¢ (72)
then another differentiation yields the second order differential equation
d2
426 =€ (7.3)

which is motion in a repelling field.

Moreover Nelson’s acceleration is not a reciprocal invariant as it depends on
the density through (2.7). For a nonstationary solution of the Ornstein-Uhlenbeck
equation (7.1), Nelson’s stochastic acceleration changes with time begause
p(x,1). In space dimensions higher than one, the Zambrini-Cruziero stochastic
acceleration is not a reciprocal invariant because it contain®n the other
handf, g are reciprocal invariants, independent of the density. It is for these
reasons that we believe that the appropriate definition of stochastic acceleration
is f(x,t) + g(x,t)dx/dt wherex = (£(t +dt) + £(t — dt)/2 anddx/dt = (£(t +
dt) — £(t — dt)/(2dt).

In flat space withh = 1, the Schiddinger equation takes the form

Zaa?:[; <Z<9?(j +Aj> <18(?(j +A’>+¢}w (7.4)

where¢, A are a scalar and covector potentials and the square root of-1.
If we assume that
1 = exp(R +1S) (7.5)

and take imaginary and real parts of Sidinger equation (7.4) we obtain

OR_ 1 S 0RIS  10A

R
ot 20xon  oxiox T 20x T ox (7.6)
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and

oS 1 9’°R OR OR JS 0S oS
= (8 + )—Aqaxj—¢> (7.7)

ot 2 \oxioxi Toxiod " axioxd N

To this solutiony(x,t) of the wave equation, we would like to associate a
reciprocal diffusioré(t) so we make the following assumptions that are standard
in stochastic mechanics [16], hamely, that the densind centered velocity

of £(t) satisfy

p = [P =expR (7.8)
i 88 )
VT —A. (7.9)

It is well-known [16] that under these assumptions the continuity equation (5.2)
is equivalent to the imaginary part of Sékinger's equation (7.6). If we also
assume that the stochastic acceleration (in our sense) of the reciprocal diffusion
should be the same as that experienced by a classical particle moving in the field
induced by the same potentialsA;, i.e.,

i _ 0o OA

P= - ot (7.10)
. ON 0N

G = o T oxi (7.12)

then it follows by comparing the Euler equation (5.3) with the real part of
Schibdinger’s equation that(x,t) of £(t) must satisfy

0 i1 0? _
Oxi (p <7r + 4 9xi Oxi In p>) =0. (7.12)

Notice the difference between this and the similar equation for Markov processes
(6.7). From this we conclude that if the reciprocal diffusigft) corresponding
to the wave function)(x, t) satisfies the above assumptions (7.8-7.11), #{en
is not Markov.

In [13], we defined the class gluantum diffusionto be the reciprocal process
satisfying thequantum closure relations

g = o —d, (7.13)
. 1 9

= _ C . .

™ 4.9% Ox Inp (7.14)

The second of these is a strengthened form of (7.12). They are equivalent for
Gaussian reciprocal processes because for such proceslees not depend on
X, w(x,t) = w(t), see [12]. As is shown in [14], (7.14) implies the Heisenberg
Uncertainty Principle.

Nelson [16] assumes that the stochastic prod€ss corresponding to the
wave functiom)(x, t) satisfies (7.8,7.9) and that his stochastic acceleration is the
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same as that experienced by a classical particle moving in the field induced by
the same potentialg, A;, i.e.

06 OA _[OA OAN
R <8xi - axi>”' (7.15)

instead of (7.10,7.11). If this process is reciprocal then the second conservation
law (5.3) implies that (6.6) holds hence the process could be Markov.

Therefore depending on which expressions one takes for the stochastic ac-
celeration, one obtains different reciprocal processes corresponding to a wave
function. We refer the interested reader to [14] for a fuller discussion of this
point.

8 Conclusions

The theory of Markov diffusions includes the mean differential discription in
terms of the diffusion postulates (2.1, 2.2,2.3), the Ito integration of first order
stochastic differential equations and the connection with parabolic partial dif-
ferential equations, the Fokker-Planck and Kolmogorov forward and backward
equations. In this paper we have laid out parallel components of the theory of
reciprocal diffusions in flat space, the second order mean differential discription,
Theorem 2.1, the second order integral discription, Theorems 3.2, 3.4 and the
connection with conservation laws, Sect.5. Much work remains to be done, in
particular, in extending the theory to curved space where the geometry will play
a significant role.
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