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Abstract
In this paper we investigate the behavior of
higher order Galerkin expansions of the Moore-
Greitzer model of general transients in aeroengine
compression systems. We assume steady state en-
trainment of the higher Fourier modes of the rotating

e | stall cell which establishes a framework for a simpli-
M fied numerical analysis of the bifurcating solutions
er corresponding to rotating stall. For small values of

the Greitzer surge parameter (B) we discuss general
trends in the character of the pure stall solutions.
" The rotating stall characteristic is shown to exhibit
§ deep hysteresis with a cubic compressor character-
v istic, establishing the fact that deep hysteresis to a
certain extent is a multi-mode phenomena. Elimina-
tion of the hysteresis associated with the bifurcation
into stall is accomplished in simulations with a com-

H | bined feedback on the displacement from the peak of
‘ the compressor characteristic and the magnitude of
§ the tirst mode amplitude of the stall cell. Behavior

fur larger valucs of the B parameter is also inves-
tignted and novel surge/stall relaxation oscillations
corresponding to classic surge are discovered.

' 1. Introduction

: Rotating stall and surge are fluid dynamic in-
: stabilities which limit performance of axial compres-
ston systems.  Deep surge is a time dependent ax-
isvimmetric flow characterized by oscillations in both
pressure rise and mean flow. Pure rotating stall, on
the other hand, is a steady (in the rotating frame),

non-axisymmetric flow whose frequency is typically
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an order of magnitude larger than that of surge. The
case where these two instabilities coexist is termed
classic surge. Recovery from these conditions is char-
acterized by hysteresis, where the throttle must be
significantly opened past the point of inception in or-
der to recover steady axisymmetric flow. The Moore-
Greitzer equations are an attempt to model the non-
linear phenomena of rotating stall and surge in these
systems using first principles. The derivation of the
complete set of equations can be found in [1].

Desired operating points of this system are those
that provide the largest pressure rise across the com-
pressor. However, increased susceptibility to surge
and stall precludes operation at these setpoints. Re-
duced order ODE models of stall and surge phenom-
ena provide a framework to assess the performance
of various state feedbacks designed to minimize the
effects of rotating stall and surge. In previous work,
Moore and Greitzer [1] developed a single spatial har-
monic expansion of the resulting equations. The bi-
furcations in this model were studied in depth by
McCaughan {2}, In many papers, too numercus to
mention here. feedbacks were shown to eliminate the
hysteresis associated with the bifurcation into stall
of the single mode expansion. It was also shown in
[3] that various feedbacks which eliminate hysteresis
in the single mode expausion fail to do so when an
additional spatial harmonic is included in the model.

[n this paper we investigate the dynamics
of multi-mode Galerkin expansions of the Moore-
Greitzer equations. In Section 2 we introduce phase
entrainment states which establish a framework for
simple numerical analysis of non-axisymrmnetric peri-

odic solutions as well as analysis of the performance
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of feedbacks in the multi-mode environment. In Sec-
tion 3 we present a detailed numerical analysis of
the three mode model (M G8) and note the general
trends seen when more Fourier modes are included
in the dynamics. Finally, in Section 4 we introduce
a feedback which eliminates the hysteresis associated

with the bifurcation into stall for the models we have
simulated.

1.1. Complete Moore-Greitzer Model
The complete model, whose derivation can be
found in (1], is as follows

dy 1
lcgg = g5 (0~ o7) (1)
-, d® -,
() = Y (P+(47)o0) —lcd—€~m(¢g)o
(284 + brolo (2)
d® 1 [
L2 = v g [ W@ @ ®)

The dependent variables of this system are the annu-
lus averaged pressure rise coefficient ¥(£), the annu-
lus averaged axial flow coefficient ®(£), and the up-
stream disturbance potential ¢/(n,0,€), whose axial
and circumferential partials give the local flow dis-
turbance in the axial and circumferential directions.
Independent variables include the time in wheel ra-
dians €, the circumferential coordinate ¢, and the
axial coordinate 5. Equation (1) is an ODE in ¢
which results from a mass balance of the plenum, (2)
is a PDE in ¢ and 0 from the momentum balance of
the system evaluated at the compressor face (7 = 0),
and (3) is an ODE in £ which results from averag-
ing out the circumferential dependence in (2). Note
the subscript 0 denotes evaluation at 7 =0, and the
subscripts £, 8, n denote partial differentiation.

The compressor characteristic W.(®) is the re-
sponse of the compressor for steady axisymmetric
flow. For our analysis we will use the general Moore-
Greitzer cubic from [1]:

U () = Vo +h {H % (g - 1) - % (%—1)3} (4)

The throttle characteristic $p{W¥) represents the
pressure loss across the throttle, assumed parabolic
S

([)T — ([\’T + U)\/—\f (5)

The variable u represents a feedback control on the
operating point of the system. Parameters of the

model define compressor geometry and operation
characteristics. In our analysis we will focus on two
parameters, Kt and B. The throttle coefficient K7
adjusts the position of the throttle, hence the oper-
ating point of the system. B is the Greitzer stability
parameter which determines whether a given com-
pressor is more likely to enter surge or rotating stall.

Additional parameters are defined in [1]. We will
refer to the collection of parameters as
p= [KT ¥q hw m.lc B B], (6)

1.2. Galerkin Projections of the Com-

plete Model
The procedure for developing finite dimensional
projections of the full Moore-Greitzer model is out-
lined in [4]. Essentially a system of ODEs that ap-
proximate the non-axisymmetric dynamics of (2) is
constructed by representing the the disturbance po-
tential ¢’ with a finite number of Fourier modes

$'(.0,m) = Z exp(kn)(Ak (€) cos(k0 — ©k(£))) (7)

and projecting the PDE onto the subspace spanned
by this basis. The resulting systems have an in-
dependent variable of nondimensional time £ mea-
sured in rotor radians and dependent variables Ak ()
and Ok (), the amplitudes and phases of each spa-
tial Fourier mode included in the truncation, respec-
tively. The ODEs (k =1, -

,n) are

2
Ar = a—ﬂ-k—- [/ U (D + (¢7)0) cos(kO — Ok)da}
0
- k
ek = ak [_%_*_
1 2n .y ‘
. «[u V(P + (¢7)o) sin(kf — @k)dG]
(8)
where
k
“ = ks 9)

The dynamics in expanded form for various trun-
cations of the disturbance potential appears in [4],
hence omitted in this treatment.

2. General Multi-Mode Remarks

These systems of dimension 2n + 2 are composed
of two ODEs (1),(3) describing the time evolution of
the surge variables ® and ¥, and 2n ODEs (8) for the
time evolution of the amplitude Ay and phase @ of
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the ktP spatial Fourier mode of the stall cell. These
systems can be viewed as n + 1 coupled oscillators
with the following form:

[ ®(8) [ Kr ]
¥ (€) Yo
A1) h
i=f(z,p), T= @1'(5) p= 71:}1 (10)
: I
L ©a(€) | | B |

where r is the state vector of the system, p is the
parameter vector, and f is a nonlinear function. We
will begin our analysis of these higher order expan-
sions by assuming a small B parameter and concen-
trating on the non-axisymmetric dynamics defined
by (10). For large values of the throttle coefficient
there is a stable axisymmetric equilibrium defined by
the intersections of the compressor characteristic (4)
and the throttle characteristic (5). As the system 1s
throttled down through the peak the axisymmetric
equilibrium loses linear stability via a multiple Hopf
bifurcation, as a pair of complex eigenvalues for each
spatial mode of rotating stall cross the imaginary axis
and become unstable. Multiple periodic solutions
bifurcate from this point, however there is only one
that becomes stable for the range of throttle settings.
For our analysis we will assume that the phases of
the various Fourier modes of this stable periodic solu-
tion become entrained at steady state, which reduces
‘he problem of characterizing the non-axisymmetric
equilibria to that of numerical continuation. We will
also use this framework to investigate the dynam-
ics of the system for larger B parameters, as well
as demonstrate a feedback which eliminates the hys-
teresis associated with the bifurcation into rotating
stadl,
21, Entrainment of Higher Modes

Fxtensive simulations of (10) have shown that
at steady state the solutions (traveling waves) corre-
sponding to rotating stall maintain a fixed shape. We
will refer to this phenomena as entrainment, or phase
locking of the modes. In this situation, for a given
mode, its amplitude and the difference between its
phase and the product of its harmonic number and
the phase of the first mode would be constant:

Ax = constant

O — kO = constant (11)

This becomes clear when we rewrite the contribu-
tion from each spatial mode of the truncated Fourier

series for the stall cell using (11):
Axcos(kd — ©r) = Axcos(k(f — ©,) — constant) (12)

Upon examination of the entire series (k = 1,---,n),
we find during entrainment ©; is the only variable of
the series which is a function of time. This is equiva-
lent to the solutions (stall cells) rotating around the
annulus with fixed shape.

Additionally we point out that in the dynamics
of the multi-mode expansions we have investigated
the phases always appear in combinations that are
harmonically balanced, where the weighted sum of
the harmonic orders is zero. It is simple to show,
hence omitted, that any phase combination with this
property can be rewritten as a linear combination of
the following phase entrainment states:

C,»'=®;+1—(i+1)®1 s i:l,--«,n—1(13)
The dynamics for each of these new states is then
b=~ (i+1)0; , i=1,---,n—1(14)

Applying this change of coordinates to (10) we obtain
systems with the following forms:

[ 2(¢) -
v | Kr ]
A1(§) ho
i=g(z,p), z= An.(E) p= Tu;l 15)
¢1(8) le
: H
RAGE

The fixed points of the system (15) are solutions of
g(z,p) = 0. The polar coordinate representation of
the dynamics is singular in the axisymmectric case
(A = 0,k = 1,---,n), hence we will focus on the
character of the non-axisymmetric solutions for the
range of throttle coefficients Ky. We will refer to
these solutions as the entrained equilibria of the sys-
temn:

g(z.Kt) =0 (16)

Intersections of the throttle characteristic (5) with
these static equilibria (16) correspond to rotating
stall limit cycles where the flow coefficient @, the
pressure rise coefficient ¥, the amplitudes of each
spatial mode of the stall cell Ay, and the phase
entrainment states (; are all constant. Recall this
corresponds to a stall cell (traveling wave) rotating
around the annulus with fixed shape.
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Figure 1: Primary Stall Equilibria - M G8

3. Entrained Non-axisymmetric

Solutions

Typical parameters (U9 A w m [ p] =
[0.230.32 0.18 2.0 4.0 1.0] were chosen and the above
systems (15) were analyzed numerically in DSTool
[5]. In this section we present the results for the
three mode model (n = 3) and also note the typ-
ical trends in the entrained dynamics as the order
of the truncation of the disturbance potential is in-
creased. Figure 1 (top,left) shows what we will re-
fer to as the primary rotating stall equilibria traced
out as the throttle coeflicient Ry is varied. The
compressor characteristic (4) is shown for reference.
Intersections of the throttle characteristic (5) with
the entrained stall equilibria correspond to travel-
ing waves where the flow coefficient @, the pressure
rise coefficient ¥, the amplitudes of the first through
third modes of rotating stall and their phase differ-
ence states are constant. Recall from Section 2.1
this corresponds to the stall cell rotating around the
annulus with fixed shape. Also shown in this figure
are the bifurcation diagrams for the other five states
including the amplitudes Ay, A, and As, and phase
entrainments ¢; = ©y — 20 and (4 = O3 — 30,

Anguiar Poskion (Rackars) 4

Figure 2: Stable Rotating Stall Cycle - M G8§

as the throttle coefficient K7 is varied. Stability of
these entrained solutions is denoted by either a solid
line (stable) or a dashed line (unstable). Figure 2isa
plot of a stable solution (Kt = 0.45) versus angular
position § and nondimensional time §.

In addition to showing that the lower modes of
rotating stall are predominant along this equilibria,
from these diagrams we see evidence of a deep hys-
teresis associated with the primary bifurcation into
stall. By deep hysteresis we simply mean that stall
equilibria exist for flow coefficients larger than that
of the peak of the axisymmetric compressor charac-
teristic. Previously in [6] it was shown that deep
hysteresis depends on the skewness of the compres-
sor characteristic. A characteristic is said to be left
(right) skewed if drops off faster to the right (left) of
the peak. A right skewed characteristic is required
for sta'l =quilibria to exist to the right of the peak.
With a continuous cubic characteristic right skew-
ness is not possible, hence higher order character-
istics were required for the model to exhibit deep
hysteresis. In this analysis we have assumed a cubic
characteristic, hence these bifurcation diagrams show
that decp hysteresis is to some extent a multi-mode
phenomena.

Upon comparison of the models we have sim-
ulated, including truncations of up to five TFourier
modes, we see establishment of two trends in this
primary rotating stall equilibria as we increase the
order of the expansion. The extent of the deep hys-
teresis increases, as well as the number of relative
minimums and maximums in the (¢, ¥) plane in the
models we have investigated.
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Figure 3: Relaxation Oscillations - M G8

3.1. Relaxation Oscillations

The Greitzer surge parameter B was also var-
ied in DSTool, and both axisymmetric and non-
axisymmetric relaxation oscillations were found. The
typical axisymmetric surge limit cycle exists for large
(~ 1.0) B parameters, as shown in Figure 3. Here
by =@ — D, ¥y = ¥ — ¥, and (P, ¥) is the
peak of the compressor characteristic. However, in
the higher order Galerkin projections of the Moore-
Greitzer model investigated in this paper, multi-
ple inner relaxation oscillations were found to form
around the relative minimums and maximums of the
entrained rotating stall equilibria. Figure 3 shows
trajectories that converge to these limit cycles for
N7 = 0.18 and A7 = 0.32. The primary stall equi-
libria s shown for reference. In Figure 4 we plot the
low cocfficient &, the pressure risc coefficient ¥, and
the amplitudes of the first, second and third modes
of rotating stall (4,, A», and Az) as functions of
nondimensional time & for the left trajectory that
converges to the inner relaxation oscillation. From
these time Lraces we see that this relaxation oscilla-
tion is actually classic surge, as stable oscillation oc-
curs simultancously for the surge and rotating stall
states. We emphasize this inner relaxation oscilla-
tion is a novel phenomenon not found in the sin-
zle mode expansion, and this phenomena exists for
a much larger range of parameters than the classic
surge type behavior in [2].

50 100 150 200 250
Nondimensional Time £,

Figure 4: Classic Surge Relaxation Oscillations -

MG8

4. Elimination of Hysteresis with
Feedback in Multi-Mode Models
It was shown previously in {7] that the feedbacks

u

Ko(® - @) (17)

u Ke(¥ - ¥e) (18)

each eliminate the hysteresis associated with the pri-
mary bifurcation into stall for the single harmonic
expansion of the Moore-Greitzer model with a cubic
compressor characteristic. Here the subscript e de-
notes the desired operating point, i.e. the peak of the
compressor characteristic. It was also shown in [6)
that with higher order right skew compressor char-
acteristics feedback on the stall cell amplitude was
required to eliminate hysteresis in the one mode ex-
pansion.
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Figure 5: Controlled Bifurcation Diagrams - M G8

The behavior of these feedbacks (17,18) in a two
mode expansion was investigated in [3]. Stabiliza-
tion of the peak of the compressor characteristic was
achieved, but the global property of hysteresis could
not be eliminated. We use the entrainment reduction
introduced in this paper to show numerically that in
the models we have simulated (up to five modes) that
feedback on a combination of the displacement from
the peak of the compressor characteristic {17,18) and
the absolute value of the amplitude of the first mode
eliminales the deep lLysicresis associated with thie
primary bifurcation into stall:

u=Ke(P—®.)+ Ko (¥~ V) + K4 tA ] (19)

Figure 5 shows the results of implementing this
feedback in the three mode expansion with gains of
Ko = =2, Ny =2 and N4, = 9. The top left figure
15 a plot of the stabilized rotating stall characteristic
with the compressor characteristic (4} shown for ref-
erence. Also included are the bifurcation diagramns
for the modal amplitudes (.4, 4,2, and A3) and phase
entrainment states ((y, () as the throttle parameter
K7 1s varied.

5. Summary

We have discussed the dynamics of higher order
Fourier expansions of the Moore-Greitzer model of
transients in aeroengine compression systems. With
the assumption of steady state entrainment a frame-
work was established which simplified the numeri-
cal analysis of non-axisymmetric periodic solutions
corresponding to rotating stall. The rotating stall
characteristic was shown to exhibit deep hysteresis
with a cubic compressor characteristic, establishing
the fact that deep hysteresis to a certain extent is a
multi-mode phenomena. General trends as the or-
der of the models increased included an increase in
the severity of the deep hysteresis and an increase
in the number of relative minimums and maximums.
New dynamic interactions (relaxation oscillations) of
surge and stall representing classic surge were discov-
ered in the higher order models. This framework also
facilitated an evaluation of various bleed valve type
feedbacks, and elimination of hysteresis associated
with the bifurcation into stall was demonstrated in
numerical simulations.
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