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Abstract

We show the existence of a local solution to a
parametrized family of infinite horizon optimal control
problems such as those that arise in nonlinear regula-
tion, disturbance rejection, gain schelduling and linear
parameter varying control
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1 Introduction

Consider a smooth nonlinear plant

z = f(z,u,T)
= Az + Bu+Fz
+f¥(z,u,2) + O(z, u, £)3
e = h{z,u,x) (1.1)
= Cz+ Du+ Hzx

+hP(x, u, 2) + Oz, u, T)3

which is perturbed by a smooth nonlinear exosystem

T f(@)
Az + fll(z) + O(z)° 12)

where superscript [d] denotes terms composed of ho-
mogeneous polynomials of degree d. The dimensions of
z,u,Z, e are n,m, 71, p respectively.

‘The goal of regulation is to use a combination of feed-
forward and feedback control u = a(z, %) so that the
output of the plant asymptotically goes to 0,

e(t) — 0

for every x(0), £(0). The plant should also be inter-
nally stable. The exosystem could be a system whose
output we wish the plant to track, a noise source whose
disturbance we wish the plant to reject or static and/or
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dynamic parameters to be used for schelduling the con-
troller of the plant. A linear parameter varying (LPV)
system falls into the last category. We make the rea-
sonable assumptions that linear part of the plant is
stabilizable and detectable when Z = 0 and the linear
part of the the exosystem is not unstable.

The solution of the regulator problem is in two steps.
The first is to use feedforward from the exosystem state
to insure exact tracking when the initial conditions of
the plant and the exosystem permit this. The linear
version of the problem was solved by Francis [5] and
its nonlinear generalization is due to Isidori and Byrnes
[7]. One seeks 8(Z), B(Z) satisfying the Francis-Byrnes-
Isidori (FBI) PDE

f(6(2), 8(z),z)
h(6(2), B(z), %)

If the FBI PDE is solvable then the control u = 3(z)
makes z = #(Z) an invariant manifold of the combined
system consisting of plant and exosystem. And on this
manifold, exact tracking occurs, e = 0.

Bofe

One can attempt to solve the FBI equations term by
term. Suppose

o(z)

B(z, z)

The linear part of the FBI equations are the Francis
equations

A B Ty T Ao F

C D L 0 T | H
"These equations are solvable for any F, H iff no output
zero of the plant is a pole of the exosystem [6, 8, 9).

In other words, the exosystem should not excite those
frequencies that the plant cannot produce.

Tz +6%(z) + O(z)3
Lz + (z) + 0(z)°.

The output zeros of the plant are those complex num-
bers s for which there exist complex n and p vectors &
and ¢ such that

(e c1[*57 B]=10 0]
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There may be a finite or infinite number of output ze-
ros. For example if m = p then there are either n+m
zeros or every s is a zero. The poles Ay,..., Az of the
exosystem are the eigenvalues of A.

If there is a resonance between a pole and zero the
equations will still be solvable for some F, H. The solv-
ability depends on the direction of the zero £, ¢ and the
cigenvector of the pole.

The higher degree equations are linear and depend on
the solutions of the lower degree equations. They are
solvable for arbitrary higher degree terms iff the har-
monics of the exosystem don’t resonate with the zeros
of the plant [6, 8, 9].

For example the degree two equations are
A0%(5) + BA(z) - o2 (2) (A3)

= —fO(Tz,Lz,z) + TfA(z)
co(z) + DpP(z)
= —hP(Tz,L%,%)
These are solavble for arbitrary f12, k1% iff no ouput
zero of the plant equals the sum of two poles of the

exosystem, A # 8, + s;. If there is a resonance they
are solvable for some f[2, hl2.

Now suppose that the FBI equations have been solved.
The second step is to use additional feedforward and
feedback to insure that the closed loop system con-
verges to the tracking manifold z = 6(Z) where e = 0.
This can be achieved locally by linear pole placement
techniques but an alternative approach is to use op-
timal control methods to achieve a nonlinear solution

[8, 9]. Define transverse coordinates z, v by
: = z-6@3) =z-Tz-6%z)+0(@z)° (1.9)
v o= u-p@E) =u—Li-pgA@+0E}E

In these coordinates the plant and exosystem are of the
form

INY
|

f(z,v,:?;)
(&) = 4z + fA(z) + O(z)®
= h(z,v,I)

o 8-
1l

(1.5)
where

flzv,2) = f(z+6(2),v+B(E),%)
h(z,v,2) = h{z+6(%),v+ B(Z),T)
(1.6)
Notice that the linear part of the z dynamics and the
linear part of the output are unaffected by . The
linear part is stabilizable and detectable by assumption.

Furthermore
f(0,0,fI) = f(e(f)!ﬂ(i)’i) -

f £(6(2), 4(2), 7)) = 0
R(0,0,7) = h(8(z),

A(z),Z) =0

il

(1.7)
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= Az + Bu + f@(z,v,2) + O(z,v,2)®

= Cz+ Dv + hl¥(z,v,%) + O(z,v,1)*

- f(9(i‘), ﬂ(i)v :E)
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A stabilizing feedback can be found by minimizing

305 lell® + llull*dt (1.8)

subject to the dynamics (1.5). Other costs criteri-
ons can be used. Let m(2z,Z) denote the optimal cost
and k(z, Z) the optimal feedback then =, ~ satisfy the
Hamiliton-Jacobi-Bellman (HJB) PDE

0 = %(z%)f(z,7(2 %), %) + 55 (2, 8)(2)
+(z,7(2,%),%)

0 = %5(215)%5(2,‘7(2,53),5’)+g—f,(za’7(215),5)
(1.9)
where
Yz, v,2) = %(I|ellz+|lvl|2)
= 3(2'Qz+22'Sv+v'Rv) (1.10)

+l[31(z v, %) + O(z,v,%)*

for some matrices @, R, S and some cubic polynomial
HER

By generalizing Al'brecht’s method [1], we can solve
the HIB PDE term by term [8)]. Since

flz,v,8) = O(z,v)

h(z,v,) = O(z,v) (1.11)
l(z,v,2) = O(z,v)?
we expect that
n(z,%) = O(z)?
_ 1.12
HaE) = O() (12
In particular, we expect that
n(z,%) = %Z,PZ + 78z, 7) + O(z,2)4

Il

(2, &) Kz ++3(z,%) + 0(2,7)?

The lowest degree terms in the HIB equations are the
familiar Riccati equation and the formula for the opti-
mal linear feedback

0 A'P+PA+Q—(PB+S)RY(PB+5Y
K ~R-YPB+8)

(L

(1.13)
At each higher degree d > 1, the equations are linear
in the unknowns 714*1, 49 and depend on the lower
order terms of the solution. They are solvable if the
linear part of the plant is stabilizable and the linear
part of the exosystem is not unstable. For example, to
find the next terms w13 (z, %), v!%(z,Z) one plugs the
first two terms of 7, v into HIJB equations and collects
the next terms (degree 3 from the first HJB equation
and degree 2 from the second HIB equation)

0 = 3"”(z zZ)(A+ BK)z +a—"[l(z z)(A%)
+z me(z.Kz @) +zl31(z Kz, )
0 = a"m Z—(2,%)B+ z’P—g—(z Kz,T)

+'7m(z ZYR + & (2, Kz, %)
(1.14)
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Notice that the first equation involves only 73, the
other unknown 413 does not appear. This equation is
solvable if A+ BK is asymptotically stable and A is
not unstable. Given the solution 73 then we can solve
the second equation for 72

ol

VRl(z,3) = —R'l( {(2,Z)B

t9f

aitsl !
(2,Kz, .1:)+ (z,Kz,.i‘:))

The higher degree terms are found in a similar fashion.

Given the solutions of the FBI and HJB equations, the
desired feedforward/feedback for exosystem matching
is

e
|

oz, T)
B(Z) +(x — 6(2), %)

In this paper we shall show using results from (3], [4]
that the HIB PDE (1.9) is locally solvable. Further-
more its Taylor series expansion can be computed term
by term as described above. To do so we shall use a
invariant manifold theorem that we shall discuss in the
next section. In Section 3 we use this theorem to show
the local existence of the solution to the HIB equation
(1.9).

2 Stable and Partial Center Manifold Theorem

The following theorem was proven by Aulbach, Flock-
erzi and Knobloch (3}, [4].

Theorem 2.1 Given

I A 0 0 T fi(x)
HEREEBIEET ]
I3 0 0 As T3 f3(z)

where T, € R™, n = n; +ny +nz and fi(x) is c* for
k>2.

Suppose that the eigenvalues of A; have negative real
part, the eigenvalues of Az have nonnegative real part,

the etgenvalues of As have nonpositive real part and

f(O) = 0 (2.16)

of _
2@ =0 (2.17)
£00.22,0) = 0,i=1,3. (2.18)

Then there exists around z =0 a local Ck=2 snvariant
manifold

z3 = ¢(z1,z2) (2.19)
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where
$(0,22) = 0 (2.20)
o¢ o
5}'(0’0) = 0ifk>2 (2.21)

Remarks: The condition (2.18) implies that {z, =
0, z3 = 0} is an invariant manifold. When the spec-
trum of A, lies on the imaginary axis, we call this a
partial center manifold as it corresponds to only some
of the eigenvalues on the imaginary axis. We call (2.19)
a local stable and partial center manifold because it
contains the local stable manifold and part of the local
center manifold. The partial center manifold provides
the needed gap between the eigenvalues associated to
the invariant manifold and those that are not. The ne-
cessity of the existence of the partial center manifold to
the existence of the stable and partial center manifold
could be argued as follows. If the stable and partial cen-
ter manifold exists then its intersection with the center
manifold should yield the partial center manifold. The
flaw in this argument is that center manifolds are not
necessarily unique and the intersection of manifolds is
not necessarily a manifold. Still it is plausible.

Since (2.19) defines a C*~? invariant manifold we can
takes its time derivative to obtain the PDE

Asp(z1,22) + fa(21, 22, d(21,22))

z2) (Ajz; + f3(Z1, 72, (71, 72))) (2.22)

We can develop a term by term approximation of the
stable and partial center manifold.

Theorem 2.2 Suppose the hypothesis of Theorem 2.1
hold for k > 3 and let ¢(x1,z2) defines the C*~2 sta-
ble and partial center manifold. Suppose ¥(xq,x2) is
a C*=2 function satisfying (2.20) and the PDE (2.22)
through terms of degree k — 3,

Astb(ll,lg) + fa(z1, 22, ¥(x1, 22))
= Y1 5 (w1, 22) (Ajzs + fy(21, 2, %(21, 22)))

~O(z1,33)2
(2.23)
Then ¢ and i agree to degree k — 3,
Y1, T2) = o(@1,T2) + Oz, z2)F2 (2.24)

Because of space limitations we omit the proof.

3 Local Solvability of the HIB PDE

The principle theorem of this paper is the following
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Theorem 3.1 Suppose the plant and ezosystem are
C*, the linear part of the plant is stabilizable and de-
tectable when ¥ = 0, the FBI PDE (1.8) has a C*
solution in some neighborhood of 0 in  space. Then
in some neighborhood of 0,0 in x,Z space there ezists
a C*=2 solution to HIB PDE (1.9) satisfying (1.12).

Sketch of Proof: The proof generalizes the standard
approach [10}, [11] to showing the existence of local so-
lutions to HJIB PDE'’s. The graph of gradient of the
solution 7 of the HJIB PDE (1.9) is an invariant man-
ifold of the associated Hamiltonian system of ODE's.
In the standard case the Hamiltonian ODE’s have a
hyperbolic fixed point at the origin and the invariant
manifold is the stable manifold of this fixed point. But
in this case the Hamiltonian ODE’s do not have a hy-
perbolic fixed point at the origin and the desired invari-
ant manifold is a stable and partial center manifold.

Consider the Hamiltonian associated to the optimal
control problem (1.8),

HOp,z,5,v) = M(2,0,5) + pf(@) +(z,0,7)
= A Az+Bv+f[21(z,v,a‘:))
+u (Az + f(z))
+1 (2'Qz +22'Sv+ v Rv)
ﬁ?’] (z,v,%) + O(\ 1, 2, T, v)*
(3.25)

The Pontryagin Maximum Principle asserts that the
optimal control is

v = al\u,z,E = argmin H(\ u,2,Z,v)

(3.26)
For small A, y, z, T this is given by solving

o mmiw) = 0
which yields

_ afia)’ EEAY
- 1 5/ 4 vy - ’ il
a = R (B)\+Sz+<av A+ 5

+O(\, p, 2, E)°

The HIB PDE (1.9) can be expressed in terms of the

Hamiltonian as

H(-a——, $E.2,% a(az, 52,2,%) = 0 (3.27)

The Hamiltonian ODE’s are

%% s by 2 By (D py 2, 3—7))
H

()\’p,,z T a(A),-lfyz I))
3 = -——()\ Wy 2, Ty (X, 1y 2, Z))

—3—0\ 1,2, T, (X, 1, 2, T))

>
|

(3.28)

=
i
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and these are Ck~1 since the Hamiltonian is C¥.

The linearization of this system around 0,0,0,0 is

2 z
¥ | _ [Hu Hi by
z | [ Hz1 Hp z (3.29)
wl #
where
A-BR1g ~BR™1B' 0 0
H -Q+ SR 19 ~A'+SRB’ 0 0
= 0 0 A 0
0 0 0 -4
(3.30)
The column span of
Iixn 0
P 0
0 Inxa (3.31)
0 0

is an n + fi dimensional stable and partial center man-
ifold of the linear Hamiltonian system (3.29) where P
is the unique positive definite solution of the algebraic
Riccati equation (1.13). We know that such a solution
exists because the linear part of the plant was assumed
to be stabilizable and detectable. Half of the eigevalues
of the upper left 2n x 2n block Hy; lie in the open left
half plane and half lie in open right half plane. The
asymptotically stable subspace is spanned by the first
n columns of (3.31). As for the lower right 24 x 2n
block Hz2, by assumption the eigenvalues of A are in
the closed left half plane and hence those of —A4’ are
in the closed right half plane. A stable subspace is
spanned by the last #i columns of (3.31). Furthermore
the submanifold z = 0, A = 0, yu = 0 is an invari-
ant submanifold of the nonlinear Hamiltonian system
(3.28) so the conditions of the Stable and Partial Cen-
ter Manifold Theorem are satisfied. There exists an
n + 7 dimensional stable and partial center manifold in
the 2(n + 7i) dimensional z, A, T, 4 space which is tan-
gent to the column span of (3.31) at 0,0,0,0. Hence
this manifold is given by

A= d)(Z,.’f)

L= a) (3.52)
where ¢, ¥ are C¥~3 and

¢(0,z) = 0 )

$(0,3) — 0 (8.33)

This submanifold is Lagrangian, i.e., a maximal dimen-
sion submanifold on which the canonical two formn

w = dixdz+dpdr

vanishes. To see that it vanishes we note that w is
invariant under the Hamiltonian flow (3.28) and this
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flow is converging to the A dimensional submanifold
z =0, A =0, p =0 where w clearly varishes. The
submanifold (3.32) is of maximal dimension, n + 7, in
2(n + f) variables.

Hence the one form
¢(2, %) dz + Y(2,%) dT .

is closed so locally around 0,0 in z,Z there exists a
C*~? function =(z, %) such that

en) = d(=2)
%(Z,f = (=3
7(0,8) = 0
%’;’(o,z) = 0
g—’;(o,z) -

Note that = satisfies (1.12).

Differentiating (3.32) with repect to ¢ along the Hamil-
tonian flow (3.28) yields

OHPx OH P  OH _,
O\ 822 ' Ou 820 0z
OF O'n  OHOm OH
O\ 0z0% O 81* 0z
or equivalently
8 ..,0r Or _ 0w Om  _
—8—; (&a%azyxaa(—a‘g"g%;zyz)) = 0
g . 0On On on On

Il

’6_:.1.: (Ezy%yzvaa(av%azyi)) 0

Clearly 7 satisfies the HIB PDE (3.27) at 2 =0, £ =0
so it satisfies it in a neighborhood. Moreover n is of
the form

1
w(z,Z) = Ez'Pz +0(z,%)* (3.34)
QED.
The next theorem shows that the solution to the HIJB

PDE (1.9) can be computed term by term.

Theorem 3.2 Suppose the hypothesis of Theorem 3.1
hold for k > 3 and let w(z,%) be the Ck~2 solu-
tion of the HIB PDE (1.9) satisfying (1.12). Suppose
d(z1,T2) is a C*~2 function satisfying the HIB PDE
through terms of degree k — 3 and satisfying (1.12).
Then m and 1 agree to degree k — 3,

7z, %)) = 9(z,E)+O0(z,5)F? (3.39)

0-7803-4394-8/98 $10.00 (C) 1998 IEEE
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Sketch of Proof: Clearly (2, %) satisfies the term by
term equations so the result follows if we can show that
these equations have unique solutions satisfying (1.12).
We showed above that the quadratic terms agree, as
for the cubic terms consider (1.14). The first equation
is & linear equation for m®l. For simplicity assume that
A+ BK and A have bases of left eigenvectors

&(A+BK) = A& i=1,...,n
CjA = ujﬁ, j=1,.,.,ﬁ

otherwise we use bases of generalized eigenvectors.
Since the linear part of the plant is stabilizable and
detectable, the linear part of the closed loop system is
asymptotically stable, Re A; < 0, and by assumption
the linear part of the exosystem is not unstable, Re
p; <0

(3.36)

Now any cubic polynomial 7l?(z,Z) satisfying (1.12)
can be expressed as

7‘-[2](z,:2) = Zcil,iz,ta 612 12 £152
+ Zdﬁ,zm’a £ir2 £y % (5T
and

o8 o
£ (2,7)(A+ BK)z + e

= Zch,u.ia (Ay + A + M) €nz 62 &ig®
+ Zdn,ig,ja ()\u + )‘M + p'ja) €i1z 6133 stj

(2,%)(Az)

1t follows from (1.11) that
ZPf (2, K2, 5) + 182, K2,2) = O(z,%)*
S0
ZPfle(2, Kz, &) + 1¥(2,Kz,%)
= Z Kuyngis €02 €02 Eigz
+ 3 s €02 §? G F

for some k, I's. Hence there is an unique 7% satisfying
(1.14) and (1.12) given by

key,ag,e
Cry iz ~XTT
J _ A,ll-.f-)'\:Qj)\-g (337)
indtzgs T '-)\11 +Aig +Hs,

because the denominators are not zero, Re A, < 0 and
Re p; < 0.

The higher degree terms are handled in a similar fash-
ion. QED.
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