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Abstract

Nonlinear observer design based on backstepping method
is introduced in this paper. The method is applicable
to any nonlinear smooth systems. The observer asymp-
totically approaches to any given bounded trajectory in
the observable set of the original system, provided that
the initial estimation is not too far from the actual state
value.

1 Introduction

This paper addresses a simple and efficient method of ob-
server design for general nonlinear dynamical systems. It
is known that, if a nonlinear system admits an observer
normal form under change of coordinates and output in-
jection, observers can be designed using linear observer
theory (see [3], {4, [2] and references therein). Another
existing approach uses high gain design for the observa-
tion of general nonlinear dynamical systems ([1).

In this paper, a different approach based on backstep-
ping is introduced. It does not require any extra assumnp-
tion for the system, except smoothness and observability.
So, the method is applicable to general systems whose
error dynamics are not necessarily linearizable. Further-
more, it is not high gain design. The size of the observer
gain at a given point depends on the partial derivatives
of the vector fields at the same point. A formula of the
observer gain is derived. The gain is a function of the
state of the observer. The function can be derived off-
line through an iterative algorithm

The paper is organized as follows. In § 2, a two dimen-
sional example is given to illustrate the fundamental idea
of backstepping in observer design. The method nsed in
this section is generalized to arbitrary system in observ-
able form in § 3. In § 4, the derivation in section 3 is
summarized as an iterative algorithm for the caleulation
of the observer gain.
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2 An incentive example

In the following example, a nonlinear asymptotic observer
is designed for a two dimensional system in observable
form. Consider
y=n
Iy =1, (1)
2 = 0(21.72)

Given a bounded trajectory of (1), the problem is to find
an asymptotic observer to track the states of (1) based on
the measurement of y(t). The observer has the following
form

H| Hl

(2)

-T2

=i2+g ‘1,1 - 1)

(21321 =~ g2(ANZ1 — 71)
The variable ¥ is an estimation of z. Define the crror
by e = Z — z. The goal of this paper is to develop a
method of finding ¢; and g, so that (lim e(ty = 0. The

error dynamics is

ey =€y - Iiey o
= 0(2 - oir) + ga(E)ey ?

Notice that the error equation is dependent on both ¢

and . Since

F(t, =2 ¢ +elt). Iy

(3) can be treated as a tir
trajectory x(t). In the
function for the system. Then. the observer gain gy and
g are derived from the Lvzpinov function

swing. we derive a Lyapunov
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Og(e)?
. el?
bounded for (x, e} in a neighborhood of (0, 0). Substitut-
ing (6) and the definition of zy, z; into (5), we have

where O,(e)? is a function of (z,€) such that is

Vo = ~c1z — e23 + zz((gz(f) +14+cic + 0291(-'2)
+61(z) + c101(Z) + §1(T) + (91(2))?)e
+er + ez + 92(x) + g1(Z))e2). -
7

To make (7) negative definite, we assume

91(Z) = ~(c1+ca+¢2(3))

92(2) = —(1+c1c+291(2) + $1(F) + 191 ()
+91(2) + (91(2))%) ©

Notice that g;(Z) and g(Z) can not cancel the term ¢a2(x)

and ¢1(z). However, the function defined in (8) can can-

cel undesired quadratic terms. From (6), it is easy to

show that

(cr + 02 + ¢a(z) + 1(T)) = O, (e)
92(Z) + 14 c162 + 201(Z) + ¢1() + 191 (F) + §1(2)+
(91(2))? = Oqle)

Vo = —e12? — 222 + Og(e)?. (9)
Suppose that z(t), the trajectory of (1), is bounded.
Then, V; is locally negative definite.

This implies that the error dynamics (3} is locally
asymptotically

stable. Or equivalently, there exists a § > 0 so that

z]L"oL e(t) = 0 if le(0))} < 6.

The observer (2)-(8) is global in the sense that it can
track any bounded trajectory of (1). However. the initial
estimation Z(0) can not be arbitrary. It is required that
lle(0)}| < & for some & > 0. This is because that the error

dynamics (3) is not necessarily globally asymptotically
stable.

3 Observer design for systems in observ-
able form

I this section, observers are designed for the following
system in observable form.

I, 7wy for 1<
i = ()

<n-1, (1)

System (1) is a special case of (1) for n = 2. In this
seetion. general backstepping approach is introduced A
family of asymptotic nonlinear observers ave derived for
systems in the form of (1).

The observer is in the following form

Ly =gy g, (F)xy — ). for 1<i<n—1. .
F, o= _ (2)
Ty o= #(T) + g (2)T) )

The problem of observer design is to find the gains g,(F),
= <Un, so that [Hmi‘(f) = a(t) = 0if ||2(0) — z(0)] is
vl

not large. In other words, the gains render the following
error dynamics asymptotically stable. Define ¢ = 7 — 5.
the error dynamics are

€y =€, + gz(f)fl-
n = 0(%) ~ ¢(z) + gn(E)e,

For a fixed trajectory z(t) of (1), (3) can be considered as
a time-variant nonlinear dynamical system of e because
Z(t) = e(t) + z(t). The fact that z(t) is unknown makes
the problem of observer design for nonlinear system dith-
cult because the coefficients in the nonlinear functions of
the error dvnamics is time variant and they are not niea-
surable. This is a fundamental difference between linear
and nonlinear design. On the other

hand, the trianglular structure in all the systems (1),
(2) and (3) suggests that backstepping method of find-
ing a Lyapunov function might work for error dynamics
Let’s introduce some notations used in the main theorem
of this section.

Given any function a(z,Z,e). the operator D trans-
forms a into a

function by taking directional derivatives. i.c..

or 1<i1<n-1.
! - - (3

D(a(z.zZ.€))
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= ot 01, i+l )
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da
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Lemma 1 The mapping (5) has the triangular structure

Zzi = a (2, T)e; + aia(x, Fleg + - + a1 (X, T)ei_y + e

(7}
for 1 <1< mn. Notice that the coefficient of e; is 1.
It is casy to check that
Zopt = B(E) = B(z) + Y _ansr:ey (8)

i=1
for some coefficients anz1;, 1 < 7 < n. In the follow-

J
ing, the coetficients a, ; in (7) and (8) are grouped in the
following way

Gy ={ajr11,05422, 1 @ngin-js1), 0<j<n
(9
e G oconsists of all age, 1 <8 < s < n+ 1. sothat
s —t = j. They represents the off diagonals in the matrix

1 0 0 0 0
gy 1 0 0 0
an a2 an3 B 1 0

Up4lt Qngr2 Gnirs o Gnetn O

In this matrix, Gy consists of the diagonal elements (the
last cutry is zero since no €,41 term in z,41). The off
diagonal line is Gy, the second off diagonal line is G,, etc.

Lemma 2 For any agy;; € Gy, k > 1, it satisfies

Akyyy = Gk }lk+j](*rvf') (10)
whore by, s determaed by gy, ga, ke
Theorem 1 Let () gaa), o g () be funcroons sat-

isfying

g () By g i (B 4+ G (B =0 for 1<i<n

(11)
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ar,

o
v(t) of (1).
there erists a neighborhood U of e = 0 so that ¢10) € U
tnplecs that lim {o(t) — 2(0)) = 0.
o

t Iterative algorithin for the calculation
of i

Temma 3 Suppos tiot Gl G O v bnown
for some k> 20 Suppose that gy, ga. -+ g are known
] TR RTR T Ny
0 wtiet .
&
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o - Lot T b g
(2)
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Notice that in the right sides of (1) and (2), the coef-
ficients ag, ak_11,

ak-j_ 15 and axy;_o; are all in Gx_y or Gy_y. The
function agyj—15-1 is in Gg. The first coefficient a4y
can be computed using (1), the equation (2) iteratively
determines all the functions in G as j increases from 2
ton—k+1.

From Lemma 1, it is known that a,; = 1 for i =
1,---.n. It is obvious that ap41n41 = 0. So

Gy={ar1=1.--,6nn = L,ans1n41 = 0} (3)
The functions in G| are given in the following result.
Lemma 4 The functions in G, satisfies
ajj-1=C+c2+ - +cioy+ gy (4)
for2<ij<n+1.

 From Theorém 1, the function ¢;(z) is determined by
€1, 2. -+, €, B(z) and hnt1i(z.Z). The coefficients ¢).
Cy. ---. Cp, are the weights of zf in V. They can be any
set of positive numbers. The function ¢(zx) is a known
function in the dynamical system. The results in Lemma
3 and
4 provides iterative formula for the calculation of
hp-i. 1.Z). In the following, we summarize all these in
an iterative algorithm for the calculation of the observer
gain. The notations a;; and h;; are defined in (7). (8)
and 11,
Algorithm
Sw+7 1{The computation of g;(F)) Set & = 1
n
giid) = *(Z‘—'z + @n(F)}.
=1 B
Sten 2. (The computation of Gy) For 1 < j < n.
J
iy Zm - {1}
i=1
Szep 3. {The computation of h, ; satisfving i—j = k+1)
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5 Conclusion

Nonlinear observers for general dynamical systems are
derived based on backstepping method. The formulae
for the calculation of the observer gain are given in an
algorithm (§ 4). It can be programmed using softwares
of symbolic computation such as Maple or Mathematica.
The gain function can be derived off-line. The approach
in § 4 is generalized to the case in which the system is not
in observable form. The results will be given in a forth-
coming paper. In this paper, the systems have no control
input. Observer design for nonlinear control systems is
one of the problems in our future research.
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