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A Lyapunov Theory of Nonlinear
Observers

A. J. Krener

ABSTRACT: We will develop a Lyapunov and a partial converse Lyapunov
theory of nonlinear observers.

1 Convergent Observers

The problem of estimating the state of a dynamical system from partial
and possibly noisy measurements has a long history. In its nonlinear state
space form, one assumes that the dynamics satisfies a known nonlinear
differential equation with unkown initial condition and the measurement is
a known nonlinear function of the state

z(0) = z° (1)
y = h(z)

The linear form of the problem is

z = Az
z(0) = =2° (2)
y = Cr

One is given an estimate £° of 2° and the observations y(s), 0<s<tup
to time ¢. The problem is generate an estimate £(t) of z(t) in real time,
as the process evolves. The estimate should converge to the true state as
t — oco. ldeally the estimation process should be robust to noise both in
the dynamics and in the observations, to the initial state error and also to
modeling errors in the functions f, h.

One way of approaching this problem is to assume that the dynamics, initial
condition and observations are corrupted by noise with a known distribu-
tion and then to find the conditional density of the state given the past ob-
servations. When the dynamics and observations are linear functions of the
state and the noises and initial condition are independent and jointly Gaus-
sian then the conditional density is Gaussian and explicitly computable.
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Wiener [We] solved this problem for stationary Gaussian processes Usip
the method of spectral factorization. Kalman (Ka],[KB] extended this to
nonstationary Gaussian processes and reduced the problem to solving off.
line a Riccati equation and on-line a linear differential equation drivey by
the observations.

When the dynamics and/or observations are nonlinear then the unnor.
malized conditional density satisfies the Zakai equation, a parabolic PDE
driven by the observations [DM]. Accurately computing its solution in rea]
time for all but the smallest state dimensions is a very difficult task.

The Extended Kalman Filter [Ge] is a widely used alternative method for
estimating the state of a nonlinear system. It is obtained by linearizing
the nonlinear dynamics and the observation along the trajectory of the
estimate. It requires the on-line solution of a Riccati differential equation
and a linear differential equation driven by the observations. The Extended
Kalman Filter is globally defined but it is only a local method, one expects
the estimate to converge to the true state if the initial estimation error is
not too large but there is no general proof of this.

There are several nonstochastic approaches to state estimation. For linear
systems with linear observations, Luenberger [Lu] developed the concept of
an observer. This is another linear system that is driven by the observations
in such a way that the error dynamics is asymptotically stable.

Several nonstochastic methods have been proposed for nonlinear estima-
tion. Some of these are surveyed by Misawa and Hendrick [MH]. Other
methods include linearization [KI),[BZ],[KR], high gain observers [GHO]
and Hy, methods [Kr2].

Our approach to the Lyapunov theory of nonlinear observers follows that
sketched out by Krener and Duarte [KD]. It parallels the excellent paper of
Lin, Sontag and Wang [LSW], in which a Lyapunov and converse Lyapunov
theory for the stability of nonlinear dynamical systems with respect to sets
is presented. Many of our proofs are straight forward adaptations of theirs.
The systems that we are considering are of the form

¢ = f(z,u) (3)
v = h(z) (4)
z2(0) = =2° (5)

with state z, control u and observation y- The basic problem is to estimate
the current state z(t) from knowledge of the system and the past values
of the control u(r) and observation y(r), 0 < 7 < ¢ and some informa-
tion about the initial state. For simplicity we assume that the information
available about the initial state is an initial state estimate 2°.

Definition 1 An observer is a causal functional
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rom the initial state estimate, 2° and the past control and observation,
u(r), ¥(r),0 < 7 <1, to the current state estimate, &(t) such that the
estimate £(t) as a function of t is continuous from the left and limits exist
from the right.

Recall a functional £(+) — ¢(-) is causal if {(t) only depends on €(r) for
r < t. We will need some terminology. A function «(r) is of class K if it is
continuous, strictly increasing and a(0) = 0. A function a(r) is of class Ko,
ifit is of class K and in addition a(r) goes to co as r goes to co. A function
+(r, 5) is of class K? if it is continuous in both variables, strictly increasing
in each variable when the other is fixed and v(0,0) = 0. A function y(r, s)
is of class K2, if it is of class K2 and goes to oo as either r or s goes to co.
We introduce noises into the model to reflect our uncertainty about the dy-
namics w(-), the measurments v(-) and the error of the initial state estimate

50:1:0—12‘0.

o= (o) + (e ™)
y = h(z)+v (8)
2(0) = 2°=2%+37° 7 (9)

We will measure the size of the three noises using L, norms but other norms
or ways of measuring size are possible. For example, the size of £° could be
measured by a nonegative function @°(x) which has a global minimum at
z = #°. We denote the Ly norm of the driving and observation noises on

[r,t] by )
ol = [ 1)+ (o) de)

Definition 2 An observer is said to be convergent if there erist class Ko
functions 6;(¢), i = 1,2, and a function T(r,s,€) with the following prop-
erties. For any times 0 < 1y < 1 < t, any initial initial state, any initial
state estimate 2°, any control u(-) and any noises w(-), v(-) with support
in {11, 2], the state trajectory and state estimate satisfy

(1) for any € > 0 of
fz(r1) — &(m)|

<
“w7 U“[Tx.Tzl -<—

then
lz(t) — 2(t)] < e,
(2) for any v, s, € >0, if
lz(m) —2(n)] < r
“w)v”[Tx.Tﬂ <
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then
l=(t) - 2(t)| < €

Condition (1) is the stability of the estimation erro
states that the estimation error at a later time is a
function of the estimation error at a prior time and ¢
vation noises between the times. Condition (2) is th
of the noise free estimation error. It states that if th
estimation error asymptotically converges to zero u
to time, prior state, prior state estimate, control, prior driving noise apq
prior observation noise. Of course there are obvious local versions of the
definition, e. g., (1) and (2) hold only if |z(n1) — £(n1)| and [|w, Vliry,r,) are
sufficiently small.

Condition ( 1) implies that if an observer is convergent, if the estimate ig
exact at some time, z(r) = #(7) and if the noise is zero at subsequent times
w(o) = 0, v(0) =0, T < o <t then the estimate is exact at subsequent
times z(t) = #(¢) for all ¢ > 7.

A function B(r,t) is of class KL if for fixed t, it is of class K and for fixed
r, it is strictly decreasing to 0 as ¢ goes to 0. A function y(r, s,1) is of class

K2 L if for fixed t, it is of class K2 and for fixed r, s, it is strictly decreasing
to 0 as t goes to co.
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iff there ezists a function ¥(r, s,1)
< 72 <1, any initial state 2°, control
y w(-), v(-), with support in [11, 72], the state

l2(t) = ()] < (le(n1) = &(71)], lw, Vllgry ], t — 1) (10)

Proof: Suppose 7(r,s,t) exists. First we show (1) of Definition 2 holds.
Define a class Ko, function ¥(r) = 7(r,7,0) + r and let §(c) = Y1) If

|2(r1) — 2(m1)| 6(¢)

lw, vl < 6(e)

A

then

Il‘(f) - i(t)l 7(6(6)1 5(6):t - TZ)
7(6(5)’6(6)’0)
7(8(e)) = ¢

INIA A

forall0 <7 < 7.
Given any r, s, € choose T = T(r,s,¢€) so that

Y(r,s,T) < e.

This is always possible because v is K2L. Then (2) holds.
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To show the converse, we first show that the T'(r, s,¢€) can be chosen with
the following properties;

(i) for fixed r, s > 0, the mapping € — T(r, s, €) is a continuous, strictly
decreasing map from (0, 00) to (0, 00),

(ii) for fixed r, € > 0, the mapping s — T(r,s,€) is a strictly increasing
map which goes to co as s — 00,

(iii) for fixed s, € > 0, the mapping r — T(r, s, €) is a strictly increasing
map which goes to 0o as r — oo.

Define
A(r,s,€) = {T > 0 : Condition (2) is satified for r, s, €}.

This set is not empty for any r, s, € > 0 and is decreasing in r, s and
increasing in €. Define T(r,s,€) = inf A(r,s,€) then T is increasing in r, s
and decreasing in €. Because they are class Koo, the functions 6;(¢) — oo
as € — 0o so T(r, s, €) = 0 for € sufficiently large.

Define
r+s

€

T(r,s,€) = g/ T(r,s,v)dv+
€ Je

then T is strictly increasing in r, s, continuous and strictly decreasing in €
and

T(r,s,e&) > T(r,s,€)
lim T(r,s,¢) = 0
£— 00

lim T(r,s,€)

e—0+t

(o]

11

Define a function ¢(r, s) = max{6; ' (r), 57'(s)} then by Condition (1) for
any noises with support in [r1, 72 for any t >
ll‘(t) - i(t)l < ¢(l$(T1) - i(Tl)L H”UJ, v”[Tl,T:]) (11)

Define a function ¥(r,s,-) = T~1(r,s,-) where T(r, s,¢) is as above. Then
by Condition (2) for any noises with support in (71, 5] and any t > 1

l2(t) — #(t)] < ¥(r,5,t = 2)

for any r > |z(m) — #(m1)] and s > [|w, v|r, 7]
Define

Y(r,s,t) = min {qﬁ(r,s), inf d)(p,cr,f)}
p>T o>
then by the above for any noises with support in [r1, ) and any t > 7o
l2(t) — 2] < $(le(n) = 2(r)l s vl gt~ 72) (12)

If ¢ was K2L we would be done but it may not be. However we can con-
struct a K2 function which majorizes it. By its definition, YP(r,s,t) is
increasing in r, s and decreases to 0 as t — 0.

;;;;
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Define
. r41 s+1
¥(r,s,t) =/ / ¥(p,0,t) do dp

then 4(r, s,t) is continuously increasing in r, s and W(r, 8,t) > (r, 8,1).
Note that since Y(rst) s ocoast —

J(r, 5,t) < ;Z(r, 5,0) = ¢(r, s)

which is a continuous function. By the Lebes

gue dominated convergence
theorem, for any fixed r,s > 0

. r4-1 s+1 _
Jim §(r,5,1) = / / lim §(,0,1) do d
oo r s oo

Since 1/3(7-, 5,t) decreases to 0 as ¢ — 00, so does z/j(r, s5,1).
Define

r+s
—_ '
(r+s+1)(t+l)
then this function is continuous and strictly increasing In r, s for fixed t

and for fixed r, s it strictly decreases to 0 as t — 0o. Moreover from (12)
for any noises with support in [y, 7] and any t >

l2(2) ~ &(t)|

1,Z(r, 5,t) = 1/3(r, s, 1) +

¥lle(n) = #(n), o, Uty g, t = 72)
$(lz(n) = &(n), flu, U, ra)st = 1)
P(le(n) ~ a(n)|, o, vllpr,mayt = m)  (13)

IAN N A

The only thing that is lacking for it to be K2 is that (0,0, ) might not
be 0. This can remedied that by defining

v(r, s,t) = Vé(r, s)\/t/;(r, s, 1).

then (11,13)

l2(t) = 2(0)] < le(r) - ()], Jjw, Uliry,rals t = 1)

O

Lemma 1 Suppose « is a class K function then there exists a K2 func-
tion Ya (7, s,t) with the Sollowing property.

If 2(-), ¢(-) are any absolutely continuoys functions satisfying the differen-
tual inequality

~a(z(7)) + {(r)

I

(r) <
2(0) 2
)

Proof: .

Then & !

Define fo

then

It is not
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function 1
Define

Note that

Trivially

0 z(1) <.

Now consi




dp

(r,s,t) > J)(r, S,t).

ninated convergence

) do dp
,t).

1)
g in r, s for fixed t
Moreover from (12)

.T2]1t - TZ)
y-,-,],t —Tz)

,Tg]yt - 7'2) (13)

¥(0,0,1) might not

],t——Tg)
4

exists ¢ K%L func-

tisfying the differen-
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where the support of (1) is [0, 72) € [0,1] then
2(t) < 7a(2(0),{(2),1 — 72) (14)
proof: Define & by @(0) = 0 and for r >0
a(r) = % /0 " min{s?, a(s)} ds
Then & is a smooth class K function and for r > 0

a(r) < ofr)
a(r) < r?

% (min{rz, a(r)} - a(r)) >0

n(r)=—/lrg%

I =
Jim, n(r) 0

d _
Ea(r) =

Define for any r > 0

then

It is not hard to see that 5 is a strictly decreasing differentiable function
mapping (0, 00) to some interval (a, +00). Then 771 is a strictly decreasing
function from (a, c0) to (0, 00).
Define

0, r=0

Palrit) = { nt(n(r) +1), >0
Note that 8q(r,t) is a class KL function which satisfies

d
a—t‘ﬁa (1’, t)
Ba(r,0)

—a(Ba(r,1))

r

il

Trivially )
#(r) < —a(z(r) + (1)
so z(t) < z(t) where

Lor) = —aE() + )

5(0) = Z(O)

Now consider the mapping

0(1) = Ba(2(7), 72 — T)

11
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then
000) = Ba(2(0),7)
9(7’2) = E(Tz)
%0(T) = -C;i—zﬂa(f(r), Ty — T)C(T)
2(1y) = Ba(2(0), 13) +/0T2 %ﬂa(i(r), Ty — T)(:(r)dT
But

%ﬁa(i(r), -7)<1

because it satisfies the linear differentia] equation
d d ~ d _,_ d -

Gz COm=1) = ~LaG) L (o) )

d
Eﬁa (7‘, O) = 1

with d
73(5(1) 2 0
Hence
&(12) < Ba(2(0), 7) + ¢(rp)
and

z(t) 5a(ﬂa(3(0),7”2)+€(7'2),i—Tz)
Ba(2(0) + C(m2),t — T3)

70(2(0)7 C(TQ)) t— TQ)

I VAN VAN

where v, is defined by

Yo(r,s,t) = Ba(r + 5,1)

8]
Definition 3 4 Lyapunov function for the observer &
Q(z,t) with the following properties
(1) Q(z,t) is a causal fu
past control and obseryat;
a minimum al x = §
(2) there exist class
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() there exist a class K funtion as(r) which satisfies ak
d )
70, 1) < —es(l2() — 2D + @) + @) (16)
for any stale trajectory 2(t) and noises w(t), v(t) consistent with the ob-
servation y(t) = h(z(t)) + v(t).

Theorem 2 The observer 2(t) is convergent if there ezist a Lyapunov i
function Q(z,1).

Proof: Suppose a Lyapunov function Q(z,t) exists then

40600 < —oalle) - 20D + WO + 1O

oz (ealz(t) — )N + [w®)* + [o(t)”
< —a(Q=(®), 1) + W@ + () (17)

where « is the class K function defined by
a(r) = as(e;'(r) (18)
By the above lemma, there exists a class K2L function va(r, s.t) such that

Q((I)(t),t) S 701(Q($(T1)a Tl)) Hw! v“?-rl,m];t - 72)
Hence the observer is convergent because
REORE O RSN COR)
< 1e(@Q(n), 1), llw, vlifs, rppt = 72)
< alea(lz(r) — () w, vllf, -t = 72)

or as desired
12(t) — (1)) < 7(2(r) = ()] lw, ol rat =
where (r, s,t) is the K?L function defined by

v(r,5,1) = a7t (Yalaa(r), s°,1)) -

A partial converse to this is the following.

Theorem 3 Suppose an observer &(t) is convergent then there ezist a func-
tion Q(z,t) such that

(1) Q(z,t) is a causal functional of the initial state estimate 2° and the
past control and observation, u(r), y(r), 0 <7< such that Q(z,t) has
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a minimum at ¢ = Z(t)
(2) there ezist class Koo functions e;(r), i =1,2 which satisfy

ai(lz — 2@B)]) < Q(z,¢) < aa(|z - £(2)), (19)

(3°) Along any state trajectory z(t), input u(t), observation y(t) and Noises
w(t), v(t) consistent with the system (3,4)

Q(.’E(tz),tz) < Q(x(tl))tl) + ”‘U), v”[2¢"12]
Proof: Suppose an observer £(t) is convergent, define Q(z,1) as
Qz,t) = inf{lz(n) - (r)|* +|lw, ollf, : 0< 7 <t} ()

where the infimum is over all 2(7), w(r), v(r) satisfying

Sr) = J(e(r),u(r) + o)) (21
¥(1) = h(z(r)) +v(r) (22)
z2(t) = = (23)

and u(r), y(r) are the control and observation. Clearly Q(z,t) is a causal
functional of the the control, observation and estimate #(r). The latter is a

causal functional of the control, observation and initial state estimate £°,
We claim that

a1(lz — 2(t)]) < Q(z,1) < ea(|z ~ &(1))) (24)

where «; are the class K, functions

ale —2(O)) = (min{éi(lz — 2(1)]), &2(|z — 2(2)])})?
as(|z — 2(t)]) |z — 2(1))?

and é; are from the Definition 2 of a convergent observer. The second
inequality is obvious, the first can be seen as follows. Suppose it is not

true, i.e., there exists an z, 7, and 2(7), w(r), v(r) satisfying (21-23) such
that

I

|2(71) = () + llw, vlIf,, g < (min{61(|z = 2(2)]), 62(J2 — 2(2)])})?
which implies that
l2(n) —2(m)l < bi(lz - 2(1)])
o, vl < 6l — 3(2)])
By property (1) of a convergent observer, this implies the contradiction

|z — 2(t)] < |z — 2(¢)].

Condition (3’) follows immediately from the definition of Q(z,t), (20-23):

[}

-
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2 Conclusions

We have presented a Lyapunov theorem for convergent observers and a
partial converse. The Lyapunov function is of a novel type, it is a causal
functional of the past control and observation. Moreover it does not explic-
itly depend on the current estimate Z(t) but it determines the estimate as
it arg min. In some sense the function = — Q(z,t) is the state at time ¢ of
an infinite dimensional observer. Further refinement of this work is needed
to obtain a Lyapunov and converse Lyapunov theory of observers.
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