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H, Tracking Control for a Class of Nonlinear Systems

Joseph A. Ball, Pushkin Kachroo, and Arthur J. Krener

Abstract—This paper develops the theory for tracking control using
the nonlinear H, control design methodology for a class of nonlinear
input affine systems. The authors use a two-step process of first designing
the feedforward part of the controller to design for perfect trajectory
following and then design the feedback part of the controller using

nonlinear H., regulator theory. Results for infinite-time and finite-time
horizons are presented.

Index Terms—Control, feedback, nonlinear, robust, tracking.

I. INTRODUCTION

This paper deals with designing tracking control systems formu-
lated in the nonlinear H.. setting. The objective in the regulator
problem is to drive an unwanted error signal to zero. The objective
in the tracking problem is to get a plant output to track a given
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Fig. 1. Block diagram for nonlinear Ho, formulation.

model signal. Thus the regulator problem can be seen as the special
case of tracking where the signal to be tracked is zero. Conversely,
(as shown in [1, Ch. 4]), the tracking problem can be reduced to a
regulator problem. Previous work on the tracking problem demanded
only that the tracking error tend to zero asymptotically as time tends
to infinity [2}, [3] or to choose a feedback to minimize a tracking
error norm integrated over all time [1], [4], [5]. Our purpose here is
to use an H.-optimality criterion for judging tracking performance
(minimize the worst case tracking error norm over admissible ball
of disturbances), by reducing this Heo-tracking problem to an Ho-
regulator problem, much in the same spirit as was done in [4] and
[5] in the non-H. setting.

II. BACKGROUND (NONLINEAR H., ConTroL)
Consider the system

z =a(z) + b(z)u + g(z)d;, a(0)=0
y =c(z) +da, c(0)=0
z= ["(’)], h(0)=0 m
u
where = (z1,--,Zn) are local coordinates for a C° state-

space manifold M,u € R™ are the control inputs, d; € R"
and d2 € RP the exogenous inputs consisting of reference and/or
disturbance signals, y € RP the measured outputs, and z € R°
outputs to be controlled. System (1) is identified by G. For a full-
state measurement case y = . The controller is identified by K. The
closed-loop system in Fig. 1 will be denoted by Q(G/K).

Definition 1: The closed-loop system Q(G/K) is said to have L,
gain less than or equal to v for some v > 0 if

T T

[ leor sy [ woraiie o
0 [+]

VI >0 and w(t) € L2[0,T], where b(xo) is a positive constant

depending on initial condition . '

State Feedback H.. Control Problem: Find a state feedback con-
troller K: v = u(x) if any, such that the closed-loop system Q(G/ K)
is asymptotically stable and has L,-gain < 4.

Solution [2], [3], [6]-[8]: If there exists a smooth function
V(z) > 0 which satisfies the Hamilton-Jacobi (HJ) inequalities

Ve@ale) + 3Ve(@)| 539(2)s" () - 4a)| VI

¥ %hT(z)h(z) <0, V(0)=0 G)

and we set

w. = —b7 (z)Ve() @

0018-9286/99510.00 © 1999 IEEE
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then the closed-loop system §2(G/u.) has gain at most v. Moreover,
if V(x) has a strict local minimum at z = 0 and the system

% =a(zx)
h(z)
z = |: bT(:C)VT(x):l (5)
is zero-state detectable (i.e., £ = a(x) and z(zz(t)) = O for

t 2 0= limi_o z(t) = 0), then z = 0 is a locally asymptotically
stable equilibrium of

£ =a(z) — bz (z)V (z). ©)

If additionally V' has a global strict minimum at £ = O and V is
proper (so the inverse image of a compact set under V is again
compact), then £ = 0 is a globally asymptotically stable equilibrium
of (6).

~ For the finite-time horizon problem, where final time T is finite,
the solution is given by u = —b7 (2)V,(t, ), where V(¢,z) > 0
satisfies the following HJ equation: x

Vi(t, z) + Ve(z)a(z)
+ V,(z)[ —g(z)g (z)—b(z)bT(x)]Vf(z)

+ EhT(z)h(z) =0, V(T,z)= V(). ¢
The solution for the finite-time can be derived from a min-max
differential game perspective [9].
Measurement Feedback Ho, Control Problem: Find a dynamic
feedback controller

K- {ﬁ = k(n) + £(n)y @)

u =m(n)

so that the closed-loop system ©2(G/K) is asymptotically stable and
has Lp-gain < 7.

Solution [2], [3], [6], [8], [10]: A necessary condition for the
existence of solutions for which the closed-loop system has a smooth
storage function is that there exists a solution V(z) > 0 of (3) as
well as a solution R(a:) > 0of

Be(z)a(z) + 5 Rs(z)g(z)y T(2)RT (=) + 7 hT(z)h(z)

= %ﬁT(z)c(z) <0,

such that V(z) < R(z) for all z.

Conversely, conditions (3) and (9) are sufficient to solve the
measurement feedback problem, at least locally. A more complicated
version of (9) involving an “information-state” in combination with
(3) leads to compensators which solve the problem. However, these

compensators are in general infinite-dimensional. This is an ongoing
" area of research which is beyond the scope of this paper.

III. TRACKING CONTROL

There has been some related work in tracking systems for the linear
systems with quadratic performance index (see [1] and references
therein). In the approach taken in this paper for tracking control, we
use a two-step method for both state feedback as well as measurement
feedback problems, as described below. The reference signal to be
tracked is given by the output of a known plant, identified by R

m = A(zn)
Ya = C(zm)

for £,»(0) initial state. System (10) is completely observable.

R(0)=0 9

10y
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A. State-Feedback Problem (Infinite-Horizon)
Step 1: Find a feedforward . = u.(z,z,) so that:
1) the equilibrium z = O of
z = a(z) + b(x)u.(z,0)
is exponentially stable;

2) there exists a neighborhood U C X x X, of (0,0) such
that for each initial condition (z(0), zm(0)) € U, the solution
(z(t), zm () of

z =a(z) + b(z)u.(z,xm)
Zm = Alzm)

an

(12)

satisfies
lim {h(O(zm () = (zm(®)} = 13)

To solve Step 1, following [11], we seek a feedforward u. =
U.(z,zm) and an invariant submanifold z = 8(x,,) of the combined
system (12), so that under the closed-loop dynamics the submanifold
z = 6(z) is invariant, and the mismatch error

e = h(z(t)) — C(zm(t)) (14
is identically zero on this submanifold. This leads to the Fran-

cis~-Bymes-Isidori (FBI) equations (41, [5], [11], {12] for the function
0(zrm) and Us(B(Zm), Tm) = Te(zm)

22 (m) Alom) = a(0(am)) +B(0(m))e (2m)

h(z(8(zm)t)) — Clzm(t)) =0 (15)

Under appropriate assumptions one can prove that solvability of the
FBI equation (15) is necessary and sufficient for the solvability of
Step 1.

Assumption 1) is made to ensure that the system is asymptotically
stable in the absence of a signal to be tracked [11]. In fact, if
A(0) = 0,C(0) = 0 in the model (10) and if z = a(z),y = h(x)
is a detectable state output system, then it is redundant.

Once the feedforward and the invariant manifold have been iden-
tified, the next step is to use a feedback law to drive the system to
this invariant manifold in an optimal fashion. The new feature in this
paper is to use an Ho, formulation for the optimality criterion for
this step.

To formulate this step, we consider the combined system

z =a(z) + b(z)u + g(x)d,

Zm = A(zm) (16)
and introduce the change of variable
§=z—6(zm)
I =ZTm
v=u—Us(Tm)
=d;. an
The result is
£ =F(§zm) + B(€,zm)v + G(£, zm)ds
Em = A(zm) (18)
where
F(,zm) =a(l + 8(xm)) — (:l:m)A(::m)
+ b(& + G(zm))u* (:v:m

B(£,zm) =b(£ + 6(zm))

G, zm) =9(£ + 0(zm)). (19)
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For the error term, we use

o [HE+ o) = Clem)]. 20

v

The second step of our servo problem (state feedback Hoo formu-
lation) then is as follows.

Step 2: Find a feedback v. = v.({,zm) so that the solution
(E(t), 2. (t)) of (18) should satisfy

T , T
/0 IO dt < 4 / 4y (DI dt + BE(0), zm(0))

21
or more explicitly
/ (IR(E + 8(zm)) — Clam) I + 07} dt)
4] ‘ T
< / I I dt + b(ED), zm(0)  (22)

for all disturbances w(t) and initial conditions (£(0),Zm(0)) suffi-
ciently close to the origin, for all T < co. Note that if £(0) = 0 and
w(t) = 0, then we may take v(t) = O to attain perfect tracking.

The problem stated here is in the form of a standard state feedback
H. problem, so we can simply quote the solution from [7] (for
example) applied to the present setting.

Theorem 3.1: Assume that a feedforward u. = u.(z,zm) and
an invariant manifold £ = 6(z,.) for the associated closed-loop
dynamics has been found as required in Step 1 of the servo problem.
Suppose we can find a smooth function V(§, %) with

0< V(Ezm) @3)
so that
V€(£7$M)F(£v$m) + ‘/zm(gvzm)A(xm)
+ 3Vl o) | 5 6(E 267 (7
- BlE 2B (6,20 | VE (€ 20)
+ 2 IA(E + 2m) - Clam)II” < 0. @

Then the closed-loop system has gain at most v, i.e., (21) holds
over all paths of the system (18). If V' is proper with respect to the
¢-variable [i.e., V (€, &m) — oo when ||£]] — co) and if the system
(18) is detectable in the sense that 2(t) = O for system (18) with
v(t) = 0, w(t) = O implies that lim; .o £(t) = O, then in addition
lim;—oo &(t) = O for any initial condition (£(0), £m(0)].

Similar results hold for the measurement feedback version of the
problem. Again, we are given the plant and the model (16). In this
case the full state is not directly available for measurement, but only

y(t) is. The solution of this problem is also given in two steps as
follows.

B. Measurement Feedback Problem (Infinite-Horizon)
Step 1: Find a controller of the form

Tp = ak(z) + be(zr)y

u = cx(Tk, Tm) (25)
so that: 1) the equilibrium (z,zx) =)0,0) of
z =a(x) + b(z)ce(zk, Tm)
zi = ax(Zk) + be(ze)c(x) - (26)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 6, JUNE 1999

is exponentially stable and 2) there exists a neighborhood U C
X x X% X Xm of (0,0,0) such that for each initial condition
(2(0), 2 (0)), £ (0)) € U, the solution (z(t), Tk(t), Zm(t)) of

z =a(z) + b(z)ck(zk, Tm)
zr = ax(zk) + bi(zi)c(z)

Tm = A(Tm) @N

satisfies

Jm {r(6(z(1))) — C(zm(t))} = 0. (28)

To solve Step 1) of this error-feedback servo problem, we follow
[11], [12] and look for a compensator (ax(Z&), bk (zx), Ck(Tk, Tm))
and a manifold {z = 8(xm), zx = o(Zm)} which is invariant under
the closed-loop dynamics

z =a(z) + b(zc(zk, Tm)
T = ak(:ck) + bg(zg)c(z)

Trn = A(z,,.) 29

such that the mismatch error k(z(t)) —C(zm(t)) vanishes identically
on this submanifold. This leads to the FBI equations [4], [5}, [11],
[12]

529: (3m)A(zm) = G(e(zm)) + b(e(x"'))ﬁ* (Em)

—a_a-':-:(xm)A(zm) = ak(o'(xm)) + bk(o(:c...))y,, (z"‘

h(8(zm)) — C(zm) =0 (30)

whete s (@m) = ck(0(Tm),Zm) and ¥,(zm) = c(8(zm)). To
formulate a measurement-feedback Ho, problem for Step 2) of
the error-feedback servo problem, we again introduce a change of
variables. With implementation of the error feedforward compensator
from Step 1) and now allowing the disturbances d; and d2 to be
nonzero, we arrive at the composite system

: = a(2) + b(@)u + 9@
i = ap(zx) + b (ze)c(z) + bi(z )d2
Tm = A(zm)

y=c(z)+dz €3

with desired error term to be specified later. We impose the change
of variables

&L=z — 0(xm)
E2=x¢ — 0(Tm)
Im = Zm

v=t - t(Tm)

d; =d;, i=1,2 32)
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System (31) expressed with this change of variables has the form

él - Fl(fl,xm) + B(E],xm)v + Gl(El?zm)dl
5.2 =F2(£1,82,2m) + G2(&2,Tm)d2
T = A(ZTm)

y= [c(ﬁl,a:m) + d2] (33)

T

where

Fi(61,2m) =6(61 +0(am)) — s (m) Alem)

F 561+ 0(2m) ) un(m)
F2(61,8,%m) =ax(be + 0(zm))
+be(€2 + 0(zm))e(€1 + 0 (zm)
= 2 (om)A(em)
B(E1,7m) =b(6: + 8(&m)), 61, 7m) = (61 +0(zm))
Gi1(&1,2m) =g(&1 + 0(zm))
G2(82,Tm) =bi(E2 + 0 (2m)). (34

Step 2: Construct a dynamic compensator of the form (25) so that

the closed-loop system (25) and (33) is exponentially stable and has
Ly gain < #, ie,

T
/0 {IB(E (1) + 6(@m(1)) — Clam) [ + o) dt

T
<y / (0]

+ I d2(B)I) dt + [6(€1(0), £2(0), zm (O)*  (35)
for all disturbances d;, d» and initial conditions (£, (0), &1 (0), £, (0))
sufficiently close to the origin, for all T < oo. This fits in the
framework of an H..-measurement feedback problem. The results
listed in Section II do not apply directly since the noise term d»
affects only one component. of the measurement y in (34). Never-
theless, application of the results of [7], {8] for general nonlinear
systems leads to the existence of a solution V (&1, €2, Zm) > 0 and
R(&1,62,2) > 0 of the following two HJ inequalities such that
V(z) < R(z) for all x as a necessary condition for existence of a
solution of the measurement H..-control problem

Ve, @)F1(61,2m) + Ve, @F2(2) + Ve (2)Alem)
+ 36 @) 5616 2m)GT (6 2m)

- B{&, Im)BT (&, 1:,,,)] VZ'l (z)
* #Vh (£)G2(€2,2m)G2 (€2, -’Em)Vg‘z (=)

+ 3 Ih(E +0(em)) ~ Clam)I® <O, V(0,0,0)=0

(36)
Rfl (Elv EL O)Fl (619 0) + Rtm (£1v 629 O)A(O)
+ Re, (61,62, 0)[F2(£1, €2, 0) — G2(&2,0)c(£1,0)]
+ 5 R (6,6, E0GT (6,0 RE (6, 6,0)
- 37°lleten, 0) I
+ 3lIR(6,+6(0) - COI* <0, R(0,0,0) =0,
37
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C. Finite-Horizon Cases

For the finite-horizon cases of the above, two stability is not an
issue. The solution criteria are the same except that we need a solution
V(t,€, zm) to the time-varying HJ inequalities

Vl(ta ﬁaZM) + VE(ta£7$m)F(ta€axm)
+ Vzm)(t7 f,xm)A(Im)

+ Vet 5m)| G062 G 1 22)
— B(t,€,2m)B" (t,6,2m) |VF (,€,Zm)
SIR(E + 0(zm)) — Clam)I* < 0 (38)

subject to:

1) 0 S V(62m), V(€ 2m) < b6 2m);

2) V{(t,0,0) = 0;

3) V(T,& zm) = Vi(§);
where V7 is the final cost function for the state feedback case.

The time-varying HJ equations for the time-varying measurement
feedback problem are the same as those for the time-invariant case
with similar modifications.

IV. CONCLUSIONS

The solution for the nonlinear tracking problem formulated in an
H, setting has been presented. This paper showed the relationship
between the regulator problem and the tracking problem and how
the solution of the latter is related to that of the former in an
H, formulation. The solution reduces the problem to solving FBI
equations and HJ inequalities. These in turn can be solved (at least
locally) by working with power series expansions (see [5]). If one
considers the linear terms of the FBI equations (15), one obtains the
Francis equation. The higher degree terms of the FBI equations satisfy
a set of linear equations depending on the lower order solutions. The
routine, fbi.m, in the Nonlinear Systems Toolbox [13] will solve these
equations exactly to arbitrary degree when this is possible and in a
least squares sense when it is not. The Nonlinear Systems Toolbox
is a MATLAB toolbox for the design of nonlinear controllers. If
the Hamilton-Jacobi-Bellman inequality (24) is required to hold with
equality, then one can attempt to solve this term-by-term. The lowest
order terms must satisfy a Riccati equation. The higher degree terms
satisfy linear equations depending on the lower order solutions. The
routine hji.m in the Nonlinear Systems Toolbox will solve these
equations exactly to arbitrary degree when this is possible. We plan
to discuss these matters in more details elsewhere.
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Controllability of a Planar Body with Unilateral Thrusters

Kevin M. Lynch

Abstract— This paper investigates the minimal number of unilateral
thrusters required for different versions of nonlinear controllability of
a planar rigid body. For one to three unilateral thrusters, one gets a
new property with each additional thruster: one thruster suffices for
small-time accessibility on the body’s state space TSE(2); two thrusters
suffice for global controllability on T"SE(2); and three thrusters suffice
for smali-time local controllability at zero velocity states.

Index Terms— Controllability, gas jets, hovercraft, spacecraft, unilat-
eral constraints.

I. INTRODUCTION

In this paper we study the minimal number of unilateral thrusters
required for different versions of nonlinear controllability of a planar
rigid body. The dynamics can be viewed as a simple model of
a planar spacecraft or hovercraft, also studied by Manikonda and
Krishnaprasad [7] and Lewis and Murray [4]. The configuration space
of the body is C = S E(2), the set of planar positions and orientations,
and its state space is the tangent bundle T'C. The configuration of the
planar body is g and its state is (g, ).

We place the following restrictions on the thrusters.

1) Each thruster provides a line of force fixed in the body frame.

2) Each thruster is unilateral. A pair of opposing thrusters is
counted as two thrusters.

3) Each thruster has only two states, off or on, with thrust
magnitudes zero or one.

4) Only one thruster may be on at a time.

With these restrictions on the thrusters, we can choose thruster

configurations verifying the following propertles (which will be made
formal later).

Manuscript received November 19, 1997, revised April 28, 1998. Recom-
mended by Associate Editor, G. Bastin.
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One Thruster: The planar body is small-time accessible. For any
(¢,q) and any neighborhood V of (g,4), the body can reach a
full-dimensional subset of T'C without leaving V.

Two Thrusters: The planar body is controllable. It can reach any
(g4,4,) from any other (gq,4,) in finite time.

Three Thrusters: The planar body is small-time locally control-
lable at zero velocity states.

These properties are tight—a planar body with one thruster can
never be controllable, and a planar body with two thrusters can never
be small-time locally controllable. These properties are also tight if
we relax restrictions 3) and 4) on the thrusters, allowing simultaneous
use of multiple thrusters with thrust values in [0, 1].

II. DEFINITIONS

A coordinate frame Fg is attached to the center of mass of the
planar body B, and its conﬁguration in an inertial frame Fy is given
by ¢ = (ZTw:Yuw,8w)’ . The state of B is written (g,4) € TC. We
define the zero velocity section Z as the three-dimensional space of
zero velocity states (g,0).

The control system is written

(@8) = Xo(g,9) + _, i Xi(g,9) W

i=1

(uh aun)T =uelU= {Ov (11 01 . ,Oa 0)T1 (0’ 19'.' ’ ,Oa O)T’

T (0 0,- )T1 (Ovoa"'vov 1)T}a where XO‘(‘L q) = (-'.Ewa
Yw, 0w, 0,0, O) is the drift vector field, u; is the thrust applied
at the ith thruster, and X;(g, q) is the corresponding control vector
field. The body B has n thrusters. Only one thruster can be on at a
time, and the thrust is unit. A feasible trajectory for B is a solution
of (1) for a control function u(t) € U for all £.

To simplify the equations of motion, we choose the unit mass
to be the mass of B and the unit distance to be the radius of
gyration of inertia of B. Unit time is chosen to make the thrust
magnitude unit. The control vector field X; can then be written
(0,0,0, fri cosby — fyi sinby, fei sinfy + fyi cos 0w, )7,
where (fzi, fy,) is the unit thruster force expressed in the frame
Fo (ffi+ fi = 1) and 7; is the torque about the center of mass.
We will write f; = (fzi, fyi»7i)T, where (fzi, fy:) is.the linear
component of f;.

Modifying notation from Nijmeijer and van der Schaft [8), we
define R"(gy,4,,T) to be the reachable set from (go,g,) at time
T > 0 by feasible trajectories remaining in the neighborhood
V of (g,. qo) at times ¢t € [0,T]. Define RV (go,q0,< T) =
Uo<t<T R "(go>4o-t)- Then the system (1) (or simply the planar
rigid body B) is small-time accessible (or locally accessible) from
(90,d0) if RV (g9-40,< T) contains a nonempty open set of TC
for any neighborhood V of (gq,4,) and all T > 0. B is small-
time locally controllable from (gq, o) if R¥ (¢g, @0, < T) contains a
neighborhood of (g,,d,) for any neighborhood V and all T > 0. B
is controllable from (q,,q,) if, for any (q,,q,) € TC, there exists
a finite time T such that (¢,,4,) € RT(gq,d0,T)- The phrase
“from (g,-g,)" can be eliminated from each of these definitions if
the condition applies at all (gq,qo)-

III. PREVIOUS WORK

Partial controllability results for the planar rigid body with thrusters
have been reported previously by Manikonda and Krishnaprasad
{7] and Lewis and Murray [4]. Manikonda and Krishnaprasad [7]
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